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Abstract. The first part of this paper contains an overview of the least squares
method applied to various problems in ordinary and partial differential equations.
In particular, we discuss various applications to the homogenization of transport
equations, to the characterization of entropy solutions to scalar conservation laws
and to the asymptotic behaviour of the action functional obtained through the
reaction-diffusion approximation of mean curvature flow. In the last part of the
paper we introduce and discuss the related problem of the quasi-potential for
scalar conservation laws.

1. Introduction

Let T > 0 and consider the ordinary differential equation

ẋ = b(x) , (1.1)

on some bounded interval I = [0, T ], where b is a bounded Lipschitz function in
R. Then (1.1) admits a global C1 solution, which is unique once we fix a condition
x(t0) = x0, for some t0 ∈ I. Let us now consider the functional

F (x) :=
1

2

∫

I
[ẋ− b(x)]2 dt , (1.2)

defined for instance for x ∈W 1,2(I) and extended to +∞ in L2(I) \W 1,2(I). If nec-
essary, we can require x to satisfy the initial condition, by adding to F an indicator
term of the form χx0

(x), which vanishes if x(t0) = x0 and is equal to +∞ elsewhere.
A function x in the domain of F satisfies F (x) = 0 if and only if x is an almost

everywhere solution to (1.1) which, under our assumptions, is equivalent to say that
x is of class C1 and satisfies (1.1) everywhere. It follows that x is a minimum point
of F if and only if x is a C1 solution to (1.1). This observation translates the prob-
lem of finding a solution to (1.1) into the problem of finding the zero-level set of the
functional F , or equivalently of finding the global minimizers of F . This latter view-
point falls within the framework of Calculus of Variations; in particular, for applying
the direct methods, the lower semicontinuity and the coercivity of F , for instance
with respect to the L2(I)-topology, become of interest. Note that the problem of
minimizing F makes sense also if coupled with boundary conditions which are not
usual for (1.1), such as for instance two point boundary value problems. We address
generically the method of finding a solution to (1.1) through the minimization of
the functional F as the least squares method.
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The situation is more complicated if we weaken the regularity assumptions on b,
for instance in such a way that (1.1) may not have a C1 solution; just to fix ideas, we
can think of the case when b is bounded but discontinuous. Then one can look for
suitable weak solutions of (1.1) (see, for instance, [19, 21, 13, 2]). Almost everywhere
solutions in W 1,2(I) could also be considered: in general, depending on the choice
of the function b and on the initial condition, it may happen that (1.1) does not
admit an almost everywhere solution, or even that it admits infinitely many almost
everywhere solutions. This means that {F = 0} may be empty, or may be rather
large (even under the constraint given by the initial condition). In addition, it may
also happen that the functional F fails to be lower semicontinuous.

In a variational framework, it is natural to work with functionals which are lower
semicontinuous; if F does not share this property, one is led to consider the L2(I)-
lower semicontinuous envelope F of F (the so-called L2(I)-relaxed functional of F ).
Observe that 0 ≤ F ≤ F , and hence

{F = 0} ⊆ {F = 0} . (1.3)

In this viewpoint, one reasonable definition of weak solution to (1.1) is the one
that we could call variational weak solution, namely a function x in the domain
of F for which F (x) = 0 (or, if F (x) = 0 is empty, such that F (x) is minimum,
provided the minimum exists). We recall that F (x) = 0 if there exists a sequence
(xh) of functions in the domain of F converging to x in L2(I) and such that F (xh)
converges to zero as h→ +∞. This definition does not in general solve the problem
of devising a unique solution to (1.1) for various reasons. Firstly, it does not give any
further information when F = F ; secondly, in view of the inclusion (1.3), in case of
nonuniqueness of almost everywhere solutions, non-uniqueness of variational weak
solutions is a fortiori expected. On the other hand, when F 6= F , the advantage of
considering the zero-level set of F is that such a set is closed. Inside this closed set
one can think of selecting a particular solution: this may be considered as a separate
problem, to be faced using other arguments. We give in Section 2 some more details
on variational weak solutions for ODE’s.

As suggested by De Giorgi in [17], it is possible to introduce suitable quadratic
functionals F also in the context of partial differential equations (with various bound-
ary conditions). One may then define the corresponding variational weak solutions
as the functions u satisfying F (u) = 0 (where F is the relaxed functional of F in
a suitable topology). The topology in which one relaxes the functional plays an
essential role. Indeed, if τ1 and τ2 are different topologies with τ1 weaker than τ2,
then 0 ≤ F τ1 ≤ F τ2 and hence

{F τ2 = 0} ⊆ {F τ1 = 0}.

If we exceed in weakening the topology we may get a useless notion of solution since
the zero-set may become too large. On the other hand, a weaker topology makes it
easier to satisfy coerciveness (which in this approach is a delicate point). As usual,
these two opposite requirements suggest a balanced choice of the topology.
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The ideas illustrated so far may be likewise helpful when dealing with perturbed
ordinary or partial differential equations. A first example is given by the homogeniza-
tion theory. Consider for instance the ε-dependent system of ordinary differential
equations

ẋ = f

(

x

ε
,
t

ε

)

(1.4)

on some interval I, and the associated ε-dependent linear transport equation

ut + f

(

x

ε
,
t

ε

)

· ∇u = 0 , (1.5)

under suitable periodicity assumptions on f. The homogenization problem for (1.4)
(resp. (1.5)) consists in investigating the convergence of the solutions xε (resp.
uε) as ε → 0, in determining the limit function and eventually in finding also a
limit equation satisfied by such a limit. If we introduce the quadratic functionals
associated with (1.4) and (1.5),

Gε(x) :=

∫

I

∣

∣

∣

∣

ẋ− f

(

x

ε
,
t

ε

)
∣

∣

∣

∣

2

dt , (1.6)

and

Fε(u) :=

∫

Ω

[

ut + f

(

x

ε
,
t

ε

)

· ∇u
]2

dx dt , (1.7)

it is natural to study their Γ-limits. Note that the integrand in (1.7) is a non-
coercive quadratic form. From what has been said so far, it is reasonable to define
the solutions x0 and u0 of the limit problems, as the zeroes of the Γ-limits (if any) of
the functionals Gε and Fε, respectively. Using Γ-convergence results we may try to
characterize the zeroes without knowing the explicit representation of the Γ-limit.
On the other hand, if we succeed in the full identification of the Γ-limit we may also
get a limit equation. A further discussion on these issues is reported in Section 3.

Motivated by large deviations results for some stochastic models in [37, 22], the
idea of the least squares method has been recently applied also in the context of
nonlinear one-dimensional scalar conservation laws [6], which do not admit, in gen-
eral, smooth global solutions, no matter how regular the initial datum is. This leads
to a definition of variational weak solution for the equation

ut + f(u)x = 0 , (1.8)

which turns out to coincide with the Kruzkhov solution (here the flux f is assumed
to be smooth, Lipschitz and nowhere affine, and the function u takes values in the
interval [−1, 1]). More precisely, for ε > 0 one considers the viscous approximation
to (1.8), that is the parabolic equation

ut + f(u)x −
ε

2

(

D(u)ux
)

x
= 0 , (1.9)
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where t ∈ [0, T ] for some T > 0 and x runs on a one-dimensional torus T. (1.9) is
associated with the functional

Iε(u) :=
1

2

∥

∥

∥
ut + f(u)x −

ε

2

(

D(u)ux
)

x

∥

∥

∥

2

D−1
, (1.10)

whereD, assumed smooth and uniformly positive, represents the diffusion coefficient
and D−1 is a suitable H−1-like norm, depending on an arbitrary function σ of u
itself. Then it results (exploiting a Young measures’ setting) that points in the zero
level set of the Γ-limit of Iε are the measure-valued solutions to (1.8), which is a
much larger class of solutions than the Kruzkhov solutions. These latter may be
identified with the zeroes of the Γ-limit of the rescaled functionals Hε := ε−1Iε. In
[6] a candidate Γ-limit H of the sequence (Hε) is introduced. An interesting role in
the analysis is played by the so-called entropy measure solutions to (1.8), namely
those functions forming the domain of H. The Γ-convergence proof is partially
established, since the Γ-limsup inequality has been proved only for a special class of
entropy measure solutions (containing piecewise smooth solutions), called entropy-
splittable solutions. Various problems related to these functions remain open, such
as their regularity (in general they are not of bounded variation) and the density
(in topology and in energy) of the entropy splittable functions. If we consider a
perturbed version of (1.9) of the form

ut + f(u)x −
ε

2

(

D(u)ux
)

x
= −(σ(u)Eε)x , (1.11)

then the least squares method clarifies when solutions to (1.11) still converge to
an entropic solution or to an entropy measure solution of (1.8) as ε → 0. Here
σ : [−1, 1] ∋ v 7→ σ(v) ≥ 0 is an arbitrary smooth function such that σ(v) > 0 for
v ∈ (−1, 1). Typical examples are σ ≡ 1 and σ(v) = v(1 − v). If σ is uniformly

positive, convergence to an entropic solution takes place if limε→0 ε
1/2‖Eε‖2 = 0,

while convergence to an entropy-measure solution happens if ε1/2‖Eε‖2 is uniformly
bounded. Note that the least squares method can be applied to the related Hamilton-
Jacobi equation

wt + f(wx) = 0 , (1.12)

the analog of the functional Iε being, for D ≡ σ ≡ 1

Jε(w) =
1

2

∫

[0,T ]×R

[wt + f(wx) − εwxx]
2 dxdt . (1.13)

In this case viscosity solutions to (1.12) can be characterized as the zero set of the
Γ-limit of the rescaled functionals Kε := ε−1Jε. In this case it may be of interest to
consider the functions in the domain of the Γ-limit, that are the counterparts of the
entropy measure solutions. Further details on these issues are given in Section 4.

Entropic solutions to (1.8) correspond to the zero set of H; so that H represents
a cost associated with non-entropic solutions. In particular, as proven in [6], for
u ∈ BV , H(u) quantifies the violation of the entropy condition along non-entropic
shocks of u. Then, given two space profiles ui(x) (the initial one) and uf (x) (the
final one), a question that naturally arises is the following: what is the cheapest cost
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one needs to pay in terms of the violation of the entropy when moving from ui to
uf? In mathematical terms this issues translates in the study of the quantity

V (ui, uf ) := inf
{

HT (u) : T > 0, u : u(0) = ui, u(T ) = uf
}

. (1.14)

Note that constant solutions u(t, x) ≡ m ∈ [−1, 1] are attractors of entropic so-
lutions to (1.8), namely the entropic solution of (1.8) corresponding to an initial
datum u0 converges to the mean m of u0, m :=

∫

T
u0(x)dx. Since the functional H

also appears as candidate large deviations functional for suitable sequences of sto-
chastic processes in [22, 37, 26], one is particularly interested in finding an explicit
expression for V (m,uf ). Indeed, the quasi-potential usually provides information
for the underlying processes. To motivate this issue, let us recall a few results for
finite dimensional equations, for which we refer to [20].

Let us consider the stochastic differential problem in the unknown x : [0, T ] → R

ẋ = b(x) + εẆ , (1.15)

x(0) = x0

where W is a brownian motion. Here we assume that b is smooth with good coer-
civity properties (i.e. b(x)x ≤ −c|x|2 for |x| large enough), and that the origin O
is a global attractor for the equation (1.1). Then the functional F + χx0

as defined
in (1.2) is indeed the large deviations rate functional for the sequence of the proba-
bility laws associated with the solution to (1.15), as ε → 0. Let the quasi-potential
v : R → [0,+∞] be defined as

v(y) := inf
{1

2

∫ T

0
[ẋ− b(x)]2dt, T > 0, x ∈W 1,2([0, T ]) : x(0) = 0, x(T ) = y

}

.

v provides useful information about the law of the solution of (1.15). It is the large
deviations rate functional of the invariant measures of(1.15) as ε → 0, it provides
sharp estimates for the average time the process takes to exit from a given domain
containing x0, it characterizes the path the process will follow (up to small fluctua-
tions vanishing as ε→ 0) when exiting from such a domain. Roughly speaking, v(y)
represents the probabilistic cost of moving the process from 0 to y.

In the infinite dimensional setting above, it is however more difficult to get infor-
mation concerning the stochastic processes from the quasi-potential. The details for
the explicit formula of V (m,uf ), as well as the generalization to the case of general
uniformly convex smooth flux, will appear in a forthcoming paper. It will be also
shown there that the quasi-potential (1.14) (with ui ≡ m) of H coincides with the
quasi-potential of Hε at any ε > 0, thus providing an heuristic argument to sup-
port the guess that H is indeed the Γ-limit of Hε. We also remark that in [5] the
quasi-potential problem for the functional H is considered in the case of Dirichlet
boundary conditions, which however requires different techniques to be addressed.

Eventually, another application of the least squares method for perturbed partial
differential equations has been considered in [24, 23, 33, 35, 30, 8], and is related to
the paper [17]. Let us consider the solutions uε to the Allen-Cahn equation, that is
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the singularly perturbed parabolic partial differential equation

εut − ε∆u+
1

ε
W ′(u) = 0 , (1.16)

where W (s) = 1
4(1 − s2)2, under appropriate boundary conditions on the bound-

ary of a domain Ω ⊆ Rn, having an initial datum u(0) = uε0 which approximates
the characteristic function of a smooth bounded open set E ⊂⊂ Ω and having
supε∈(0,1)Mε(u

ε
0) < +∞, where Mε(v) :=

∫

Ω ε|∇v|2 + 1
εW (v) dx. It is known that

(uε) converges as ε→ 0 to the motion by mean curvature of E, at least for all times
before the appearance of singularities in the geometric flow.

Let now T > 0 and consider the action functional

Aε(u) :=

∫

[0,T ]×Rn

(√
εut −

1√
ε
(ε∆u− 1

ε
W ′(u))

)2

dxdt (1.17)

defined for u ∈ C2(Rn× [0, T ]). We assume periodicity of u with respect to the unit
cube in space. The functions in the domain of Aε can be coupled with the two bound-
ary points condition u(0) = uε0, u(T ) = uε1, where we assume that supεMε(u

ε
0) < +∞

and supεMε(u
ε
1) < +∞. The question is then to understand whether there is a

meaningful Γ-limit of the functionals Aε and, in positive case, how such a limit is
related to the mean curvature flow. We give some references for this problem in
Section 6.

2. Least squares method for ODEs

In this section we continue the discussion on the properties of the functional (1.2)
and on variational weak solutions for an ordinary differential equation. We refer to
[12, 18, 1, 13] for further details. Let T > 0 and

F (x) :=
1

2

∫

I
[ẋ− b(x)]2 dt ,

where I = [0, T ] is a bounded interval, b is a bounded Borel function, x ∈ W 1,2(I),
and F := +∞ in L2(I) \W 1,2(I). As already said in the Introduction, one can add
to F the function χx0

forcing the condition x(t0) = x0. The functional F can be
rewritten as

F (x) =
1

2

∫

I
ẋ2 + [b(x)]2dt−

∫

I
b(x)ẋdt =: Q(x) −

∫

I
b(x)ẋdt,

where we set

Q(x) :=
1

2

∫

I
f(x, ẋ)dt,

and f(s, ξ) := ξ2 + [b(s)]2. It is possible to see that F is L2(I)-coercive if and only
if Q is L2(I)-coercive, and if F (resp. Q) denotes the L2(I)-lower semicontinuous
envelope of F (resp. of Q) and if x ∈W 1,2(I), then

F (x) = Q(x) −
∫

I
b(x)ẋdt.
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Moreover, if the map s 7→ [b(s)]2 is lower semicontinuous, then Q is L2(I)-lower
semicontinuous on W 1,2(I).

Example 2.1. Let b : R → R be the function defined as follows: b(s) := 1 if s < 0
and b(s) := −1 if s ≥ 0. Then

- equation (1.1) coupled with the condition x(0) = 0 has no almost everywhere
W 1,2(I)-solutions, and therefore {F + χ0 = 0} is empty;

- F = F on W 1,2(I) and hence {F + χ0 = 0} is empty;
- F is L2(I)-coercive, hence the problem

min{F (x) + χ0(x) : x ∈W 1,2(I)} =: m

has a solution. If F (xmin) = m it is possible to prove that xmin ≡ 0, and
therefore F (xmin) = T

2 > 0. Indeed,

F (x) =
1

2

∫

I
ẋ2dt +

T

2
−

∫ x(T )

0
b(s)ds =

1

2

∫

I
ẋ2dt+

a

2
+ |x(T )| ,

Despite {F+χ0 = 0} is empty, we can consider xmin as the variational weak solution
of (1.1) with x(0) = 0.

Example 2.2. Let b : R → R be as: b(s) := 1 if s ∈ R \ Q, b(s) := 0 if s ∈ Q,
see [16]. Note that b = b2. Then equation (1.1) has a lot of almost everywhere
solutions, such as: x(t) ≡ q for any q ∈ Q; x(t) = t; x(t) a Lipschitz continuous
with graph consisting of linear segments with slope one and horizontal segments in
correspondence of rational values of x. As observed in [16] and proved in [12], Q is
not L2(I)-lower semicontinuous. It turns out that

Q(x) =
1

2

∫

I
ψ(ẋ)dt, x ∈W 1,2(I), (2.1)

where ψ(ξ) = |ξ|2 + 1 if |ξ| ≥ 1, and ψ(ξ) = 2|ξ| if |ξ| < 1. In particular variational
weak solutions to (1.1) with x(0) = 0 are those Lipschitz functions x in I such that
x′(t) ∈ [0, 1] for almost every t ∈ I.

Let us show (2.1). Since ψ is convex the functional on the right hand side of (2.1)
is L2(I)-lower semicontinuous on W 1,2(I), therefore

Q(x) ≥ 1

2

∫

I
ψ(ẋ)dt , x ∈W 1,2(I).

We thus need to prove

Q(x) ≤ 1

2

∫

I
ψ(ẋ)dt , x ∈W 1,2(I). (2.2)

Let σ < τ , σ, τ ∈ I, and let α, β ∈ R be given. Let us consider the minimum problem

min

{

1

2

∫ τ

σ
(ẋ2 + g(x))dt : x ∈W 1,2([σ, τ ]), x(σ) = α, x(τ) = β

}

.



8 G. BELLETTINI, F. CASELLI, AND M. MARIANI

Let x ∈W 1,2(I). Setting J := {t ∈ [σ, τ ] : x(t) ∈ R \ Q}, we have

Q(x, (σ, τ)) :=
1

2

∫ τ

σ
(ẋ2 + g(x))dt =

1

2

∫

J
(ẋ2 + 1)dt +

1

2

∫

[σ,τ ]\J
ẋ2dt

≥ 1

2

∫

J
(ẋ2 + 1)dt ≥

(∫

J |ẋ|dt
)2

2|J | +
|J |
2
,

where we use Schwarz-Hölder inequality and |J | is the Lebesgue measure of J . We
deduce that

Q(x, (σ, τ)) ≥ (β − α)2

2|J | +
|J |
2

≥ min
ℓ∈[0,τ−σ]

{

(β − α)2

2ℓ
+
ℓ

2

}

.

A direct computation gives

min
ℓ∈[0,τ−σ]

{

(β − α)2

2ℓ
+
ℓ

2

}

=

{

|β − α| if τ − σ ≥ |β − α|
(β−α)2

2(τ−σ) + τ−σ
2 if τ − σ < |β − α|

= min

{

1

2

∫ τ

σ
ψ(ẏ)dt : y ∈W 1,2(I), y(σ) = α, y(τ) = β

}

.

It follows that, given x ∈W 1,2(I) with x(σ) = α and x(τ) = β,

Q(x, (σ, τ)) ≥ min

{

1

2

∫ τ

σ
ψ(ẏ)dt : y ∈W 1,2(I), y(σ) = α, y(τ) = β

}

.

Furthermore

min
{

Q(x, (σ, τ)) : x ∈W 1,2(I), x(σ) = α, x(τ) = β
}

(2.3)

= min

{

1

2

∫ τ

σ
ψ(ẏ)dt : y ∈W 1,2(I), y(σ) = α, y(τ) = β

}

.

Indeed, if τ −σ < |β−α|, the solution of the minimum problem on the left hand side

of (2.3) is given by the linear function t 7→ β − α

τ − σ
(t−1)+α while, if τ−σ ≥ |β−α|,

a solution is given by any nondecreasing piecewise linear function which matches the
boundary conditions, with slopes in {0, 1}, regions with slope 1 corresponding to a
rational value.

Given x ∈ W 1,2(I) and n ∈ N, let us pick points t1, . . . , tn+1 with inf I = t1 <
. . . < tn+1 = sup I, and consider a function xn which solves, for any i ∈ {1, . . . , n},

min

{

1

2

∫ ti+1

ti

ψ(ẏ) dt : y ∈W 1,2(ti, ti+1), y(ti) = x(ti), y(ti+1) = x(ti+1)

}

=: mi .

From (2.3) it follows

mi = Q(xn, (ti, ti+1)) .
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Moreover, since the sequence (xn) converges to x in L2(I) as n→ +∞, we have

Q(x) ≤ lim inf
n→∞

Q(xn) = lim inf
n→∞

n
∑

i=1

Q(xn, (ti, ti+1))

= lim inf
n→∞

n
∑

i=1

mi ≤
1

2

∫

I
ψ(ẋ)dt

and (2.2) is proved.

A general result concerning the characterization of variational weak solutions
to autonomous scalar ordinary differential equations can be found in [1, Theorem
4.2]. It would be interesting to characterize variational weak solutions to systems of
ordinary differential equations and possibly to compare the results with the other
notions of weak solutions in the literature.

3. Least squares method and homogenization of transport equations

In this section we apply the least squares method to the homogenization of the
transport equation (1.5) and to the associated system (1.4). We refer to [27, 10, 17, 3]
for all details. We initially consider the functionals (1.7) for u ∈ C1(Ω), and (1.6) for
x ∈ C1(I; Rn), with Ω an open bounded subset of Rn+1 and I = [0, 1]. We assume
that

f ∈ C1
per(R

n+1; Rn),

where C1
per(R

n+1; Rn) stands for the set of C1 functions from Rn+1 to Rn which are
1-periodic in all variables.

The general expressions of the Γ-limits of the functionals (1.6) and (1.7) in the
strong topology of L2(I) and of L2(Ω), respectively, are given by the two following
results (see [10] and [11]).

Theorem 3.1. There exists Gs = Γ(L2(I)) − limε→0Gε and

Gs(x) =

∫

I
ψ(ẋ)dt, x ∈ C1(I; Rn) , (3.1)

where the convex map ψ : Rn → [0,+∞] is given by

ψ(ξ) = lim
T→+∞

inf

{

1

T

∫ T

0
|ẋ− f(x, t)|2 : x ∈ C1([0, T ]; Rn), x(0) = 0, x(T ) = ξT

}

.

Theorem 3.2. There exists F s = Γ(L2(Ω)) − limε→0 Fε and

F s(u) =

∫

Ω
A

(∇u
ut

)

·
(∇u
ut

)

dxdt, u ∈ C1(Ω), (3.2)
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where A is a constant, symmetric, positive semi-definite (n + 1) × (n + 1) matrix.
Moreover for every ξ ∈ Rn+1

Aξ · ξ = inf

{

∫

In+1

(ut + f(x, t) · ∇u)2 dx dt :

u(ξ) = ξ · z + ϕ(z), z = (x, t), ϕ ∈ C1
per(R

n+1)

}

.

In [27], theorems 3.1 and 3.2 are applied to investigate the rotation set of the

Poincaré map. Let T
(ε)
t (x0) be the value at time t ≥ 0 of the solution to (1.4) with

initial condition
x(0) = x0. (3.3)

Then x 7→ T
(ε)
t (x) is a diffeomorphism from Rn to Rn. The mapping T

(1)
1 is called

the Poincaré map associated with ẋ = f(x, t) and will be denoted by T . We also
write Tm = T ◦ Tm−1 for each m ∈ N, where T 0 := Id.

Definition 3.3. Let p ∈ Rn. The family of systems (1.4), (3.3) G-converges to the
”G-limit system”

ẋ = p , (3.4)

if for every x0 ∈ Rn the solutions T
(ε)
t (x0) converge to the solution of problem (3.4),

(3.3), as ε → 0 and uniformly with respect to t on compact intervals of R. If the
convergence is uniform with respect to the initial value x0 in the compact subsets of
Rn, we say that (1.4) strongly G-converges to (3.4).

It has been proved that G-convergence is equivalent to strong G-convergence [31].

Remark 3.4 (See [14],[32]). If n = 1 the G-limit equation exists and for every
x0 ∈ R we have

p = lim
t→∞

Tt(x0)

t
= lim

m→∞
Tm(x0)

m
.

The limit lim
m→∞

Tm(x0)

m
is called the rotation number of T and measures the averaged

advance of a solution of ẋ = f(x, t) starting at x0 as t changes by a unit. The rotation
number is independent of x0 and it is rational if and only if some power of T has a
fixed point.

In dimension n > 1, the natural generalization of the rotation number is the
rotation vector [28].

Definition 3.5. A vector p ∈ Rn is called rotation vector for the Poincaré map T
if there exist a sequence {ph} ⊂ Rn and a subsequence mh of positive integers such
that

p = lim
h→∞

Tmh(ph) − ph
mh

.

The set of all rotation vectors, denoted by ρ(T ), is a nonempty compact connected
subset of Rn and is related to the G-convergence as follows [27].
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Proposition 3.6. The family of equations (1.4) strongly G-converges to (3.4) if and
only if ρ(T ) = {p}.

We are now in a position to state the main results proved in [27] concerning the
form of the strong Γ-limits (3.1) and (3.2). Let us start with the case n = 1.

Theorem 3.7. Let n = 1. Then the function ψ in (3.1) has just one zero and this
zero is the rotation number of T .

Remark 3.8. Let n = 1, and xε and x0 be the solutions to (1.4), (3.3) and to
(3.4) , (3.3) respectively. We know that xε → x0 uniformly on compact sets and
ρ(T ) = {p}. Since Gε(x

ε) = 0, we have Gs(x0) = 0 and thus ψ(p) = 0. In addition,
every zero of Gs is the G-limit of solutions of (1.4).

Theorem 3.9. Let n = 1. Then there exists a constant k ∈ [0, 1] such that the
sequence (Fε) Γ(L2(Ω))-converges to the functional

F s(u) = k

∫

Ω
[ut(x, t) + pux(x, t)]

2 dx dt, u ∈ C1(Ω) ,

where p is the rotation number of T .

Theorem 3.10. The constant k in Theorem 3.9 is strictly positive if and only if
T admits an invariant measure, which is absolutely continuous with respect to the
Lebesgue measure with density in L2

loc(R).

If n > 1 G-convergence is not always ensured. Moreover, concerning the Γ-limit
Gs, even if the sequence (1.4) G-converges to (3.4), we have p ∈ {ψ = 0}.

As shown in [27], if n = 2, a case in which G-convergence fails is when

f(x, y, t) = (a(y), 0), x, y ∈ R, t ≥ 0, (3.5)

with a a non constant function in C1
per(R). The transport equation associated with

the velocity field (3.5) is

ut + a
(y

ε

)

ux = 0 , (3.6)

and describes a phenomenon of propagation in which the velocity oscillates in a
transverse direction with respect to the direction of propagation.

Let us consider now the more general case

ut + aε(y)ux = 0 , (3.7)

with aε equibounded functions. If the coefficients aε do not converge pointwise (and
this is indeed the case when aε(y) = a(y/ε) for some periodic function a), then the
sequence of solutions uε to (3.7) is not compact in the strong L2(Ω)-topology. This
motivates the study of the Γ-limit of the functionals Fε in the sequential weak L2(Ω)
topology. This study has been carried on in [3], where the functionals

Fε(u) =

∫

Ω
[ut − aε(y)ux]

2 dxdydt (3.8)

are considered. The sequential Γ(w-L2(Ω))-limit Fw is found, under the hypotheses
that Ω has a Lipschitz boundary and that aε converges to a Young measure dy νy,
see Theorem 3.20. The interesting feature is that such a Γ-limit has not an integral
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representation, but can be expressed in terms of a suitable inf-convolution operator
and the Young limit νy. In the same hypotheses, the solutions uε to (3.7) are only
(sequentially) weakly-L2(Ω) convergent and the limit equation is not of the same
kind of the original equation, in that memory effects induced by homogenization
appear [36, 4].

Remark 3.11. By the properties of Γ-convergence, any sequential weak L2(Ω)-limit
of solutions of

ut − aε(y)ux = 0

belongs to {Fw = 0}. On the other hand, if Fw(u) = 0, we only know that there
exist a sequence (uε) weakly converging to u in L2(Ω) and a sequence (vε) strongly
converging to 0 in L2(Ω) such that

uεt − aε(y)u
ε
x = vε in Ω .

3.1. The case without space derivatives. Let us start with a simpler case. Con-
sider the family of functionals

Fε(u) :=

∫

Ω
(ut − aε(y)u)

2 dydt, (3.9)

where Ω ⊂ Ry × Rt ⊂ R2 is a product of open intervals,

a(y) :=

{

+1 if [y] is even;
−1 if [y] is odd

(3.10)

([y] denotes the integer part of y), and aε(y) := a(y/ε). The natural domain of Fε
is the space

V = {u ∈ L2(Ω) : ut ∈ L2(Ω)}.
We have

Theorem 3.12. The family (Fε) in (3.9) Γ(w-L2(Ω))-converges in V to the func-
tional

Fw(u) = inf
h∈V

∫

Ω
(ut − h)2 + (u− ht)

2dy dt . (3.11)

Remark 3.13. The functional Fw vanishes exactly on distributional solutions in
V of the equation utt = u (i.e. u ∈ V such that

∫

Ω utφtdydt = −
∫

Ω uφdydt for all

φ ∈ V). Indeed, if u ∈ V is such that Fw(u) = 0, then there exists h̃ ∈ V such that

h̃ = ut and h̃t = u, and hence utt = u. Conversely, if u ∈ V is such that utt = u

in distributional sense, taking h =
∫ t
u we have ht = u = utt and h = ut, so that

Fw(u) = 0.

Remark 3.14. The functional Fw in (3.11) can also be represented as

Fw(u) = min

{
∫

Ω
(ut − ht)

2 + (u− h)2dt dy : h ∈ V, htt = h

}

, u ∈ V. (3.12)

Indeed, we know that minimizing functions in (3.11) satisfy the equation htt = h
and thus, taking k = ht, we find that (3.12) is equal to (3.11).
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Equation (3.11) does not seem suitable for generalizations, and in [3] an alternative
representation is provided, based on the inf-convolution. We recall the definition and
the main properties of the inf-convolution (see, for instance, [34]).

Definition 3.15. Let X be a Banach space and F : X → (−∞,+∞] be a function.
The polar of F is the function F ∗ : X∗ → (−∞,+∞] defined by

F ∗(u) := sup
v∈X

{< v, u > −F (v)} .

F ∗ is convex and lower semicontinuous, and if F is convex and lower semicontin-
uous, then F = (F ∗)∗.

Definition 3.16. Let X be a Banach space and Fi : X → (−∞,+∞] be convex
functions, i = 1, . . . ,m. The inf-convolution F1� . . .�Fm of F1, . . . , Fm is defined
as

(F1� . . .�Fm)(u) := inf{F1(u1) + . . .+ Fm(um) : u1 + ...+ um = u} .
The terminology arises from the fact that, when only two functions (say F and

G) are involved, � can be expressed by

(F�G)(u) = inf
v
{F (v) +G(u− v)}

and this is analogous to the classical formula for convolution. In case G(·) = λ| · |2,
the Yosida transform of F is obtained.

The inf-convolution is a functional operation which corresponds to the addition
of epigraphs as sets: if E1, . . . , Em denote the epigraphs of F1, . . . , Fm, and E :=
E1 + . . . +Em, then

(F1� . . .�Fm)(u) = inf{µ : (u, µ) ∈ E} .
The inf-convolution is convex but not necessarily lower semicontinuous, and is dual
to the operation of addition of convex functions, that is

(F1� . . .�Fm)∗ = F ∗
1 + . . .+ F ∗

m .

Proposition 3.17. The functional Fw in (3.11) can also be represented as

Fw(u) = F1�F2(u) , u ∈ V , (3.13)

where

F1(v) := 2

∫

Ω
(vt − v)2dydt , F2(v) := 2

∫

Ω
(vt + v)2dy dt , v ∈ V .

Remark 3.18. Let u ∈ L2(R2). The function Fw(u, ·), if considered as a function
of the domain of integration, is not subadditive, therefore Fw cannot be represented
by an integral. Take for instance the function

u(y, t) :=

{

et if t < 0 ,

e−t if t ≥ 0 .

For every ε ∈ (0, 1), Fw (u, (0, 1) × (−1,−ε)) = 0, since u is a (strong) solution of
utt = u in (0, 1) × (−1,−ε). Similarly, Fw(u, (0, 1) × (ε, 1)) = 0. Moreover, since
(ut)

2 +u2 ≤ 2 we have Fw(u,Ω) ≤ 2L(Ω), and therefore Fw (u, (0, 1) × (−2ε, 2ε)) ≤
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8ε. Observe now that Fw(u, (0, 1) × (−1, 1)) is strictly positive, since u is not a
solution of utt = u in (0, 1) × (−1, 1) (consider for instance any φ ∈ C∞ with
support in (a/2, a) × (−a, a), a < 1). Then, for ε sufficiently small, we have

Fw(u, (0, 1) × (−1, 1)) > Fw(u, (0, 1) × (−1,−ε)) + Fw(u, (0, 1) × (−2ε, 2ε))

+ Fw(u, (0, 1) × (ε, 1)) .

3.2. The case with space derivatives. Let us study now the asymptotic be-
haviour of the functionals (3.8) where Ω is a bounded convex open set in Rx×Ry×Rt,
aε(y) is again given by aε(y) = a(y/ε), with a(y) defined in (3.10), and the domain
of Fε is

V = {u ∈ L2(Ω) : ux, ut ∈ L2(Ω)} .
This example is related to some conjectures by De Giorgi [17], and has been studied
in [3].

Theorem 3.19. The family (3.8) Γ(w-L2(Ω))-converges in V to the functional

Fw(u) = inf
h∈V

∫

Ω
(ut − hx)

2 + (ux − ht)
2dx dy dt , (3.14)

Moreover, we have

Fw = F+� F− in V ,

where

F±(u) :=







2

∫

Ω
(ux ± ut)

2 dx dt dy if ux ± ut ∈ L2(Ω),

+∞, otherwise.

The functional Fw in (3.14) is convex, quadratic and its zero set consists of all
distributional solutions of the linear wave equation utt = uxx (no derivatives with

respect to y). Indeed, if u ∈ V is such that Fw(u) = 0, then there exists h̃ ∈ V

such that h̃x = ut and h̃t = ux, and hence utt = uxx. Conversely, if u is such that

utt = uxx, taking h =
∫ t
uxdt we have ht = ux and then hxt = htx = uxx = utt,

so that hx = ut and Fw(u) = 0. Arguing as in Remark 3.18, it can be seen that
Fw(u, ·) is not subadditive with respect to Ω

Let us describe now the sequential weak Γ-limit of the functionals (3.8) in the
general case, assuming a to be bounded. We assume that Ωy = {(x, t) : (x, y, t) ∈ Ω}
is a Lipschitz domain with compact boundary for almost every y ∈ (0, 1), and Ωy = ∅
if y /∈ (0, 1).

Let A ⊂ R2 be an open set, and let u ∈ L2(R2). Denote by J ⊂ R a compact
interval containing all the values of aε. For j ∈ J , define

H(j, u,A) :=

{ ∫

A |ut − jux|2dxdt, if ut − jux ∈ L2(A);
+∞, otherwise.

Observe that

Fh(u) =

∫

Ω
(ut − ah(y)ux)

2 dx dy dt =

∫

I
H(ah(y), u(y, ·),Ωy)dy
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Given any probability measure ν in J , define also

F̃ (u, ν,A) := inf

{
∫

J
H(j, w(j), A)dν(j) : w ∈ L2(J, ν;L2(R2)),

∫

J
w(j)dν(j) = u

}

.

The functional F̃ can be viewed as the “inf-convolution”, weighted by ν, of the
family of functionals H(j, ·, A) indexed by j ∈ J .

The main result in [3] is the following. Let I, J ⊂ R be compact intervals. Let L
denote the Lebesgue measure. We say that a sequence of Borel functions ah : I → J
Y-converges to the measure L ⊗ νy if

lim
h→∞

∫

I
φ(y, ah(y))dy =

∫

I

(
∫

J
φ(y, j)dνy(j)

)

dy

for any map φ ∈ L1(I, C(J)), namely, continuous in j for almost every y, measurable
in y, such that ||φ(y, j)||C(J) ∈ L1(I).

Theorem 3.20. If the functions aε Y -converge to L⊗νy, then the Γ(w-L2(Ω))-limit
of Fε is given by

Fw(u,Ω) =

∫ 1

0
F̃ (u(y, ·), νy ,Ωy)dy

for every u ∈ L2(Ω).

An essential tool in the proof of Theorem 3.20 is a lower semicontinuity result for
convex integrals with respect to weak convergence of measure. It may be applied
thanks to the convexity of H in u. The authors in [3] remark that the proof cannot
be extended to nonlinear cases, since if the equation is nonlinear the analogue of H
need not be convex in u.

4. Least squares method and scalar conservation laws

In this section, we give some details on the application of the least squares ap-
proach for the variational characterization of weak solutions to the one-dimensional
scalar conservation laws, reporting some recent results from [6]. For simplicity, we
will assume periodicity in space, in order to match with the results in Section 5.

Let T be the one-dimensional torus of unitary length. For fixed T > 0, consider
the scalar conservation law (1.8) with (t, x) ∈ [0, T ] × T, where u takes values in
[−1, 1], f is assumed to be smooth in [−1, 1] and not affine.

We denote by U the space of measurable functions u : T → [−1, 1], equipped with
the H−1(T) metric, and we let U be the set C

(

[0, T ];U
)

endowed with the sup-norm.

Definition 4.1. An element u ∈ U is a weak solution to (1.8) if for each ϕ ∈
C∞

c

(

(0, T ) × T
)

it satisfies

〈〈u, ϕt〉〉 + 〈〈f(u), ϕx〉〉 = 0 ,

〈〈·, ·〉〉 denoting the inner product in L2([0, T ]×T). A weak solution to (1.8) is called
entropic if and only if for each entropy-entropy flux pair (η, q) with η convex of class
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C2, and q defined as q(u) :=
∫ u

η′(v) f ′(v)dv, the η-entropy production ℘η,u, which
is a distribution defined as

℘η,u(ϕ) := −〈〈η(u), ϕt〉〉 − 〈〈q(u), ϕx〉〉 , ϕ ∈ C∞
c

(

(0, T ) × T
)

, (4.1)

is nonpositive.

The classical theory [15] shows existence and uniqueness in C
(

[0, T ];L1(T)
)

of the
entropic solution to the Cauchy problem associated with (1.8). A possible approach
to construct entropic solutions is to consider the viscous approximation (1.9) where
D, assumed smooth and uniformly positive, represents the diffusion coefficient and
ε > 0 the viscosity. Indeed, as ε → 0 equibounded solutions to (1.9) converge in
L1([0, T ] × T) to entropic solutions to (1.8).

As proven in [6], it is possible to characterize the asymptotic cost of non-entropic
weak solutions to (1.8) in terms of the parabolic problem (1.9). The parabolic cost
functional Iε : U → [0,+∞] is defined as follows. For ε > 0, u ∈ U such that
ux ∈ L2

loc([0, T ] × T) we set

Iε(u) := sup
ϕ∈C∞

c ((0,T )×T)

[

−〈〈u, ϕt〉〉−〈〈f(u), ϕx〉〉+
ε

2
〈〈D(u)ux, ϕx〉〉−

1

2
〈〈σ(u)ϕx, ϕx〉〉

]

and Iε := +∞ elsewhere in U .
The family of functionals (Iε) is equicoercive on U , and Iε(u) vanishes if and

only if u ∈ U is a weak solution to (1.9). Moreover, when Iε(u) < +∞, then
u ∈ C

(

[0, T ];L1(T)
)

. The first Γ-convergence result in [6] is the identification of the
Γ-limit of (Iε) on U , obtained in a Young measures’ setting.

Denote now by XT the set C([0, T ];U) endowed with the norm ‖u−v‖L1([0,T ]×T)+
supt∈[0,T ] ‖u(t) − v(t)‖H−1(T). (Equi)-coercivity on X implies (equi)-coercivity on U
and, conversely, lower semicontinuity on U implies lower semicontinuity on X .

The second result in [6] concerns the Γ-convergence of (Hε), which turn out to be
equicoercive on XT . In order to illustrate this second result, we need to introduce
the class of entropy-measure solutions.

Let C2,∞
c

(

[−1, 1]×(0, T )×T
)

be the set of compactly supported maps ϑ : [−1, 1]×
(0, T ) × T ∋ (v, t, x) 7→ ϑ(v, t, x) ∈ R, that are twice differentiable in the v variable,
with derivatives continuous up to the boundary of [−1, 1]× (0, T )×T, and that are

infinitely differentiable in the (t, x) variables. For ϑ ∈ C2,∞
c

(

[−1, 1]× (0, T )×T
)

let
ϑ′ and ϑ′′ denote its partial derivatives with respect to the v variable. We say that
ϑ ∈ C2,∞

c

(

− 1, 1] × (0, T ) × T
)

is an entropy sampler, and its conjugated entropy
flux sampler Q : [−1, 1]× (0, T )×T is defined up to an additive function of (t, x) by
Q(u, t, x) :=

∫ u
ϑ′(v, t, x)f ′(v)dv.

Given a weak solution u to (1.8), the ϑ-sampled entropy production Pϑ,u is the
real number

Pϑ,u := −
∫

[

(

∂tϑ)
(

u(t, x), t, x
)

+
(

∂xQ
)(

u(t, x), t, x
)

]

dtdx . (4.2)

If ϑ(v, t, x) = η(v)ϕ(t, x) for some entropy η and some ϕ ∈ C∞
c

(

(0, T ) × T
)

, then
Pϑ,u = ℘η,u(ϕ).
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We denote by M
(

(0, T ) × T
)

the set of Radon measures on (0, T ) × T that we

consider equipped with the vague topology. Moreover, for ρ ∈ M
(

(0, T ) × T
)

we

denote by ρ± the positive and negative part of ρ.

Definition 4.2. Let u ∈ XT be a weak solution to (1.8). If there exists a bounded
measurable map ρu : [−1, 1] ∋ v → ρu(v; dt, dx) ∈ M

(

(0, T ) × T
)

such that for any
entropy sampler ϑ

Pϑ,u =

∫

ϑ′′(v, t, x)ρu(v; dt, dx)dv , (4.3)

then u is called an entropy-measure solution to (1.8). The set of entropy-measure
solutions to (1.8) is denoted by ET .

Remark 4.3. Entropy solutions are entropy-measure solutions such that ρu(v; dt, dx)
is a negative Radon measure for each v ∈ [−1, 1]. Moreover entropy-measure solu-
tions to (1.8) are in C

(

[0, T ];L1(T)
)

.

We are now in a position to introduce the candidate Γ-limit HT : XT → [0,+∞]
of the functionals Hε. We have

HT (u) :=







∫

1

χ(v)
ρ+
u (v; dt, dx)dv if u ∈ ET ,

+∞ otherwise ,
(4.4)

where the susceptibility χ is defined as χ(v) := σ(v)/D(v), v ∈ [−1, 1].

Remark 4.4. HT turns out to be coercive, lower semicontinuous, and HT (u) = 0
if and only if u is an entropic solution to (1.8). In addition, HT (u) = 0 if and
only if u is a limit point of a sequence (uε) ⊂ XT such that Iε(u

ε) = 0. In [6] the
authors also prove that if u is a weak solution to (1.8) and HT (u) < +∞, then
HT (u) = supϑ Pϑ,u, where the supremum is taken over the entropy samplers ϑ such
that 0 ≤ σ(v)ϑ′′(v, t, x) ≤ D(v), for each (v, t, x) ∈ [−1, 1] × [0, T ] × R.

The results concerning the Γ-convergence of Hε are collected in the next theorem.
We need a further definition.

Definition 4.5. We say that an entropy-measure solution u ∈ E is entropy-splittable
if there exist two closed sets E+, E− ⊂ [0, T ] × R such that

(i) For a.e. v ∈ [0, 1], the support of ρ+
u (v; dt, dx) is contained in E+, and the

support of ρ−u (v; dt, dx) is contained in E−.

(ii) For each L > 0, the set
{

t ∈ [0, T ] :
(

{t}× [−L,L]
)

∩E+ ∩E− 6= ∅
}

is such

that the closure of its interior is empty.

The set of entropy-splittable solutions is denoted by S. An entropy-splittable solution
u ∈ S such that H(u) < +∞ and

(iii) For each L > 0 there exists δL > 0 such that σ(u(t, x)) ≥ δL for a.e. (t, x) ∈
[0, T ] × [ − L,L].

is called nice with respect to σ, and we write u ∈ Sσ.
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Theorem 4.6. We have Γ-lim infεHε ≥ HT on XT , and Γ-lim supεHε ≤ HT on
XT , where

HT (u) := inf
{

lim infHT (un), {un} ⊂ Sσ : un → u in XT
}

.

If u ∈ XT is a weak solution with locally bounded variation, Vol’pert chain rule
gives a formula for H(u) in terms of the normal traces u± of u on its jump set Ju.
In particular, for Burgers’ equation and D ≡ σ ≡ 1 we get

HT (u) =

∫

Ja
u

(u+ − u−)3

12
|nx|dH1 ,

nx being the x-component of a unit normal vector to Ju, and Jau = {u− < u+} the
set of non-entropic shocks.

We conclude this section by pointing out that studying the properties of the
functions belonging to the class ET is essentially equivalent to study the solutions to
a family of conservation laws of the form η(u)t+ q(u)x = µη, where, for each smooth
η, µη is a Radon measure with finite total variation.

5. The quasi-potential problem for Burgers’ equation

We define the functionals VT , V : U × U → [0,+∞] as

VT (ui, uf ) := inf
{

HT (u) : u ∈ XT , u(0) = ui, u(T ) = uf
}

, (5.1)

V (ui, uf ) := inf
T≥0

VT (ui, uf ) .

Remark 5.1. The infimum in the definition of VT is a minimum. This follows from
the lower semicontinuity and the coercivity of HT on XT (see Remark 4.4), and from
the closure of the subset {u ∈ XT : u(0) = ui, u(T ) = uf}. Equivalently, we can
substitute ET in place of XT in (5.1). It will follow from our analysis that the set
{u ∈ ET : u(0) = ui, u(T ) = uf} is nonempty, provided ui(0) ≡ m and T is large
enough.

From now on we suppose f(u) = u2/2 (Burgers’ equation), D ≡ σ ≡ 1 and
ui ≡ m. Our aim is to announce an expression for V and to indicate some of the
main points in the proof. In a forthcoming paper we will provide all mathematical
details, under less restrictive hypotheses.

Remark 5.2. If
∫

T
uidx 6=

∫

T
ufdx then, for each T > 0,

VT (ui, uf ) = V (ui, uf ) = +∞
since weak solutions to (1.8) conserve the total mass. Hereafter we will always
consider the case

∫

T
uidx =

∫

T
ufdx =: m ∈ (−1, 1), since the cases m = ±1 are

trivial.

Observe that HT has not a quadratic structure, usually exploited to provide
explicit representations of quasi-potential functionals. However, we will take ad-
vantage of the following space-time symmetry: if u(t, x) ∈ XT is a weak (resp.
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entropy-measure) solution to (1.8), then u(T − t,−x) is a weak (resp. entropy-
measure)solution too. More precisely, if uf ∈ U , and if for v ∈ U we define
ṽ(x) := v(−x), then

VT (m,uf ) = VT (ũf ,m) +

∫

T

(uf −m)2dx . (5.2)

As explained in the Introduction, the assumption of constant initial profile is
natural, in view of the following result (see, e.g. [15] Ch. 11, [25]).

Theorem 5.3. Let u0 ∈ U , let ū be the entropic solution to (1.8) with initial
datum u0 and let m :=

∫

T
u0(x)dx. For each δ > 0, there exists a time τ ′(δ) > 0

independent of u0 such that

sup
x∈T

|ū(t, x) −m| ≤ δ

for each t ≥ τ ′(δ).

Our main result is the following.

Theorem 5.4. Let m ∈ [−1, 1]. Then

V (m,uf ) =

∫

T

(uf −m)2dx , uf ∈ U,

∫

T

uf dx = m

Note that from (5.2) it follows V (m,uf ) ≥
∫

T
(uf−m)2dx. The converse inequality

is obtained by proving that for each δ > 0 and uf ∈ U with
∫

T
uf dx = m, there

exists T (δ) > 0 such that VT (ũf ,m) ≤ δ for every T ≥ T (δ), where ũf (x) = uf (−x),
and then by using (5.2). Indeed, we exhibit a time T (δ) and, for every T ≥ T (δ), a
function u ∈ ET such that u(0, x) = ũf (x), u(T, x) = m and HT (u) ≤ δ. This result
is first established for a piecewise constant function uf . The proof is then completed
by exploiting the lower semicontinuity and coerciveness of HT .

Piecewise constant initial profiles have the nice property that the subsequent
entropic solution is piecewise affine, and new shocks cannot be generated at any
positive time. Let ū be the (piecewise affine) entropic solution with the initial
datum ū(0, x) = uf (−x). Fix δ > 0 such that −1 < m− 3δ and 1 > m+ 3δ and let
τ ′ = τ ′(δ) be defined as in Theorem 5.3. For t ∈ (0, τ ′] let u(t, x) := ū(t, x). Let x̄
be an arbitrary point in T and consider the maps s± : [0,+∞) → T as the piecewise
C1 solutions to

ṡ±(t) =
m± 3δ + ū(τ ′ + t, s±(t))

2
, s±(0) = x̄ .

It is possible to show that s± are well defined. Since the maps take values on the
unitary torus, we have s+(t) − s−(t) ≥ 2δ t mod1. Define

τ ′′ := inf{t > 0 : s+(t) − s−(t) = 1} ≤ (2δ)−1 ,

and for t ∈ (τ ′, τ ′ + τ ′′] set

u(t, x) :=











m+ 3δ if x̄+m(t− τ ′) < x ≤ s+(t− τ ′) ,

m− 3δ if x̄+m(t− τ ′) > x ≥ s−(t− τ ′) ,

ū(t, x) otherwise .
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Figure 1. On the left, behaviour of u(t, x) for t ∈ (τ ′, τ ′′], x̄ = 1/2. On
the right, behaviour of u(t, x) for t ∈ (τ ′′, τ ]. The pictures show, from top
to bottom, u(t, x) at three subsequent times.

Define now τ ′′′ := 1
3δ , τ = τ(δ) := τ ′ + τ ′′ + τ ′′′ ≤ τ ′ + 5

6δ , and for t ∈ (τ ′ + τ ′′, τ ] set

u(t, x) :=











m if m− 3δ
2 ≤ x−x̄

t−τ ′−τ ′′ ≤ m+ 3δ
2 ,

m+ 3δ if x−x̄
t−τ ′−τ ′′ > m+ 3δ

2 ,

m− 3δ if m− 3δ
2 > x−x̄

t−τ ′−τ ′′ .

Observe that u(τ, x) ≡ m. Given T > τ , we finally set u(t, x) ≡ m in (τ, T ].

One checks that u ∈ ET , u(0, x) = ũf (x), u(T, x) = m, and HT (u) ≤ 3δ2

2 . For

every δ > 0, it is then enough to choose δ such that δ2

9 + 3δ2

2 ≤ δ and take T (δ) = τ(δ).

Example 5.5. Consider the initial profile ũf (x) = −1 if x < 1
2 , ũf (x) = 1 if x > 1

2 ,
so that m = 0. The unique entropy solution of Burgers’ equation is given by

ū(t, x) =















−1 if
x− 1

2

t < −1 ,
x− 1

2

t if −1 <
x− 1

2

t < 1 ,

1 if
x− 1

2

t > 1 ,

for t ∈ (0, 1/2], and ū(t, x) =
x− 1

2

t for t ≥ 1. For fixed δ > 0, the smallest time

τ ′ = τ ′(δ) satisfying the requirement of Theorem 5.3 is (2δ)−1. Choosing x̄ = 1
2 we

have

s±(t) = ±2 ± 3δt ∓ 3

2

√
1 + 2δt ,

and τ ′′ = 5+
√

21
12δ . Figure 1 shows the behaviour of u(t, x).
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Figure 2. u(x, t) in the plane (x, t), x̄ = 3/4.

If x̄ = 3/4 instead of 1/2, there is a time τ∗ at which the curve (t, s+) crosses a
discontinuity of ū(t, x). In this case we have

s+(t) =
1

2
(8 + 12δt − 5

√
1 + 2δt) t ∈ (τ ′, τ∗] ,

s+(t) = 3(1 + δt) − 73
√

2 + 5
√

146

8
√

49 + 5
√

73

√
1 + 2δt t ∈ (τ∗, τ ′ + τ ′′] ,

and

s−(t) =
1

2
(−4 − 12δt + 7

√
1 + 2δt) t ∈ (τ ′, τ ′ + τ ′′] .

Figure 5.5 shows u(t, x) in the plane (x, t) for the case x̄ = 3/4.

6. Least squares method and singular perturbations to mean

curvature flow

In this final section we provide some partial information on the Γ-limits for the
action functional (1.17) related to the singularly perturbed reaction-diffusion equa-
tion (1.16). A first related conjecture [17], concerning the “static” case, is concerned
with the asymptotic behaviour of a sequence of functionals which contain a term
similar to

Sε(u) :=
1

ε

∫

Rn

(

−ε∆u+
1

ε
W ′(u)

)2

dx.

In [35] (see also [9], [29] for related results, and [7] for a nonlocal situation) it has
been proved that, provided n ∈ {2, 3}, the sequence (Mε + Sε) Γ(L1)-converges, on
smooth bounded sets E, to

σ

∫

∂E
(1 + κ2)dHn−1,

where κ is the mean curvature of ∂E and σ :=
∫ 1
0

√

W (u)du.
Going back to the full space-time functionals Aε, assume that n = 1. In [23] it

has been proved that the Γ(L2(R × [0, T ]))-limit of (Aε) is given by a functional,
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that on a suitable subclass of its domain, takes the form

σ

∫ T

0

N
∑

i=1

(ġi(t))
2dt+ 2σ

∑

t

L(t)+,

where: gi ∈ H1(0, T ) denote the boundary points of a finite union of subintervals
of the unit interval (the characteristic function of such a union is the limit of the
approximating sequences (uε)); L(t)+ denotes a contribution which, roughly speak-
ing, is the positive part of the space-localization of the time-jumps of the perimeter
measures due to disappearance or nucleations of new phases. Note that in dimension
one, there is no contribution of the curvature of the boundaries of the intervals. In
[33] it is given the expression of the Γ-limit on the whole domain (it turns out that
this functional is nonlocal).

Assume now that n ∈ {2, 3}. Let t ∈ [0, T ] → E(t) be a map, where E(t) is a
bounded smooth open subset of Rn. Assume that the map t ∈ [0, T ] → ∂E(t) is
smooth up to a finite number of times ti, where the perimeter jumps from P (E(t−i ))

to P (E(t+i )). Then the Γ(L2(Rn × [0, T ]))-limit of the sequence (Aε) is given by

σ

∫ T

0

∫

∂E(t)
(V − κ)2 dHn−1dt + 2σ

∑

i

sup
ψ

(

P (E(t+i ), ψ) − P (E(t−i ), ψ)
)+

where V is the velocity of ∂E(t), + denotes the positive part, and the supremum is
taken over all functions ψ ∈ C1(Rn; [0, 1]). We recall (see, for instance, [30]) that a
uniform bound on the action provides the existence, in the limit, of a square inte-
grable weak mean curvature and a square integrable generalized velocity. Similarly
in spirit to what pointed out at the end of Section 4, understanding the properties of
the flows in the whole domain of the Γ-limit is related to solve a geometric evolution
equation of the form V − κ = g, for a forcing term g which is in L2 with respect to
a measure concentrated on suitable space-time tracks.
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[37] S.R.S. Varadhan. Large deviations for the simple asymmetric exclusion process. Stochastic

analysis on large scale interacting systems, Adv. Stud. Pure Math., 39:1–27, 2004.

Giovanni Bellettini, Dipartimento di Matematica, Università di Roma ‘Tor Ver-
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