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Abstract

In this paper, we investigate a contact problem between a viscoelastic body and a rigid foundation,

when both the effects of the (irreversible) adhesion and of the friction are taken into account.

We describe the adhesion phenomenon in terms of a damage surface parameter according to

Frémond’s theory, and we model the unilateral contact by Signorini conditions and the friction

by a nonlocal Coulomb law. All the constraints on the internal variables as well as the contact

and the friction conditions are rendered by means of subdifferential operators, whence the highly

nonlinear character of the resulting PDE system. Our main result states the existence of a

global-in-time solution (to a suitable variational formulation) of the related Cauchy problem. It

is proved by an approximation procedure combined with time discretization.
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1 Introduction

The present analysis is concerned with a highly nonlinear PDE system describing a unilateral contact

problem between a viscoelastic body and a support, when the effects of adhesion and of friction are

simultaneously taken into account. Referring (see [15]) to Frémond’s modeling approach to adhesive

contact, we aim to include into the description of the system evolution additional surface effects due

to friction. In the papers [4] and [5], frictionless adhesive contact problems have been addressed and

global-in-time well-posedness results have been proved. Furthermore, in [5] the long-time behavior

of the solutions has been investigated. Then, a model for frictionless adhesive contact, encompassing

thermal effects, has been analyzed in the recent contributions [6, 7].

The focus of the present paper is to generalize the model introduced in [4], taking into account

both the adhesive and the frictional effects, and to investigate the well-posedness of the related PDE

system.

1.1 Derivation of the model and the PDE system

Let us introduce the model and the corresponding initial and boundary-value problem we are dealing

with. Let Ω ⊂ R3 a smooth bounded domain, representing the reference configuration of a viscoelastic

body which may be in contact with a rigid foundation on a part Γc of its boundary. Concerning the

surface Γ = ∂Ω of the body, we assume Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄c , where the sets Γi , i = 1, 2, are open
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subsets in the relative topology of ∂Ω, with smooth boundary and disjoint one from each other. In

particular, the body is fixed on Γ1 , a known traction acts on Γ2 , and Γc is the contact surface. We

suppose that Γc and Γ1 have strictly positive measures and, without loss of generality, we identify

Γc with a subset of R2 , i.e., we treat Γc as a flat surface.

To describe the mechanical behavior of the system during the time interval [0, T ], T > 0, we

introduce the variables of the model, some of which are defined on the domain Ω, while others only

on the contact surface Γc . We work under the small deformation assumption. As state variables we

consider the symmetric linearized strain tensor ε(u) (u represents the vector of small displacements),

and a surface damage parameter χ related to the state of the bonds responsible for adhesion. For

example, if the contact surface is covered by glue, χ describes the state of the fibers of the glue. In

particular, χ denotes the fraction of active bonds and satisfies the constraint χ ∈ [0, 1] , the value
χ = 0 corresponding to the case of completely broken fibers (no adhesion) and χ = 1 to unbroken

bonds (active contact). Taking into account local interactions (in the adhesive and between the

adhesive substance and the body), we include the gradient ∇χ and the displacement trace u|Γc
among the state variables on the contact surface.

Now, let us introduce the balance equations. Neglecting any acceleration effect, we consider

the quasistatic equation

−divσ = f in Ω× (0, T ), (1.1)

supplemented by the following boundary conditions

u = 0 in Γ1 × (0, T ), σn = g in Γ2 × (0, T ), (1.2)

σn + R = 0 in Γc × (0, T ), (1.3)

where σ denotes the stress tensor, R the reaction on the contact surface, f a volume force, g

an assigned traction, and n the outward unit normal vector to the boundary Γ. Moreover, on the

contact surface Γc we introduce the following balance equation for microscopic movements

B − div H = 0 in Γc × (0, T ), H · ns = 0 in ∂Γc × (0, T ), (1.4)

B , H representing interior forces, responsible for the damage of the adhesive bonds between the

body and the support, and ns the outward unit normal vector to ∂Γc . We refer to [15, 18] for a

detailed derivation of (1.1)-(1.4), by a generalized version of the principle of virtual power. Finally,

let us point out that, within this paper we do not consider possible damage phenomena occurring in

the domain Ω, which was instead done in [8] for a (frictionless) model of adhesive contact.

Constitutive relations for σ , R , B , and H , split into dissipative and non-dissipative contributions,

are recovered from the pseudo-potential and the free energy functionals we are going to introduce.

Notation 1.1 To simplify notation, hereafter, upon considering the trace u|Γc of u on the contact

surface Γc , we shall avoid the index |Γc , if it is clear from the context that we are working on Γc .

Notation 1.2 We shall use the following decompositions of vectors and tensors on Γc . We denote

by vN and vT the normal component and the tangential part of v , defined on Γc by

vN := v · n, vT := v − vNn. (1.5)

Analogously, the normal component and the tangential part of the stress tensor σ are denoted by

σN and σT , and they are defined by

σN := σn · n, σT := σn− σNn. (1.6)

Energy and dissipation functionals and constitutive laws The free energy of the system is

given by a volume part ΨΩ and a surface one ΨΓc . The volume contribution ΨΩ is

ΨΩ :=
1

2
ε(u)Kε(u), (1.7)
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K denoting the elasticity tensor, while the contact surface free energy ΨΓc is chosen as follows

ΨΓc :=
cN
2
χ(uN)2 +

cT
2
χ|uT|2 + I(−∞,0](uN) + ws(1− χ) +

ks
2
|∇χ|2 + I[0,1](χ). (1.8)

The constants cN, cT, ws, ks are positive. In particular, cN and cT are the adhesive coefficients for

the normal and tangential components, respectively. Note that a priori these coefficients may be

different, due to possible anisotropy in the material responses to stresses. The positive constant ws
is related to the internal cohesion of the glue. Indeed, it favors values of χ close to 1 (viz., undamaged

glue). Let us now briefly comment on internal constraints. The indicator function I(−∞,0] enforces

the internal constraint uN ≤ 0, i.e. it renders the impenetrability condition between the body and

the support. Finally, the term I[0,1](χ) forces χ to assume only physically admissible values, i.e.
χ ∈ [0, 1] .

The non-dissipative contributions for the stress tensor, the internal forces, and the reaction

are specified by

σnd =
∂ΨΩ

∂ε(u)
, (1.9)

Bnd =
∂ΨΓc

∂χ
, Hnd =

∂ΨΓc

∂∇χ
, (1.10)

RndN =
∂ΨΓc

∂uN
, Rnd

T =
∂ΨΓc

∂uT
. (1.11)

Note that we have split the (non-dissipative) reaction into its normal and tangential components. The

derivatives in the constitutive relations (1.10) and (1.11) are taken with respect to (the components

of) the traces of u on Γc , even if it is not specified (see Notation 1.1).

Now, we describe the dissipation of the system by a pseudo-potential of dissipation (see

(1.12)-(1.13) below), in terms of the dissipative variables ε(∂tu) and ∂tχ . Concerning the evolution

of the adhesion, we prescribe that it is dissipative and irreversible. The resulting pseudo-potential of

dissipation is written for a volume part ΦΩ and a contact one ΦΓc , defined on Γc . More precisely,

we assume

ΦΩ :=
1

2
ε(∂tu)Kvε(∂tu), (1.12)

where Kv denotes the viscosity tensor, and

ΦΓc := ν |−RN + uNχ| j(∂tu) +
cs
2
|∂tχ|2 + I(−∞,0](∂tχ), (1.13)

where cs is a positive constant, ν > 0 denotes the friction coefficient, and

j(v) = |vT| for all v ∈ R3. (1.14)

Observe that we are considering an irreversible damaging process, as we force ∂tχ ≤ 0 with the

indicator function I(−∞,0](∂tχ) . Hence, the choice of the function j reflects the rate-independent

character of frictional dissipation.

The frictional contribution in (1.13) has been chosen according to [26], where a model (close to the

present one) describing a unilateral contact problem coupling friction and adhesion has been derived.

Let us point out that our choice of the constitutive relations and the fact that the dissipation functional

is a pseudo-potential of dissipation (i.e. non-negative, convex w.r.t. the dissipative variables and

attaining its minimum when the dissipative variables are 0), ensure the thermodynamical consistency

of the model. The constitutive relations for the dissipative contributions are given by

σd =
∂ΦΩ

∂ε(∂tu)
, (1.15)

Bd =
∂ΦΓc

∂(∂tχ)
, Hd = 0, (1.16)

RdN = 0, Rd
T =

∂ΦΓc

∂(∂tuT)
. (1.17)
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As far as the dissipative contributions of the reaction, note that they are involved on its tangential

component and not on the normal one.

From now on, to simplify the presentation, but without loss of generality, we take the physical

constants cN = cT = cs = ks = 1. Substituting (1.8) into (1.11), and (1.13) into (1.17), we obtain

RN = RndN ∈ χuN + ∂I(−∞,0](uN), (1.18)

RT = Rnd
T + Rd

T ∈ χuT + ν∂I(−∞,0](uN)d(∂tu), (1.19)

where ∂I(−∞,0] denotes the subdifferential of I(−∞,0] , while d : R3 ⇒ R3 the subdifferential of the

function j (1.14), namely

d(v) =

{
vT

|vT| if vT 6= 0

{wT : w ∈ B1} if vT = 0,
(1.20)

with B1 the closed unit ball in R3 . Similarly, computing (1.9) and (1.15), (1.10) and (1.16), we can

write system (1.1)-(1.4) in the following form

− div (Kε(u) +Kvε(∂tu)) = f in Ω× (0, T ), (1.21)

u = 0 in Γ1 × (0, T ), (Kε(u) +Kvε(∂tu))n = g in Γ2 × (0, T ), (1.22)

σN ∈ −χuN − ∂I(−∞,0](uN) in Γc × (0, T ), (1.23)

σT ∈ −χuT − ν∂I(−∞,0](uN)d(∂tu) in Γc × (0, T ), (1.24)

∂tχ−∆χ+ ∂I(−∞,0](∂tχ) + ∂I[0,1](χ) 3 ws −
1

2
|u|2 in Γc × (0, T ), (1.25)

∂nsχ = 0 in ∂Γc × (0, T ). (1.26)

Before proceeding, let us comment on the meaning of conditions expressed by (1.23)-(1.24).

Indeed, (1.23) can be rephrased as

uN ≤ 0, σN + χuN ≤ 0, uN(σN + χuN) = 0, (1.27)

which, in the case χ = 0, reduce to the classical Signorini conditions. Conversely, when 0 < χ ≤ 1,

σN can be positive, namely the adhesive action of the glue prevents the separation when a tension is

applied.

Moreover, relations (1.23)-(1.24) can be expressed by

|σT + χuT| ≤ ν|σN + χuN|, (1.28)

|σT + χuT| < ν|σN + χuN| =⇒ ∂tuT = 0, (1.29)

|σT + χuT| = ν|σN + χuN| =⇒ ∃λ ≥ 0 : ∂tuT = −λ(σT + χuT), (1.30)

which generalize the dry friction Coulomb law, to the case when adhesion effects are taken into

account.

1.2 Related literature and our own results

In the present paper we study the Cauchy problem related to a generalized version of system (1.21)-

(1.26), where the subdifferentials in (1.23)-(1.25) are replaced by general maximal monotone opera-

tors, still enforcing the physical constraints on the variables. Actually, a relevant peculiarity of our

system is the fact that all the constraints on the internal variables, as well as the unilateral contact

conditions and the friction law, are rendered by means of subdifferential operators. On the one hand,

let us point out that the resulting formulation of the problem, in comparison with those based on

variational inequalities, enables us to clearly identify forces and reactions. This fact turns out to

be of particular interest as it allows to give a physical and consistent meaning to internal forces

and reactions (coming by physical constraints). On the other hand, the associated PDE system is

highly nonlinear: the simultaneous presence of several multivalued operators yields, in particular, the
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doubly nonlinear structure of (1.24) and (1.25). Furthermore, the coupling of (1.23)-(1.24) (unilat-

eral contact and dry friction Coulomb law) introduces severe mathematical difficulties which, to our

knowledge, remain unresolved, even in the case without adhesion. The main difficulty in the analysis

is brought forth by a lack of spatial regularity for ∂tu . Indeed, note in particular that, due to the

non-smooth boundary conditions, we are not in the position of applying elliptic regularity results to

(1.21), and deduce a H2(Ω;R3) -regularity for u and ∂tu . Consequently, we are not able to control

the reaction pointwise. Furthermore, the tangential component of the reaction features the product

of two multivalued operators, cf. (1.19) and (1.24). That is why, we are led to regularize it and

actually work with a nonlocal version of the Coulomb law. The idea is to replace in (1.28)–(1.30) the

frictional term

ν|σN + χuN| with |R(σN + χuN)| , (1.31)

or, equivalently, in (1.24) the term ν∂I(−∞,0](uN) with R(∂I(−∞,0](uN))). In (1.31), R is a regular-

ization operator, taking into account nonlocal interactions on the contact surface. We shall specify

later our assumptions on R (cf. (H2)), and construct explicitly an admissible operator in Example

2.4. It is evident from the analysis we shall develop later on, that the regularization through R is

crucial for the mathematical treatment of the system. We also point out that this choice has been

widely adopted in the literature, starting from the paper [13], see also below.

Our main result, Theorem 2.1 below, states the existence of a global-in-time solution to the

Cauchy problem related for (a generalized version of) system (1.21)-(1.26), with the regularization

(1.31). The proof of Thm. 2.1 relies on a suitable regularization/approximation procedure. Namely,

we set up a time-discretization scheme for system (1.21)-(1.26), where we also suitably regularize some

of the nonlinear operators therein. We construct discrete solutions by time-incremental minimization,

and then define approximate solutions via interpolation of the discrete ones. The passage to the limit

in the time-discrete scheme exploits compactness and monotonicity techniques.

As far as uniqueness of solutions is concerned, we point out that it remains an open question,

essentially due to the doubly non linear character of (1.24) and (1.25). Actually, uniqueness holds in

the more regular framework of the approximated problem (see Proposition 5.1).

We conclude with a short, and with no aim at completeness, review of some results in the

literature on contact problems with adhesion and friction. First of all, we recall [10, 11, 26], based on

Frémond’s model (see [15, 16, 17]). In the already quoted paper [26], a consistent model describing

unilateral contact, adhesion and friction is originally derived in the framework of continuum ther-

modynamics. The related quasistatic problem is written as the coupling between two variational

inequalities and a first-order ODE (local interactions in the glue are neglected). Under a smallness

hypothesis on the friction coefficient, an existence result for an incremental formulation of the prob-

lem is proved and some numerical schemes are given. In [10, 11], based on [26], contact problems

with adhesion and friction are considered in the quasistatic elastic case and the dynamic viscoelastic

case, respectively. In the latter, reversible adhesion and nonlocal friction (a regularization operator

on the reaction is considered) are analyzed, an existence result for the related variational formulation

is proved and some numerical examples are presented.

As already mentioned, a useful tool to overcome some of the analytical difficulties connected

to the coupling between Signorini conditions and Coulomb law, is the regularization of the reaction by

an appropriate smoothing (and physically meaningful) operator, actually adopting a nonlocal friction

law. This idea, dating back to [13], has been exploited in several papers dealing with (adhesionless)

static, quasistatic and dynamic contact problems (see, e.g., [12, 21, 25]). An other approximation tool

frequently used to describe contact conditions, especially in the investigation of dynamic problems,

is the normal compliance law (introduced in [24]). Allowing for the interpenetration of the surface

asperities, such a law actually permits to dispense with the unilateral constraint on uN . From the

analytical point of view, the normal compliance condition may be regarded as a regularization of the

Signorini conditions by a penalization argument. In fact, we shall employ it in the formulation of our

approximate problem, see (3.2)–(3.7) below. Among the others, we quote [1, 20, 27] and [24, 22] where

(adhesionless) frictional contact problems based on normal compliance models have been extensively

studied in the quasistatic and in the dynamic case, respectively.

5



Finally, we mention the approach by C. Eck & J. Jarušek, see the monograph [14] and the

references therein. They prove existence results for dynamical contact problems, coupling dry friction

and Signorini contact, without recurring to any regularizing operator. However, they use a different

form of Signorini conditions, expressed not in terms of u but of ∂tu . They claim that this has still

some physical interest. In this setting, with the use of refined techniques they are able to obtain

enhanced regularity estimates on ∂tu , which allow them to deal with the dry Coulomb law.

Finally, for a review of the theory of (frictionless) contact problems with damage and adhesion

we refer, e.g., to the monograph [29], and the references therein.

Plan of the paper. In Sec. 2 we set up the problem, state all of our assumptions, and the main

existence result. We devise the time-discretization scheme (featuring a suitable approximation of some

of the nonlinear operators) in Sec. 3, while in Sec. 4 we obtain a priori estimates on the approximate

solutions. Finally, in Sec. 5 we conclude the proof of Theorem 2.1, by passing to the limit in the

approximation scheme. We also prove in Proposition 5.1 a uniqueness result for a (time-continuous)

approximation of system (1.21)-(1.26).

2 Main results

2.1 Set-up

We recall that, throughout the paper we shall assume that Ω is a bounded smooth set of R3 , such

that Γc is a smooth bounded domain of R2 (one may think of a flat surface). We shall also refer to

the following

Notation 2.1 Given a Banach space X , we denote by 〈·, ·〉X the duality pairing between its dual

space X ′ and X itself, by ‖ · ‖X both the norm in X and in any power of it. In particular, we shall

use short-hand notation for some function spaces

H = L2(Ω;R3), V = H1(Ω;R3), W := {v ∈ V : v = 0 a.e. on Γ1}

HΓc := L2(Γc;R3), YΓc = H
1/2
00,Γ1

(Γc;R3),

HΓc = L2(Γc), VΓc = H1(Γc), YΓc = H
1/2
00,Γ1

(Γc),

where we recall that the space YΓc is defined by

H
1/2
00,Γ1

(Γc;R3) =
{

w ∈ H1/2(Γc;R3) : ∃ w̃ ∈ H1/2(Γ;R3) with w̃ = w in Γc , w̃ = 0 in Γ1

}
.

The space W is endowed with the natural norm induced by V .

Preliminaries of elasticity theory. We recall the definition of the standard bilinear forms of

linear viscoelasticity, which are involved in the variational formulation of equation (1.21). Dealing

with an anisotropic and inhomogeneous material, we assume that the fourth-order tensors K = (aijkh)

and Kv = (bijkh) , denoting the elasticity and the viscosity tensor, respectively, satisfy the classical

symmetry and ellipticity conditions

aijkh = ajikh = akhij , bijkh = bjikh = bkhij , i, j, k, h = 1, 2, 3

∃α0 > 0 : aijkhξijξkh ≥ α0ξijξij ∀ ξij : ξij = ξji , i, j = 1, 2, 3 ,

∃β0 > 0 : bijkhξijξkh ≥ β0ξijξij ∀ ξij : ξij = ξji , i, j = 1, 2, 3 ,

where the usual summation convention is used. Moreover, we require

aijkh, bijkh ∈ L∞(Ω) , i, j, k, h = 1, 2, 3.
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By the previous assumptions on the elasticity and viscosity coefficients, the following bilinear forms

a, b : W ×W→ R , defined by

a(u,v) :=

∫
Ω

aijkhεkh(u)εij(v) for all u,v ∈W,

b(u,v) :=

∫
Ω

bijkhεkh(u)εij(v) for all u,v ∈W

turn out to be continuous and symmetric. In particular, we have

∃M > 0 : |a(u,v)|+ |b(u,v)| ≤M‖u‖W‖v‖W for all u,v ∈W. (2.1)

Moreover, since Γ1 has positive measure, by Korn’s inequality we deduce that a(·, ·) and b(·, ·) are

W -elliptic, i.e., there exist Ca, Cb > 0 such that

a(u,u) ≥ Ca‖u‖2W for all u ∈W, (2.2)

b(u,u) ≥ Cb‖u‖2W for all u ∈W. (2.3)

2.2 Assumptions and variational formulation of the problem

Assumptions on the nonlinearities in the PDE system. We first generalize the constraint on

uN in the free energy (1.8). So, let us consider a function

φ : R→ [0,+∞] proper, convex and lower semicontinuous, with φ(0) = 0, (H1)

with effective domain dom(φ) . Then, we define

ϕ : YΓc → [0,+∞] by ϕ(v) :=

{∫
Γc
φ(v) if φ(v) ∈ L1(Γc),

+∞ otherwise.
(2.4)

Hence, we introduce

ϕ : YΓc → [0,+∞], defined by ϕ(u) := ϕ(uN ) for all u ∈ YΓc . (2.5)

Since ϕ : YΓc → [0,+∞] is a proper, convex and lower semicontinuous functional on YΓc , its

subdifferential ∂ϕ : YΓc ⇒ Y′Γc is a maximal monotone operator. Notice that, when dom(φ) ⊆
(−∞, 0] the operator ∂ϕ then renders the impenetrability condition uN ≤ 0 on Γc , see also the

discussion in [4].

Concerning the regularizing operator R for frictional reaction, we ask that R : L2(0, T ; Y′Γc)→
L2(0, T ; HΓc) fulfils

∀ (η n), η ∈ L2(0, T ; Y′Γc), η n ⇀ η in L2(0, T ; Y′Γc) ⇒ R(η n)→ R(η ) in L2(0, T ; HΓc) . (H2)

In Section 5.2 we are going to show that, if R satisfies some additional condition (cf. (2.27) below),

then a uniqueness result holds for some approximation of system (1.21)-(1.26). In Example 2.4, we

shall exhibit an operator R which complies both with (H2), and with the latter condition (2.27)

required for uniqueness.

Furthermore, we consider

ρ̂ : R→ [0,+∞] proper, convex, and lower semicontinuous with dom(ρ̂) ⊂ (−∞, 0] and

its subdifferential ∂ρ̂ : (−∞, 0] ⇒ R fulfilling 0 ∈ ∂ρ̂(0).
(H3)

We shall denote by ρ the subdifferential operator ∂ρ̂ . In fact, ρ generalizes the operator ∂I(−∞,0]

in (1.25) yielding irreversible evolution for χ . Analogously, we take

β̂ : R→ [0,+∞] proper, convex and lower semicontinuous with dom(β̂) ⊂ [0,+∞) and

with β̂(0) = 0 = min β̂,
(H4)

and let β := ∂β̂ : [0,+∞) ⇒ R .
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Remark 2.2 In [5], [7], it is not supposed that the domain of β is bounded or a subset of [0,+∞) .

This corresponds to the fact that the model considered therein could include situations in which

repulsive dynamics may occur between the body and the support, leading to χ < 0 (and forcing, in

this case, separation, due to (1.23)). However, for the present analysis we need to enforce positivity

of χ , cf. also the discussion at the beginning of Section 3.

Assumptions on the problem data. We suppose that

u0 ∈W and u0 ∈ dom(ϕ) , (2.6)

χ0 ∈ H2(Γc), ∂nsχ0 = 0 a.e. in ∂Γc, β̂(χ0) ∈ L1(Γc) and β0(χ0) ∈ L2(Γc), (2.7)

where β0(χ0) denotes the minimal section of β(χ0) . As far as the body force f and the surface

traction g are concerned, we prescribe that

f ∈ L2(0, T ; H), (2.8)

g ∈ L2(0, T ; Y′Γc), (2.9)

and we define F : (0, T )→W′ by

〈F(t),v〉W :=

∫
Ω

f(t) · v + 〈g(t),v〉YΓc
for all v ∈W for a.e. t ∈ (0, T ). (2.10)

Of course, thanks to (2.8)-(2.9), F ∈ L2(0, T ; W′) .

Variational formulation of the problem. Recall that d : R3 ⇒ R3 denotes the subdifferential

of the function j (1.14).

Problem 2.3 Find (u, χ, η , µ , ξ, ζ) such that

u ∈ H1(0, T ; W), (2.11)

χ ∈ L∞(0, T ;H2(Γc)) ∩H1(0, T ;VΓc) ∩W 1,∞(0, T ;HΓc), (2.12)

η ∈ L2(0, T ; Y′Γc) , (2.13)

µ ∈ L2(0, T ; HΓc) , (2.14)

ξ ∈ L∞(0, T ;HΓc) , (2.15)

ζ ∈ L∞(0, T ;HΓc) , (2.16)

fulfilling the initial conditions

u(0) = u0, χ(0) = χ0, (2.17)

and

b(∂tu,v) + a(u,v) +

∫
Γc

χu · v

+ 〈η,v〉YΓc
+

∫
Γc

µ · v = 〈F,v〉W for all v ∈W a.e. in (0, T ) ,

(2.18)

η ∈ ∂ϕ(u) a.e. in (0, T ), (2.19)

µ ∈ |R(η)|d(∂tu) a.e. in Γc × (0, T ), (2.20)

∂tχ−∆χ+ ξ + ζ = ws −
1

2
|u|2 a.e. in Γc × (0, T ) , (2.21)

ξ ∈ ρ(∂tχ) a.e. in Γc × (0, T ), (2.22)

ζ ∈ β(χ) a.e. in Γc × (0, T ), (2.23)

∂nsχ = 0 a.e. in ∂Γc × (0, T ) . (2.24)
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Main result.

Theorem 2.1 Assume (H1), (H2), (H3), (H4), and (2.6)–(2.9). Then, Problem 2.3 admits a

solution (u, χ, η , µ , ξ, ζ) . More precisely, there exists a function

η ∈ L2(0, T ;Y ′Γc) , with η(t) ∈ ∂ϕ(uN (t)) , s.t. 〈η (t),v〉YΓc
= 〈η(t), vN〉YΓc

for a.a. t ∈ (0, T ),

(2.25)

and (2.18) in fact reads for all v ∈W

b(∂tu,v) + a(u,v) +

∫
Γc

χu · v + 〈η, vN〉YΓc
+

∫
Γc

µ · vT = 〈F,v〉W a.e. in (0, T ).

The proof of Theorem 2.1 shall be developed throughout Sections 3–5, by passing to the limit in a

suitable time-discretization scheme.

We conclude this section with the construction of an admissible operator R : L2(0, T ; Y′Γc)→
L2(0, T ; HΓc) fulfilling (H2). The following example highlights the physical meaning of R , as a

regularization taking into account nonlocal interactions on the contact surface.

Example 2.4 Fix f ∈ C∞0 (R2;R3) , with supp(f) ⊂ Γc , and for all η ∈ L2(0, T ; Y′Γc) let

R(η )(x, t) =

∫ t

0

〈η (·, s), f(x− ·)〉YΓc
ds for a.a. (x, t) ∈ Γc × (0, T ).

Then, R(η ) ∈ L2(0, T ; HΓc) : indeed,∫
Γc

|R(η )(x, t)|2 dx ≤ ‖η ‖2L2(0,T ;Y′Γc )

∫
Γc

‖f(x− ·)‖2YΓc
dx ≤ C‖η ‖2L2(0,T ;Y′Γc ). (2.26)

Hence, R : L2(0, T ; Y′Γc) → L2(0, T ; HΓc) is a linear and bounded operator, which further fulfils

(H2). Indeed, let (η n), η ∈ L2(0, T ; Y′Γc) be like in (H2): for almost all (x, t) ∈ Γc× (0, T ) we have

R(ηn)(x, t) =

∫ T

0

〈ηn(·, s),1(0,t)f(x− ·)〉YΓc
ds

→
∫ T

0

〈η(·, s),1(0,t)f(x− ·)〉YΓc
ds = R(η)(x, t)

as n→∞ . Moreover, it follows from estimate (2.26) that

‖R(η n)‖2L2(0,T ;HΓc ) ≤ C‖η n‖
2
L2(0,T ;Y′Γc ) ≤ C

′

hence the dominated convergence theorem yields R(η n)→ R(η ) in L2(0, T ; HΓc) .

Finally, we observe that for all η 1, η 2 ∈ L2(0, T ; HΓc) there holds∫ T

0

∫
Γc

|R(η1)(x, t)− R(η2)(x, t)|2 dx dt

=

∫ T

0

∫
Γc

∣∣∣∣∫ t

0

∫
Γc

(η1(y, s)− η2(y, s)) · f(x− y) dy ds

∣∣∣∣2 dxdt

≤ C
∫ T

0

∫
Γc

∫ t

0

‖f(x− ·)‖2L∞(Γc;R3)‖η1(·, s)− η2(·, s)‖2HΓc
dsdxdt

≤ C
(∫

Γc

‖f(x− ·)‖2L∞(Γc;R3) dx

)
‖η1 − η2‖2L2(0,T ;HΓc ).

Therefore, R has the additional property that

∃CR > 0 ∀ η 1, η 2 ∈ L2(0, T ; HΓc
) : ‖R(η 1)−R(η 2)‖L2(0,T ;HΓc ) ≤ CR‖η 1−η 2‖L2(0,T ;HΓc ). (2.27)
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3 Time discretization scheme and regularization

We fix a time-step τ = T/N > 0, N ∈ N, inducing a partition t0 = 0 < t1 < · · · < tn < · · · <
tN−1 < tN = T of the interval (0, T ) , with tn := nτ, n = 0, . . . , N.

We shall consider a time-discrete problem featuring a suitable regularization of some of the

nonlinear operators appearing in system (2.18)–(2.24). Indeed, we shall replace the operator β : R ⇒
R by its Yosida regularization βε (see e.g. [2, 3, 9]), and exploit that βε : R → R is a Lipschitz

continuous function. In particular, dom(βε) = R , hence in the approximate system the constraint
χ ≥ 0 is no longer enforced. Thus, to ensure that adhesion on the boundary is active when the

glue is not completely damaged (i.e. there are no repulsive forces), we need to replace the adhesion

coefficient χ in (2.18), by its positive part χ+ = max{χ, 0} .

Furthermore, we shall replace the function φ , which enters in the definition of the functional

ϕ through (2.4) and (2.5), by its Yosida approximation φε : R → [0,+∞) . We recall that φε
is convex, differentiable, and such that φ′ε is the Yosida regularization of the subdifferential ∂φ :

R ⇒ R . Therefore, in this way we replace the constraint (2.19) by its regularized version η ∈
∂φε(uN)n a.e. in Γc × (0, T ) , cf. with (3.7) below.

Finally, we approximate F (2.10) by local means, namely we set

Fi :=
1

τ

∫ tiτ

ti−1
τ

F(s) ds for all i = 1, . . . , N.

Time-discrete problem. Given (u0, χ0) ∈W ×H2(Γc) , find {(uεi , χεi )}Ni=0 ⊂W ×H2(Γc) such

that

uε0 = u0, χε
0 = χ0, (3.1)

and fulfilling for all i = 1, . . . , N

b

(
uεi − uεi−1

τ
, v

)
+ a(uεi , v) +

∫
Γc

(χεi )
+uεi · v +

∫
Γc

ηεi · v +

∫
Γc

µεi · v

= 〈Fi,v〉W for all v ∈W, (3.2)

µεi = |R(ηεi−1)|zεi , zεi ∈ d

(
uεi − uεi−1

τ

)
a.e. in Γc, (3.3)

χε
i − χεi−1

τ
−∆χεi + ξεi + βε(χ

ε
i ) = ws −

1

2
|uεi−1|2 a.e. in Γc, (3.4)

ξεi ∈ ρ
(χε

i − χεi−1

τ

)
a.e. in Γc, (3.5)

∂nsχ
ε
i = 0 on ∂Γc, (3.6)

where

η εi := φ′ε((u
ε
i )N)n =: ηεin for all i = 0, . . . , N . (3.7)

Proposition 3.1 Assume (2.6)–(2.9). Then, there exist {(uεi , χεi )}Ni=0 ⊂ W × H2(Γc) fulfilling

(3.1)–(3.5).

Proof. We proceed by induction on the index i , showing that, given (uεi−1, χ
ε
i−1, η

ε
i−1) ∈ W ×

H2(Γc) ×HΓc , there exist a triple (ui, χi, η
ε
i ) fulfilling (3.2)–(3.5). Notice that (3.4) and (3.2) are

decoupled, hence we can tackle each equation separately.

First, we show that, given (uεi−1, χ
ε
i−1) , there exists (χεi , ξ

ε
i ) ∈ HΓc × HΓc solving (3.4).

Indeed, we choose

χε
i ∈ Argmin v∈VΓc

{τ
2

∥∥∥∥v − χεi−1

τ

∥∥∥∥2

HΓc

+ τ

∫
Γc

ρ̂

(
v − χεi−1

τ

)
+

1

2

∫
Γc

|∇v|2 +

∫
Γc

β̂ε(v) +
1

2

∫
Γc

(uεi−1)2v
}
.

(3.8)
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With the direct method of the Calculus of Variations, it can be easily shown that the above minimum

problem (3.8) admits at least a solution in VΓc . Hence, χεi fulfils the Euler equation for (3.8), namely

(3.4), where ξεi ∈ HΓc is as in (3.5). Taking into account that the all terms |uεi−1|2 , βε(χ
ε
i−1) , and

ξεi are in HΓc , a comparison argument in (3.4), joint with standard elliptic regularity results, implies

that χεi ∈ H2(Γc) .

Analogously, given χε
i and (uεi−1, χ

ε
i−1) , with η εi−1 = φ′ε((u

ε
i−1)Nn , we find uεi ∈ W and

µ εi ∈ HΓc fulfilling (3.2), by solving the minimum problem

uεi ∈ Argmin v∈W

{τ
2
b

(
v − uεi−1

τ
,
v − uεi−1

τ

)
+ τ

∫
Γc

|R(ηεi−1)|j
(

v − uεi−1

τ

)
+

1

2
a(v,v) +

1

2

∫
Γc

(χεi )
+|v|2 +

∫
Γc

φε(vN)− 〈Fi,v〉W
}
,

(3.9)

which admits a solution, again via the direct method.

Notation 3.2 We respectively denote by uετ , uετ , and uετ , the left-continuous and right-continuous

piecewise constant, and the piecewise linear interpolants of the family {uεi}Ni=0 ⊂W , viz.

uετ (0) := u0, uετ (t) := uεi t ∈ (ti−1, ti], i = 1, ..., N ;

uετ (0) := u0, uετ (t) := uεi−1 t ∈ [ti−1, ti) i = 1, ..., N ;

uετ (0) := u0, uετ (t) := t−ti−1

τ uεi + (1− t−ti−1

τ )uεi−1 t ∈ [ti−1, ti), i = 1, ..., N ;

We shall also make use of the interpolants χ
ε
τ , χετ , η ετ , η ε

τ
, ηετ , µετ , zετ , ξ

ε

τ , and Fτ , analogously

defined. It can be easily checked that

Fτ → F in L2(0, T ; W′) as τ → 0. (3.10)

In terms of the above defined interpolants, system (3.2)–(3.7) reads:

b(∂tu
ε
τ ,v) + a(uετ ,v) +

∫
Γc

ηετv +

∫
Γc

µετv +

∫
Γc

(χ
ε
τ )+ uετv = 〈Fτ ,v〉W for all v ∈W, (3.11)

ηετ = ηετn, ηετ = φ′ε(uN
ε
τ ) a.e. in Γc × (0, T ), (3.12)

µετ = |R(ηε
τ
)|zετ ∈ |R(ηε

τ
)|d(∂tu

ε
τ ) a.e. in Γc × (0, T ), (3.13)

∂tχ
ε
τ −∆χ

ε
τ + ξ

ε

τ + βε(χ
ε
τ ) = ws −

1

2
|uετ |2 a.e. in Γc × (0, T ), (3.14)

ξ
ε

τ ∈ ρ(∂tχ
ε
τ ) a.e. in Γc × (0, T ), (3.15)

∂nsχ
ε
τ = 0 a.e. on ∂Γc × (0, T ). (3.16)

4 A priori estimates

In this section we perform some a priori estimates on the approximate solutions, obtaining bounds

which are independent of the parameters τ and ε . Hereafter, we shall denote by the same letter c

various positive constants, depending only on the problem data, but neither on τ nor on ε .

Preliminarily, we recall the well-known discrete by-part integration formula

m∑
i=1

τδbi · vi = bmvm − b0v1 −
m∑
i=2

τbi−1δvi for all {bi}mi=1, {vi}mi=1 , (4.1)

where we have used the short-hand notation δbi = (bi − bi−1)/τ .
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First estimate. We first test (3.2) by uεi − uεi−1 . Note that, due to (2.3) there holds

b

(
uεi − uεi−1

τ
,uεi − uεi−1

)
≥ Cbτ

∥∥∥∥uεi − uεi−1

τ

∥∥∥∥2

W

. (4.2)

Furthermore, it is straightforward to get

a(uεi ,u
ε
i − uεi−1) =

1

2
a(uεi ,u

ε
i )−

1

2
a(uεi−1,u

ε
i−1) +

1

2
a(uεi − uεi−1,u

ε
i − uεi−1) (4.3)

In addition, the operator ρ in (3.4) forces irreversibility, namely χε
i ≤ χε

i−1 a.e. in Γc . Therefore,

we conclude for all i = 1, . . . , N that χε
i ≤ χ0 a.e. in Γc . Taking into account condition (2.7) on

χ0 , we conclude

‖(χεi )+‖L∞(Γc) ≤ c, whence

∫
Γc

(χεi )
+uεi · (uεi − uεi−1) ≤ ‖(χεi )+‖L∞(Γc)‖‖u

ε
i‖L4(Γc)‖u

ε
i − uεi−1‖L4(Γc)

≤ c‖uεi‖W‖uεi − uεi−1‖W,
(4.4)

where we have used that W embeds continuously into L4(Γc;R3) . Exploiting that φε is convex, we

see that ∫
Γc

η εi (u
ε
i − uεi−1) ≥

∫
Γc

φε((u
ε
i )N)− φε((uεi−1)N). (4.5)

Finally, the monotonicity of d yields∫
Γc

|R(η εi−1)|d
(

uεi − uεi−1

τ

)
(uεi − uεi−1) ≥ 0. (4.6)

Collecting (4.2)–(4.6) and summing up for i = 1, ...,m , 1 ≤ m ≤ N , we arrive at

τCb

m∑
i=1

∥∥∥∥uεi − uεi−1

τ

∥∥∥∥2

W

+
Ca
2
‖uεm‖2W +

∫
Γc

φε((u
ε
m)N)

≤ c

(
‖u0‖2W +

∫
Γc

φε((u
ε
0)N) +

m∑
i=1

‖Fi‖W′‖uεi − uεi−1‖W +

m∑
i=1

‖uεi‖W‖uεi − uεi−1‖W

)
.

(4.7)

Notice that the first two terms on the right-hand side are bounded in view of (2.6). Concerning the

last term, we can exploit Young’s inequality to obtain

c

m∑
i=1

‖uεi‖W‖uεi − uεi−1‖W ≤
Cbτ

4

m∑
i=1

∥∥∥∥uεi − uεi−1

τ

∥∥∥∥2

W

+ cτ

m∑
i=1

‖uεi‖2W.

Here, in particular, choosing τ sufficiently small, we can write

cτ

m∑
i=1

‖uεi‖2W ≤
Ca
4
‖uεm‖2W + c

m−1∑
i=1

‖uεi‖2W.

Analogously, there holds

m∑
i=1

‖Fi‖W′‖uεi − uεi−1‖W ≤
Cbτ

4

m∑
i=1

∥∥∥∥uεi − uεi−1

τ

∥∥∥∥2

W

+ cτ

m∑
i=1

‖Fi‖2W′ .

Eventually, we get

m∑
i=1

τ

∥∥∥∥uεi − uεi−1

τ

∥∥∥∥2

W

+ ‖uεm‖2W ≤ c

(
1 +

m−1∑
i=1

‖uεi‖2W

)
.

Combining the above calculations with (4.7) and applying a discrete version of the Gronwall

lemma (see, e.g., [19, Chap. 2.2]), we are able to deduce

‖∂tuετ ‖L2(0,T ;W) + ‖uετ ‖L∞(0,T ;W) ≤ c. (4.8)
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Second estimate. Now, we test (3.4) by χεi−χεi−1 and add over i = 1, ...m . From the monotonicity

of ρ and the fact that 0 ∈ ρ(0) , it follows that∫
Γc

ξεi (χ
ε
i − χεi−1) ≥ 0.

Then, we have ∫
Γc

βε(χ
ε
i )(χ

ε
i − χεi−1) ≥

∫
Γc

β̂ε(χ
ε
i )−

∫
Γc

β̂ε(χ
ε
i−1).

Moreover, ∫
Γc

∇χεi∇(χεi − χεi−1) =
1

2

∫
Γc

|∇χεi |2 −
1

2

∫
Γc

|∇χεi−1|2 +
1

2

∫
Γc

|∇(χεi − χεi−1)|2.

Then, adding over i = 1, ...,m , we get (cf. (2.7))

τ

m∑
i=1

∥∥∥∥χεi − χεi−1

τ

∥∥∥∥2

HΓc

+
1

2
‖∇χεm‖2HΓc

+

∫
Γc

β̂ε(χ
ε
m)

≤ 1

2
‖∇χ0‖2HΓc

+

∫
Γc

β̂(χ0) + τc

m∑
i=1

(‖uεi−1‖2W + 1)

∥∥∥∥χεi − χεi−1

τ

∥∥∥∥
HΓc

≤ c

(
1 + τ

m∑
i=1

‖uεi−1‖4W

)
+
τ

2

m∑
i=1

∥∥∥∥χεi − χεi−1

τ

∥∥∥∥2

HΓc

.

Thus, taking into account the previously proved estimates (4.8), we are in the position of concluding

‖∂tχετ ‖L2(0,T ;HΓc ) + ‖∇χετ ‖L∞(0,T ;HΓc ) ≤ c. (4.9)

Third estimate. We test (3.4) by the function τ(−∆δχεi + δβε(χ
ε
i )), where δχεi =

χε
i−χ

ε
i−1

τ , and

δβε(χ
ε
i ) =

βε(χεi )−βε(χ
ε
i−1)

τ . First, note that, by the monotonicity of βε , we have∫
Γc

τδβε(χ
ε
i )δχ

ε
i ≥ 0.

Then, due to the monotonicity of ρ (see also [23, Lemma 4.1]), there holds∫
Γc

ξεi (−∆δχεi ) ≥ 0

where ξεi is defined in (3.5). Then, combining the facts that βε is Lipschitz monotone, ρ is monotone,

and it satisfies 0 ∈ ρ(0) , we can infer that

τ

∫
Γc

ξεi δβε(χ
ε
i ) ≥ 0.

As previously seen, we have

τ

∫
Γc

(−∆χεi + βε(χ
ε
i ))(−∆δχεi + δβε(χ

ε
i )) ≥

1

2

∫
Γc

(| −∆χεi + βε(χ
ε
i )|2 − | −∆χεi−1 + βε(χ

ε
i−1)|2).

Eventually, summing up for i = 1, ...,m and exploiting estimates (4.8) for uεi , we get

m∑
i=1

τ

∫
Γc

|∇δχεi |2 +
1

2

∫
Γc

(| −∆χεm + βε(χ
ε
m)|2 − | −∆χ0 + βε(χ0)|2)

≤
m∑
i=1

τ

∫
Γc

(
ws −

1

2
|uεi−1|2

)
(−∆δχεi + δβε(χ

ε
i ))

= ws

∫
Γc

(−∆χεm + βε(χ
ε
m))− ws

∫
Γc

(−∆χ0 + βε(χ0)) + I1,

(4.10)
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where

I1 = −
m∑
i=1

τ

∫
Γc

1

2
|uεi−1|2(−∆δχεi + δβε(χ

ε
i ))

= −
∫

Γc

1

2
|uεm−1|2(−∆χεm + βε(χ

ε
m)) +

∫
Ω

1

2
|u0|2(−∆χ0 + βε(χ0))

+

m−1∑
i=1

τ

∫
Γc

(−∆χεi + βε(χ
ε
i ))

(
1

2τ
|uεi |2−

1

2τ
|uεi−1|2

)
,

(4.11)

where the second equality follows from the discrete integration by parts formula (4.1). Now, we plug

(4.11) into (4.10). We absorb the first term on the right-hand side of (4.10) into the left-hand side,

and estimate the second term via (2.7). We deal in a similar way with the first two summands on

the right-hand side of (4.11), also taking into account estimate (4.8). Finally, we estimate the third

term on the right-hand side of (4.11), for short referred to as I2 , in this way:

I2 =

m−1∑
i=1

τ

∫
Γc

(−∆χεi + βε(χ
ε
i ))

1

2τ
(uεi+uεi−1) · (uεi−uεi−1)

≤ 1

2

m−1∑
i=1

τ‖ −∆χεi + βε(χ
ε
i )‖2HΓc

+
1

4
‖uετ ‖2L∞(0,T ;L4(Γc))

m−1∑
i=1

τ‖δuεi‖2L4(Γc),

(4.12)

where the last estimate follows from the Hölder inequality. Then, we insert (4.12) into (4.10). Now,

the second term on the right-hand side of (4.12) is estimated because of (4.8), whereas to deal with

the first one, we apply, for τ sufficiently small, the discrete version of the Gronwall lemma in [19,

Chap. 2.2]. In this way, we conclude

‖∂tχετ ‖L2(0,T ;VΓc ) + ‖ −∆χ
ε
τ + β(χ

ε
τ )‖L∞(0,T ;HΓc ) ≤ c. (4.13)

Thus, standard elliptic regularity results ensure

‖χετ ‖L∞(0,T ;H2(Γc)) + ‖βε(χ
ε
τ )‖L∞(0,T ;HΓc ) ≤ c. (4.14)

By a comparison in (3.4) we also deduce

‖ξετ ‖L2(0,T ;HΓc ) ≤ c. (4.15)

Fourth estimate. Estimate (4.8) implies, by a comparison in (3.2), that the reaction, i.e. the term

|R(η ε
τ
)|zετ+η ετ , is bounded. More precisely, we have

‖|R(η ε
τ
)|zετ+η ετ ‖L2(0,T ;Y′Γc

) ≤ c. (4.16)

In particular, for any test function v ∈ L2(0, T ; W) , there holds∫ T

0

〈|R(ηε
τ
)|zετ+ηετ ,v〉YΓc

=

∫ T

0

∫
Γc

|R(ηε
τ
)|zετ · vT +

∫ T

0

∫
Γc

ηετ vN ≤ c‖v‖L2(0,T ;YΓc )

Thus, by definition of norm, we can infer that

C ≥ ‖|R(ηε
τ
)|zετ+ηετ ‖L2(0,T ;Y′Γc

)

= sup
v∈L2(0,T ;YΓc )

∫ T
0

∫
Γc
|R(ηε

τ
)|zετvT +

∫
Γc
ηετ vN

‖v‖L2(0,T ;YΓc )

≥ sup
v∈L2(0,T ;YΓc ),vT=0 in Γc × (0, T )

∫ T
0
〈ηετ ,v〉YΓc

‖v‖L2(0,T ;YΓc )
.

Thus, we conclude that

‖ηετ ‖L2(0,T ;Y ′Γc
), ‖η ετ ‖L2(0,T ;Y′Γc

) ≤ c. (4.17)
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Then, (4.17) and (4.16) lead to

‖|R(η ε
τ
)|zετ ‖L2(0,T ;Y′Γc

) ≤ c. (4.18)

In addition, it is immediately recovered from the definition of d (cf. (2.20)), that

‖zετ ‖L∞(Γc×(0,T )) ≤ c. (4.19)

5 Conclusion of the proof of Theorem 2.1 and uniqueness

result

5.1 Passage to the limit

In this section, we detail the passage to the limit in the approximate system (3.11)–(3.16) as both τ

and ε tend to 0. Since all of estimates proved in Section 4 hold for constants independent of both

parameters, we take the limit τ, ε→ 0 simultaneously. The proof is split in some steps.

Compactness. It is straightforward to check that

‖uετ − uετ ‖L∞(0,T ;W), ‖uετ − uετ |L∞(0,T ;W) ≤ τ1/2‖∂tuετ ‖L2(0,T ;W) ≤ cτ1/2 (5.1)

‖χετ − χ
ε
τ ‖L∞(0,T ;HΓc ) ≤ τ1/2‖∂tχετ ‖L2(0,T ;HΓc ) ≤ cτ1/2 (5.2)

where the last inequality in (5.1) ((5.2), respectively) ensues from estimate (4.8) ((4.9), resp.). Com-

bining estimates (4.8), (4.9) and (4.13)-(4.15), as well as (5.1)-(5.2), with weak compactness results,

we conclude that there exist functions (u, χ, η , η, µ , ξ, ζ) with the regularity (2.11)–(2.16), and

η ∈ L2(0, T ;Y ′Γc
) , such that, along some (not-relabeled) subsequence, the following convergences

hold as ε, τ → 0

uετ ⇀ u in H1(0, T ; W), uετ ⇀
∗ u in L∞(0, T ; W), (5.3)

χε
τ ⇀

∗ χ in H1(0, T ;VΓc) ∩ L∞(0, T ;H2(Γc)), χε
τ ⇀

∗ χ in L∞(0, T ;H2(Γc)), (5.4)

ζ
ε

τ := βε(χ
ε
τ ) ⇀∗ ζ in L∞(0, T ;HΓc), (5.5)

ξ
ε

τ ⇀ ξ in L2(0, T ;HΓc), (5.6)

ηετ ⇀ η in L2(0, T ; Y′Γc
), (5.7)

ηετ ⇀ η in L2(0, T ;Y ′Γc
), (5.8)

zετ ⇀
∗ z in L∞(Γc × (0, T )), (5.9)

|R(ηε
τ
)|zετ ⇀ µ in L2(0, T ; Y′Γc

). (5.10)

Moreover, we also have that

η ε
τ
⇀ η in L2(0, T ; Y′Γc

).

To check this, it is sufficient to observe that (η ε
τ
)τ is bounded in L2(0, T ; Y′Γc

) , thus, up to a

further subsequence it weakly converges in L2(0, T ; Y′Γc
) to some η . Now, we note that, for every

v ∈ C0([0, T ]; YΓc
) there holds∫ T

0

〈η ετ (t)−η ε
τ
(t),v(t)〉YΓc

dt =

∫ T

0

〈η ετ (t)−η ετ (t−τ),v(t)〉YΓc
dt =

∫ T

0

〈η ετ (t),v(t)−v(t+τ)〉YΓc
dt

(where the second equality follows from a change of variables), and that the last integral converges to

0 as τ → 0. In this way, we conclude that
∫ T

0
〈η ,v〉YΓc

=
∫ T

0
〈η ,v〉YΓc

for all v ∈ C0([0, T ]; YΓc) .

This yields, via a density argument, that η = η . Hence, in view of condition (H2) on R , we have

R(η ε
τ
)→ R(η ) in L2(0, T ; HΓc

), so that µ = R(η )z. (5.11)
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Now, strong compactness results (cf., e.g. [28]), joint with (5.1), (5.2) yield as ε, τ → 0

uετ → u in C0([0, T ];H1−δ(Ω)3) for all 0 < δ < 1,

uετ → u in C0([0, T ];Lp(Γc)
3) for all 1 ≤ p < 4,

(5.12)

uετ → u in L∞(0, T ;H1−δ(Ω)3) for all 0 < δ < 1,

uετ → u in L∞(0, T ;Lp(Γc)
3) for all 1 ≤ p < 4,

(5.13)

χε
τ → χ in C0([0, T ];H2−δ(Γc)) for all 0 < δ < 2,

χε
τ → χ in L∞(0, T ;H2−δ(Γc)) for all 0 < δ < 2.

(5.14)

Passage to the limit in (3.14). Now, we pass to the limit in (3.14): combining (5.3) with (5.13),

one easily verifies that |uετ |2⇀∗|u|2 in L∞(0, T ;HΓc) as ε, τ → 0. Therefore, also taking into

account convergences (5.4), (5.5), and (5.6), we conclude that the quadruple (u, χ, ξ, ζ) satisfies

(2.21). Combining the weak convergence (5.5) with the strong one (5.14), we have

lim sup
ε, τ→0

∫ t

0

∫
Γc

βε(χ
ε
τ )χ

ε
τ ≤

∫ t

0

∫
Γc

ζχ.

In view of well-known results from the theory of maximal monotone operators (see, e.g., [3, Prop. II.1.1]),

the above inequality is sufficient to conclude that ζ ∈ β(χ) a.e. on Γc × (0, T ) , viz. (2.23) holds. In

the same way, to conclude that ξ ∈ ρ(∂tχ) a.e. on Γc × (0, T ) , we show that

lim sup
ε, τ→0

∫ t

0

∫
Γc

ξ
ε

τ∂tχ
ε
τ ≤

∫ t

0

∫
Γc

ξ∂tχ,

again by testing (3.14) by ∂tχ
ε
τ and taking the limit. Eventually, a comparison argument in (2.21)

reveals that ∂tχ ∈ L∞(0, T ;HΓc) and ξ ∈ L∞(0, T ;HΓc) .

Passage to the limit in (3.11). Now, we can easily pass to the limit in (3.11). We get

b(∂tu,v) + a(u,v) +

∫
Γc

χ+uv + 〈η ,v〉YΓc
+

∫
Γc

µv = 〈F,v〉YΓc
, (5.15)

for all v ∈W , where

〈η ,v〉YΓc
= 〈η, vN 〉YΓc

. (5.16)

Notice that, since dom(β̂) ⊂ [0,+∞) , then χ ≥ 0 a.e. on Γc × (0, T ) , therefore χ+ ≡ χ a.e. on

Γc × (0, T ) . It remains to identify η and µ , i.e. to show that (2.19), (2.20) hold.

We shall in fact prove that for all v ∈ YΓc there holds∫ T

0

ϕ(v)− ϕ(u) ≥
∫ T

0

〈η ,v − u〉YΓc
=

∫ T

0

〈η, vN − uN 〉YΓc
, (5.17)

which yields η ∈ ∂ϕ(u) a.e. in (0, T ) . To do so, we test (3.11) by uετ . Exploiting the previously

obtained weak and strong convergences (5.3)–(5.4), (5.7)–(5.10), and (5.12)–(5.14), we show that

lim sup
ε,τ→0

∫ T

0

〈ηετ ,uετ · n〉YΓc
= lim sup

ε,τ→0

∫ T

0

∫
Γc

ηετu
ε
τ · n ≤

∫ T

0

〈η, uN〉YΓc
. (5.18)

Note that, to prove (5.18) we need not have identified the weak limit µ : in fact, at this level we have

only proved (5.15) and concluded (5.11). The proof of (5.18) solely relies on (5.3)–(5.4), (5.7)–(5.10),

and (5.12)–(5.14), combined with lower semicontinuity arguments. Then, we have∫ T

0

〈η,v − u〉YΓc
=

∫ T

0

〈η, vN − uN 〉YΓc
≤ lim inf

ε,τ→0

∫ T

0

∫
Γc

ηετ (vετ − uετ )N

≤ lim inf
ε,τ→0

∫ T

0

∫
Γc

φε((v
ε
τ )N)− φε((uετ )N)

≤
∫ T

0

∫
Γc

φ(vN )− φ(uN )
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where the first equality is due to (5.16) and the ensuing inequalities, respectively, to (5.18), the

convexity of φε , and the fact that φε ≤ φ , combined with the Mosco convergence of φε to φ .

Therefore, we conclude (5.17) in view of (2.5).

Finally, we have to identify µ as an element in R(η )d(∂tu) almost everywhere in Γc×(0, T ) .

For every fixed η ∈ L2(0, T ; Y′Γc) , we introduce the functional Jη : L2(0, T ; HΓc)→ [0,+∞) defined

for all v ∈ L2(0, T ; HΓc) by

Jη(v) :=

∫ T

0

∫
Γc

|R(η)(x, t)|j(v(x, t)) dxdt =

∫ T

0

∫
Γc

|R(η)(x, t)||vT(x, t)|dx dt.

Clearly, Jη is a convex and lower semicontinuous functional on L2(0, T ; HΓc) . It can be easily

verified that the subdifferential ∂Jη : L2(0, T ; HΓc) ⇒ L2(0, T ; HΓc) of Jη is given at every v ∈
L2(0, T ; HΓc) by

µ ∈ ∂Jη (v) ⇔ µ ∈ L2(0, T ; HΓc) and µ(x, t) ∈ |R(η )(x, t)|d(v(x, t)) (5.19)

for almost all (x, t) ∈ Γc × (0, T ) , where d = ∂j is given by (1.20). We shall now prove that (cf.

(5.11)), that

Jη (w)− Jη (∂tu) ≥
∫ T

0

∫
Γc

|R(η )|z · (w − ∂tu) ∀w ∈ L2(0, T ; HΓc). (5.20)

To this aim, we first observe that

lim sup
ε,τ→0

∫ T

0

∫
Γc

|R(η ε
τ
)|zετ · ∂tuετ ≤

∫ T

0

∫
Γc

|R(η )|z · ∂tu, (5.21)

which can be shown by testing (3.11) by ∂tu
ε
τ and passing to the limit via convergences (5.3)–

(5.4), (5.7)–(5.10), (5.12)–(5.14), lower semicontinuity arguments, and the Mosco convergence of φε .

Therefore, we have∫ T

0

∫
Γc

|R(η)|z · (w − ∂tu) ≤ lim inf
ε,τ→0

∫ T

0

∫
Γc

|R(ηε
τ
)|zετ · (w − ∂tuετ )

≤
∫ T

0

∫
Γc

|R(ηε
τ
)|(|wT| − |(∂tuετ )T|)

≤
∫ T

0

∫
Γc

|R(η)|(|wT| − |(∂tu)T|)

where the first inequality follows from (5.21), the second one from the fact that |R(η ε
τ
)|zετ ∈

|R(η ε
τ
)|d(∂tu

ε
τ ) and from (5.19), and the last one from combining the weak convergence (5.3) with

the strong convergence (5.11). Then, (5.20) ensues. Therefore, we conclude that µ ∈ ∂Jη (∂tu)

almost everywhere in Γc × (0, T ) , hence (2.20) by (5.19).

5.2 Uniqueness for a regularized problem

It is clear from the arguments developed in Section 5.1 that, passing to the limit as τ → 0 for

ε > 0 fixed, yields a triple (u, χ, µ , ξ) complying with (2.11), (2.12), (2.14), (2.15), and fulfilling the
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approximate problem

b(∂tu,v) + a(u,v) +

∫
Γc

χ+u · v

+

∫
Γc

φ′ε(uN)n · v +

∫
Γc

µ · v = 〈F,v〉W for all v ∈W a.e. in (0, T ) ,

(5.22)

µ ∈ |R(φ′ε(uN)n)|d(∂tu) a.e. in Γc × (0, T ), (5.23)

∂tχ−∆χ+ ξ + βε(χ) = ws −
1

2
|u|2 a.e. in Γc × (0, T ) , (5.24)

ξ ∈ ρ(∂tχ) a.e. in Γc × (0, T ), (5.25)

∂nsχ = 0 a.e. in ∂Γc × (0, T ) . (5.26)

For the related Cauchy problem, we have the following well-posedness result; we point out that an

elementary adaptation of our arguments also yields a continuous dependence estimate on the problem

data u0 , χ0 , F , see the proof of [4, Thm. 2].

Proposition 5.1 Assume (H1), (H2), (H3), (H4), and (2.6)–(2.9). In addition, suppose that the

operator R also fulfils (2.27). Then, the Cauchy problem (5.22)–(5.26), supplemented with the initial

conditions (2.17), has a unique solution (u, χ, µ , ξ) fulfilling (2.11), (2.12), (2.14), and (2.15).

Proof. As we have just observed, the existence of a solution to the Cauchy problem for the PDE

system (5.22)–(5.26) follows from Section 5.1. For the uniqueness proof, let (u1, χ1, µ1, ξ1) and

(u2, χ2, µ2, ξ2) be two solutions to the Cauchy problem for (5.22)–(5.26), where for i = 1, 2 µ i =

|R(φ′ε((ui)N)n)|zi , and zi ∈ d(∂tui) a.e. on Γc × (0, T ) . We set ũ := u1 − u2 , χ̃ := χ1 − χ2 ,

z̃ := z1 − z2, and ξ̃ := ξ1 − ξ2 .

First, we subtract (5.22) written for (u2, χ2, µ2) from (5.22) written for (u1, χ1, µ1) , we

test the resulting relation by ∂tũ and we integrate from 0 to t , with 0 < t < T . Integrating by

parts, we have
∫ t

0
a(ũ, ∂tũ) = 1

2a(ũ(t), ũ(t)) . Hence, taking into account (2.2) and (2.3), we conclude

Cb

∫ t

0

‖∂tũ‖2W +
Ca
2
‖ũ(t)‖2W +

∫ t

0

∫
Γc

|R(φ′ε((u2)N)n)|z̃ · ∂tũ

= −
∫ t

0

∫
Γc

(χ+
1 −χ

+
2 )u1 · ∂tũ−

∫ t

0

∫
Γc

χ+
2 ũ · ∂tũ

−
∫ t

0

∫
Γc

(|R(φ′ε((u1)N)n)| − |R(φ′ε((u2)N)n)|)z1 · ∂tũ

−
∫ t

0

∫
Γc

(φ′ε((u1)N)n− φ′ε((u2)N)n) · ∂tũ
.
= I1 + I2 + I3 + I4.

(5.27)

Note that the third term on the left-hand side of (5.27) is non-negative by monotonicity of d. Next,

observe that

I1 ≤
∫ t

0

‖χ+
1 −χ

+
2 ‖HΓc

‖u1‖L4(Γc)‖∂tũ‖L4(Γc) ≤
Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖χ̃‖2HΓc
‖u1‖2W, (5.28)

I2 ≤
Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖χ2‖2HΓc
‖ũ‖2W, (5.29)

I3 ≤
∫ t

0
‖|R((φ′ε((u1)N)n))| − |R(φ′ε((u2)N)n)|‖HΓc

‖z1‖L∞(Γc)‖∂tũ‖HΓc

≤ Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖|R((φ′ε((u1)N)n))| − |R(φ′ε((u2)N)n)|‖2HΓc

≤ Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖φ′ε((u1)N)− φ′ε((u2)N)‖2HΓc

≤ Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖(u1)N − (u2)N‖2HΓc

≤ Cb
8

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖ũ‖2W,

(5.30)
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Indeed, for (5.28) and (5.29) we have used that W embeds continuously into L4(Γc;R3) . Inequality

(5.30) follows from the fact that |z1| ≤ 1 a.e. on Γc×(0, T ) , from (2.27), from the Lipschitz continuity

of φε and the continuous embedding W ⊂ L2(Γc;R3) . With analogous calculations, we also have

I4 ≤
Cb
16

∫ t

0

‖∂tũ‖2W + c

∫ t

0

‖ũ‖2W. (5.31)

Second, we take the difference between (5.24) written for (u1, χ1, ξ1) and for (u2, χ2, ξ2) , we

multiply it by ∂tχ̃ and we integrate over Γc × (0, t) . Thanks to the monotonicity of ρ , the term∫ t
0

∫
Γc
ξ̃ ∂tχ̃ is non-negative, and, arguing in the very same way as in the proof of [4, Thm. 2], we find∫ t

0

‖∂tχ̃‖2HΓc
+

1

2
‖∇χ̃(t)‖2HΓc

≤ −
∫

Γc

(βε(χ1)− βε(χ2)) ∂tχ̃−
1

2

∫ t

0

∫
Γc

(u1 + u2) ũ χ̃t

≤
∫ t

0

‖χ̃‖HΓc
‖∂tχ̃‖HΓc

+

∫ t

0

‖u1 + u2‖L4(Γc)‖∂tχ̃‖L2(Γc)‖ũ‖L4(Γc)

≤ 1

2

∫ t

0

‖χ̃t‖2HΓc
+ c

∫ t

0

‖χ̃‖2HΓc
+ c‖u1 + u2‖2L∞(0,t;W )

∫ t

0

‖ũ‖2W

(5.32)

Finally, we add inequalities (5.27) and (5.32). Taking into account estimates (5.28)–(5.31),

and absorbing some terms on the left-hand side, we get∫ t

0

‖∂tũ‖2W + ‖ũ(t)‖2W +

∫ t

0

‖∂tχ̃‖2HΓc
+ ‖∇χ̃(t)‖2HΓc

≤ cM
(∫ t

0

‖χ̃‖2HΓc
+

∫ t

0

‖ũ‖2W
)
, (5.33)

where the constant M is given by M = ‖u1‖2L∞(0,t;W) + ‖u2‖2L∞(0,t;W) + ‖χ2‖2L∞(0,t;HΓc ). We use

that
∫ t

0
‖χ̃‖2HΓc

≤
∫ t

0
‖∂tχ̃‖2L2(0,s;HΓc ) ds , hence we apply the Gronwall Lemma (see, e.g., [9, Lemme

A.3]) in inequality (5.33), and immediately conclude that ũ = 0 a.e. in Ω× (0, T ) and, likewise, that
χ̃ = 0 a.e. on Γc × (0, T ) . By comparison, we also have µ̃ = 0 and ξ̃ = 0 a.e. on Γc × (0, T ) .
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