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We present an asymptotic analysis of the three-dimensional problem for a thin
linearly elastic cantilever Ωε = εω × (0, `) as ε goes to zero. By assuming ω
simply connected and under suitable assumptions on the given loads, we show
that the 3D problem converges in a variational sense to the classical dimensional
models for extension, flexure and torsion of slender rods.
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1. Introduction

Structures with one or two dimensions much smaller than the remaining are
very often encountered in engineering problems. The peculiar geometry of
these thin structures suggests a lower, two or one, dimensional modelling.
Classically, these lower dimensional models are based on some a-priori as-
sumptions inspired by the smallness of certain dimensions. In the seventies
new techniques which make circumvent the use of any a-priori assumption
have been developed. The French school tuned a method based on a rigor-
ous asymptotic expansion, while the Italian school followed the inspiration
of E. De Giorgi3 and adopted the use of Γ-convergence theory. Since then Γ-
limits of energy functionals have been successfully applied to derive one or
two-dimensional models of a variety of thin structures starting from linear
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as well as non linear three-dimensional elasticity.
In 1994, Anzellotti, Baldo and Percivale1 derived variational models

for linearly elastic homogeneous and isotropic rods and plates by using Γ-
asymptotic developments (see also Percivale10). They deduce the mechani-
cal behavior of the beam by calculating two different Γ-limits, one for the
extensional problem and one for the flexural and torsional problems. The
two Γ-limits are originated by different scalings of the energy functionals
and correspond to terms of different order in the asymptotic development.

In this paper, by suitably scaling the axial component of the displace-
ment in the three-dimensional energies and using a technique developed
in Freddi, Morassi and Paroni,4,5 we obtain, in an easier way, the exten-
sional, flexural and torsional problems for a linearly elastic homogeneous
and isotropic slender rod with only one Γ-limit.

Notation. Unless otherwise stated, we use the Einstein summation conven-
tion and we index vector and tensor components as follows: Greek indices
α, β and γ take values in the set {1, 2} and Latin indices i, j, h in the
set {1, 2, 3}. The component k of a vector v will be denoted either with
(v)k or vk and an analogous notation will be used to denote tensor compo-
nents. Eαβ denotes the Ricci’s symbol, that is E11 = E22 = 0, E12 = 1 and
E21 = −1. L2(A; B) and Hs(A; B) are the standard Lebesgue and Sobolev
spaces of functions defined on A and taking values in B, with the usual
norms ‖ · ‖L2(A;B) and ‖ · ‖Hs(A;B), respectively. When B = R or when the
right set B is clear from the context, we will simply write L2(A) or Hs(A),
sometimes even in the notation used for norms. Convergence in the norm
will be denoted by → while weak convergence is denoted with ⇀.

With a little but harmless abuse of notation, we use to call “sequences”
even those families indicized by a continuous parameter ε which, throughout
the whole paper, will be assumed to belong to the interval (0, 1].

2. The 3-Dimensional problem

Let ω ⊂ R2 be a simply connected, bounded, open set with a Lipschitz
boundary. We consider a three-dimensional body Ωε ⊂ R3, where Ωε :=
ωε × (0, `), ωε := εω, ε ∈ (0, 1] and ` > 0. For any x3 ∈ (0, `) we further
set Sε(x3) := ωε × {x3}. Henceforth we shall refer to Ωε as the reference
configuration of the body and denote by

Eu(x) := sym(Du(x)) :=
Du(x) + DuT (x)

2
,
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the strain of u : Ωε → R3. The material is assumed to be homogeneous and
isotropic, so that CA = 2µA + λ(trA)I for every symmetric matrix A. I

denotes the identity matrix of order 3. We assume µ > 0 and λ ≥ 0 so to
have, for every symmetric tensor A,

CA ·A ≥ µ|A|2, (1)

where · denotes the scalar product. Define

H1
#(Ωε;R3) := {u ∈ H1(Ωε;R3) : u = 0 on Sε(0)}.

Due to the coercivity condition (1) and the strict convexity of the integrand,
the energy functionals

Fε(u) :=
1
2

∫

Ωε

CEu · Eudx−
∫

Ωε

bε · u dx

admit for every ε > 0 a unique minimizer among all competing displace-
ments u ∈ H1

#(Ωε;R3).

3. The rescaled problem

To state our results it is convenient to stretch the domain Ωε along the
transverse directions x1 and x2 in a way that the transformed domain does
not depend on ε. Let us therefore set Ω := Ω1, S(x3) := S1(x3) and let
pε : Ω → Ωε be defined by pε(y) = pε(y1, y2, y3) = (εy1, εy2, y3). Let us
consider the following 3× 3 matrix

Hεv := (
D1v

ε
,
D2v

ε
, D3v),

where Div denotes the column vector of the partial derivatives of v with
respect to yi. We will use moreover the following notation

Eεv := sym(Hεv), W εv := skw(Hεv)

and also denote by Wv := W 1v the skew symmetric part of the gradient.
Let H1

#(Ω;R3) := {v ∈ H1(Ω;R3) : v = 0 on S(0)} and consider the
rescaled energy Fε : H1

#(Ω;R3) → R ∪ {+∞} defined by

Fε(v) :=
1
ε2
Fε(v ◦ p−1

ε ) = Iε(v)−
∫

Ω

bε ◦ pε · v dy,

where Iε(v) := 1
2

∫
Ω
CEεv · Eεv dy. We further suppose the loads to have

the following form

bε
1 ◦ pε(y) = ε2b1(y)− ε

m(y3)
IO

y2, bε
2 ◦ pε(y) = ε2b2(y) + ε

m(y3)
IO

y1,

bε
3 ◦ pε(y) = εb3(y),

(2)
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with b = (b1, b2, b3) ∈ L2(Ω;R3), m ∈ L2(0, `) and IO :=
∫

ω
(y2

1 +y2
2) dy1 dy2

is the polar moment of inertia of the section ω. With the loads given by (2),
the energy Fε(v) can be rewritten as

Fε(v) = Iε(v)− ε2

∫

Ω

b · (v1, v2,
v3

ε

)
dy − ε2

∫ `

0

mϑε(v) dy3, (3)

where we have set

ϑε(v)(y3) :=
1
IO

∫

ω

(y1

ε
v2(y1, y2, y3)− y2

ε
v1(y1, y2, y3)

)
dy1dy2. (4)

We note that if v ∈ L2(Ω;R3) then ϑε(v) ∈ L2(0, `). A similar statement
holds if we replace L2 with H1.

4. Compactness lemmata

To prove the compactness of the displacements we need the following scaled
Korn inequality.

Theorem 4.1. There exists a positive constant K such that
∫

Ω

(∣∣(u1, u2,
u3

ε
)
∣∣2 + |Hεu|2

)
dy ≤ K

ε2

∫

Ω

|Eεu|2 dy,

for every u ∈ H1
#(Ω;R3) and every ε ∈ (0, 1].

Proof. The inequality
∫
Ω
|Hεu|2 dy ≤ (K/ε2)

∫
Ω
|Eεu|2 dy simply follows

by rescaling the Korn’s inequality of Anzellotti, Baldo and Percivale,1 Theo-
rem A.1. To show that

∫
Ω
|(u1, u2, u3/ε)|2 dy ≤ (K/ε2)

∫
Ω
|Eεu|2 dy, it suf-

fices to set v := (u1, u2, u3/ε), notice that |Eεu| ≥ ε|Ev| and apply the
standard Korn inequality to v on Ω (see, for instance, Oleinik, Shamaev
and Yosifian,9 Theorem 2.7).

Let HBN (Ω;R3) := {v ∈ H1
#(Ω;R3) : (Ev)iα = 0 for i = 1, 2, 3, α = 1, 2}

be the space of Bernoulli-Navier displacements on Ω. It can be characterized
also as follows (see Le Dret,8 Section 4.1)

HBN (Ω;R3) = {v ∈ H1
#(Ω;R3) : ∃ ξα ∈ H2

#(0, `),∃ ξ3 ∈ H1
#(0, `)

such that vα(y) = ξα(y3), v3(y) = ξ3(y3)− yαξ′α(y3)}.
(5)

In the remaining part of this section we assume uε to be a sequence of
functions in H1

#(Ω;R3) such that

‖Eεuε‖L2(Ω;R3×3) ≤ Cε, (6)
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for some constant C and for every ε ∈ (0, 1].

Theorem 4.2. Let (6) hold. Then, for any sequence of positive numbers
εn converging to 0 there exist a subsequence (not relabelled) and a couple
of functions v ∈ HBN (Ω;R3) and ϑ ∈ L2(Ω) such that (as n → +∞)

(uεn
1 , uεn

2 ,
uεn

3

εn
) ⇀ v in H1(Ω;R3), (7)

W εnuεn ⇀




0 −ϑ D3v1

ϑ 0 D3v2

−D3v1 −D3v2 0


 in L2(Ω;R3×3). (8)

Proof. It is convenient to set vε := (uε
1, u

ε
2, u

ε
3/ε). Since |Eεuε| ≥ ε|Evε|,

by (6), Evε is uniformly bounded in L2(Ω;R3×3) and by Korn’s inequality
vε is uniformly bounded in H1(Ω;R3). It then exists a v ∈ H1

#(Ω;R3)
and a subsequence of εn such that vεn ⇀ v in H1(Ω;R3). Again, it is
easy to check that |(Eεuε)iα| ≥ |(Evε)iα|, thus, using (6) we deduce that
Cε ≥ ‖(Evε)iα‖L2(Ω) and consequently, as n →∞, (Ev)iα = 0 for i = 1, 2, 3
and α = 1, 2. Hence v ∈ HBN (Ω;R3).

Using (6) and Theorem 4.1 we obtain that the sequence Hεnuεn is
bounded in L2(Ω;R3×3) so that, up to subsequences, it weakly converges
in L2(Ω;R3×3) to a matrix H ∈ L2(Ω;R3×3). Since, from (6), Eεnuεn → 0
in L2(Ω;R3×3), we have W εnuεn ⇀ H in L2(Ω;R3×3). In particular, H is,
almost everywhere, a skew-symmetric matrix. Since (Hεuε)13 = uε

1,3 = vε
1,3

and (Hεuε)23 = uε
2,3 = vε

2,3, we deduce that (H)13 = v1,3 and (H)23 = v2,3.
We conclude the proof by denoting (H)12 := −ϑ.

Let ℘ denote the projection of L2(ω;R2) on the subspace

R2 =
{
r∈L2(ω;R2) : ∃ϕ∈R, c∈R2 : r1(y) = −y2ϕ+c1, r2(y) = y1ϕ+c2

}

of the infinitesimal rigid displacements on ω. It is easy to see that R2

is a closed subspace of H1(ω;R2) (see also Freddi, Morassi and Paroni4).
Moreover, if w ∈ L2(ω;R2) we have that

(℘w)α = Eβαyβ

( 1
IO

∫

ω

Eγδyγwδ dy1dy2

)
+

1
|ω|

∫

ω

wα dy1dy2, (9)

where Eαβ denote the Ricci’s symbol. The two-dimensional Korn’s inequal-
ity then writes as

‖w − ℘w‖2H1(ω;R2) ≤ C‖Ew‖2L2(Ω;R2×2) (10)

for all w ∈ H1(ω;R2).
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Lemma 4.1. Under assumption (6) and the notation of Theorem 4.2 and
of (4) we have

1. ‖ϑε(uε) + (W εuε)12‖L2(Ω) ≤ Cε for every ε ∈ (0, 1];
2. ϑε(uε) ⇀ ϑ in L2(Ω); therefore ϑ does not depend on y1 and y2;
3. ϑ ∈ H1

#(Ω).

Proof. It is convenient to set wε := (uε
1/ε, uε

2/ε, uε
3/ε2). Then for almost

y3 ∈ (0, `) and any ε ∈ (0, 1] we consider the projection of the first two
components of wε(·, y3). From (9) and recalling (4) we have

(℘wε)α = Eβαyβϑε(uε) +
1
|ω|

∫

ω

wε
α dy1dy2.

Since (Ewε)11 = (Eεuε)11, (Ewε)12 = (Eεuε)12 and (Ewε)22 = (Eεuε)22,
we get ‖(Ewε)αβ‖L2(Ω;R2×2) = ‖(Eεuε)αβ‖L2(Ω;R2×2) for α, β = 1, 2. Then,
integrating (10) on (0, `) and taking into account (6), we deduce that

∫ `

0

‖wε − ℘wε‖H1(ω;R2)dy3 ≤ C‖Eεuε‖L2(Ω;R3×3) ≤ Cε

and then ‖Dα(wε
β − ℘wε

β)‖L2(Ω;R) → 0 for α, β = 1, 2. Since (W℘wε)12 =
−ϑε(uε) and (Wwε)12 = (W εuε)12, we obtain, from the identity

ϑε(uε) = −(W℘wε)12 = (W (wε − ℘wε))12 − (W εuε)12,

the first claim of the Lemma.
Using (8), for ε → 0, we obtain that ϑε(uε) ⇀ ϑ in L2(Ω). From the

fact that ϑε(uε) does not depend on y1 and y2, the same holds for ϑ.
Setting wε := (uε

1/ε, uε
2/ε, uε

3/ε2), the proof of part 3 proceeds along the
same lines of that of Lemma 4.6 of Freddi, Morassi and Paroni.4

Lemma 4.2. Under the same assumption and with the notation of Theo-
rem 4.2 the following identities hold in L2(Ω)

E33 = D3v3, (11)
−D2E13 + D1E23 = D3ϑ, (12)

where, up to subsequences, E33, E13 and E23 are, respectively, the limits of
(Eεuε)33/ε, (Eεuε)13/ε and (Eεuε)23/ε in the weak convergence of L2(Ω).

Proof. To prove (11) it suffices to notice that (Eεuε)33/ε = D3(uε
3/ε)

and apply (7). Let’s prove (12). From (6) we deduce that, up to subse-
quences, (Eεuε)13/ε ⇀ E13 and (Eεuε)23/ε ⇀ E23 in L2(Ω). To character-
ize E13, E23 ∈ L2(Ω) note that

D3(W εuε)12 = D2

( (Eεuε)13
ε

)−D1

( (Eεuε)23
ε

)
,



7

in the sense of distributions. Hence for ψ ∈ C∞c (Ω) we obtain
∫

Ω

(W εuε)12D3ψ dy =
∫

Ω

(Eεuε)13
ε

D2ψ dy −
∫

Ω

(Eεuε)23
ε

D1ψ dy.

Passing to the limit in the previous equality we find
∫

Ω

−ϑD3ψ dy =
∫

Ω

E13D2ψ dy −
∫

Ω

E23D1ψ dy.

Thus D3ϑ = −D2E13 +D1E23 in the sense of distributions, hence in L2(Ω)
since ϑ ∈ H1

#(Ω).

5. The limit energy

Let us consider the usual De Saint Venant - Kirchhoff energy density

f(A) =
1
2
CA ·A = µ|A|2 +

λ

2
|trA|2

and define f0(α, β) := min{f(A) : A ∈ Sym, A2
13 + A2

23 = α2, A33 = β}.
A simple computation shows that

f0(α, β) := 2µα2 +
E

2
β2, (13)

where E = µ(2µ + 3λ)/(µ + λ) is the Young modulus.

Lemma 5.1. Let uε be a sequence of functions in the space H1
#(Ω;R3). If

supε

(
Fε(uε)/ε2

)
< +∞, then (6) holds for some constant C > 0.

Proof. Setting vε := (uε
1, u

ε
2, u

ε
3/ε), the proof proceeds exactly along the

same lines of that of Lemma 5.1 of Freddi, Morassi and Paroni.4

The above Lemma 5.1 and Lemma 4.2 imply that the family of function-
als (1/ε2)Fε is coercive with respect to the weak convergence of the sequence
qε(uε) :=

(
uε

1, u
ε
2, u

ε
3/ε, (W εuε)12

)
in the space H1(Ω;R3)×L2(Ω;R), uni-

formly with respect to ε. Hence, for any sequence uε which is bounded in
energy, that is (1/ε2)Fε ≤ C for a suitable constant C > 0, and satisfies the
boundary conditions, that is uε = 0 on S(0), the corresponding sequence
qε(uε) is weakly relatively compact in H1(Ω;R3)× L2(Ω;R).

Now we introduce some auxiliary functions defined on ω. The so-called
Prandtl stress function is defined as the unique solution ψ of

{4ψ = −2
ψ ∈ H1

0 (ω).
(14)
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Since ω is simply connected, then it remains defined, up to constants, the
torsion function ϕ defined by

{
D1ψ = −D2ϕ− y1

D2ψ = D1ϕ− y2.
(15)

It’s easy to see that
{4ϕ = 0 in ω

Dϕ · n = −y1n2 + y2n1 on ∂ω,
(16)

where n = n(σ) is the normal unit vector to ∂ω at the point σ.

Theorem 5.1. Let ψ be the Prandtl stress function defined above and let
F : H1

#(Ω;R3)×H1
#(Ω;R) → R ∪ {+∞} be defined by

F (v, ϑ) :=
∫

Ω

f0

( |Dψ|D3ϑ

2
, D3v3

)
dy −

∫

Ω

b · v dy −
∫ `

0

mϑdy3 (17)

if v ∈ HBN (Ω;R3), and +∞ otherwise. As ε → 0, the sequence of functio-
nals (1/ε2)Fε defined in (3) and (4) Γ-converges to the functional F , in the
following sense:

(1) (liminf inequality) for every sequence of positive numbers εk converging
to 0 and for every sequence {uk} ⊂ H1

#(Ω;R3) such that

(uk
1 , uk

2 ,
uk

3

εk
) ⇀ v in H1(Ω;R3), (W εkuk)12 ⇀ −ϑ in L2(Ω),

we have

lim inf
k→+∞

Fεk
(uk)
ε2
k

≥ F (v, ϑ);

(2) (recovery sequence) for every sequence of positive numbers εk conver-
ging to 0 and for every (v, ϑ) ∈ H1

#(Ω;R3) × H1
#(Ω;R) there exists a

sequence {uk} ⊂ H1
#(Ω;R3) such that

(uk
1 , uk

2 ,
uk

3

εk
) ⇀ v in H1(Ω;R3), (W εkuk)12 ⇀ −ϑ in L2(Ω),

and

lim sup
k→+∞

Fεk
(uk)
ε2
k

≤ F (v, ϑ).
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Proof. Let us prove the liminf inequality. Without loss of generality we
may suppose that

lim inf
k→+∞

Fεk
(uk)
ε2
k

= lim
k→+∞

Fεk
(uk)
ε2

k

< +∞.

Then Lemma 5.1 applies to the sequence (1/ε2
k)Fεk

(uk). Hence assump-
tion (6) is fulfilled and the results of Section 4, namely Lemma 4.1 and
Lemma 4.2, hold true.

Looking at the expressions (3) and (4) of the functional Fε, and setting
Lε := Fε−Iε the work done by loads, using Lemma 4.1 and the convergence
assumptions on the sequence (uk) we can see that

Lεk
(uk)
ε2
k

=
∫

Ω

b·(uk
1 , uk

2 ,
uk

3

εk
) dy+

∫ `

0

mϑεk(uk) dy3 →
∫

Ω

b·v dy+
∫ `

0

mϑ dy3.

Thus we have only to prove that

lim inf
k→+∞

Iεk
(uk)
ε2

k

≥
∫

Ω

f0

( |Dψ|D3ϑ

2
, D3v3

)
dy. (18)

By definition of f and f0 and using (13), we observe that

1
2
CA ·A ≥ 2µ(A2

13 + A2
23) +

E

2
A2

33.

Then we get

Iεk
(uk)
ε2

k

≥ 2µ

∫

Ω

( (Eεkuk)213
ε2

k

+
(Eεkuk)223

ε2
k

)
dy +

E

2

∫

Ω

|(Eεkuk)33|2
ε2
k

dy.

Using Lemma 4.1 and Lemma 4.2 then we have

lim inf
k→+∞

Iεk
(uk)
ε2

k

≥ 2µ

∫

Ω

(E2
13 + E2

23) dy +
E

2

∫

Ω

|D3v3|2 dy. (19)

From equation (12), i.e. −D2E13 + D1E23 = D3ϑ, which we can rewrite as

D2

(
E13 +

y2

2
D3ϑ

)
= D1

(
E23 − y1

2
D3ϑ

)
in D′(Ω),

and the weak version of Poincaré’s Lemma (see Girault and Raviart,7 The-
orem 2.9) we can find a function ϕ̂ ∈ L2((0, `); H1

m(ω)) such that




E13 = D1ϕ̂− y2

2
D3ϑ

E23 = D2ϕ̂ +
y1

2
D3ϑ,

where H1
m(ω) := {v ∈ H1(ω) :

∫−
ω

v = 0}. Thus
∫

Ω

(E2
13 + E2

23) dy ≥ infbϕ
∫

Ω

|D1ϕ̂− y2

2
D3ϑ|2 + |D2ϕ̂ +

y1

2
D3ϑ|2 dy, (20)
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where the infimum is taken over all functions ϕ̂ in L2((0, `); H1
m(ω)). Fur-

thermore, we now show that the infimum is achieved and we characterize a
minimizer ϕ̂. First, by using Green’s identities and the fact that ϑ depends
only on y3, we have
∫

Ω

(|D1ϕ̂− y2

2
D3ϑ|2 + |D2ϕ̂ +

y1

2
D3ϑ|2

)
dy =

=
∫

Ω

[|Dαϕ̂|2 +
1
4
(y2

2 + y2
1)|D3ϑ|2 + div(−y2ϕ̂, y1ϕ̂)D3ϑ

]
dy

=
∫

Ω

|Dαϕ̂|2 dy +
IO

4

∫ `

0

|D3ϑ|2 dy3 +
∫ `

0

D3ϑ

∫

∂ω

(−y2n1 + y1n2)ϕ̂ ds dy3

where Dα denotes the gradient with respect to y1, y2 and n = (n1, n2) is
the normal unit vector to ∂ω. Let us define

E(ϕ̂) :=
∫

Ω

|Dαϕ̂|2 dy +
∫ `

0

D3ϑ

∫

∂ω

(−y2n1 + y1n2)ϕ̂ ds dy3.

The existence of a minimizer of E(ϕ̂) in the Hilbert space L2((0, `); H1
m(ω))

follows from a standard application of the direct method of the Calculus of
Variations. Let now ϕ̂ be a minimizer. Then it follows, by taking appropriate
variations, that





divDαϕ̂ = 4ϕ̂ = 0 in ω

Dαϕ̂ · n =
D3ϑ

2
(−y1n2 + y2n1) on ∂ω

for almost every y3 ∈ (0, `). We note that Dαϕ̂ depends linearly by D3ϑ on
∂ω. If ϕ ∈ H1

m(ω) is the solution of (16) having zero mean value, then

ϕ̂ =
1
2
ϕD3ϑ. (21)

By putting together (15), (19), (20) and (21) we obtain the liminf inequality

lim inf
k→+∞

Iεk
(uk)
ε2

k

≥
∫

Ω

(E

2
|D3v3|2 +

µ

2
|Dψ|2|D3ϑ|2

)
dy

that is (18).
Let us now find a recovery sequence. Let F (v, ϑ) < +∞, otherwise there

is nothing to prove. Then v ∈ HBN (Ω;R3) and ϑ ∈ H1
#(Ω;R).

We first assume further that v and ϑ are smooth and equal to zero near
by y3 = 0. By (5) there exists ξ smooth and equal to zero near by y3 = 0
such that vα(y) = ξα(y3), and v3(y) = ξ3(y3) − yαξ′α(y3). Let u0,ε be the
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sequence defined by

u0,ε
1 = ξ1 − εy2ϑ + ε2 ν

2
(− y2

2ξ′′1 + y2
1ξ′′1 + 2y1y2ξ

′′
2

)− ε2νy1ξ
′
3

u0,ε
2 = ξ2 + εy1ϑ + ε2 ν

2
(− y2

1ξ′′2 + y2
2ξ′′2 + 2y1y2ξ

′′
1

)− ε2νy2ξ
′
3

u0,ε
3 = ε(ξ3 − y1ξ

′
1 − y2ξ

′
2) + ε2ϕD3ϑ

where ν = λ/2(λ + µ) is the Poisson’s coefficient, and ϕ is the torsion
function with zero mean value. We have that u0,ε is equal to zero in y3 = 0
and it is easily checked that, as ε → 0,

(Eεu0,ε)11
ε

→ −νD3v3,
(Eεu0,ε)22

ε
→ −νD3v3

(Eεu0,ε)33
ε

→ D3v3,
(Eεu0,ε)12

ε
→ 0

(Eεu0,ε)13
ε

→ 1
2
(D1ϕ− y2)D3ϑ,

(Eεu0,ε)23
ε

→ 1
2
(D2ϕ + y1)D3ϑ,

and (W εu0,ε)12 → −ϑ, in L2(Ω). Therefore, performing computations, we
obtain that

Iε(u0,ε)
ε2

→
∫

Ω

(E

2
|D3v3|2 +

µ

2
|Dψ|2|D3ϑ|2

)
dy.

It is also easy to check that the following estimates are satisfied
 1

ε2
Fε(u0,ε)− F (v, ϑ)

 ≤ εC(v, ϑ),

‖(W εu0,ε)12 + ϑ‖L2(Ω) ≤ εC(v, ϑ),

www
(
u0,ε

1 , u0,ε
2 ,

u0,ε
3

ε

)
− v

www
H1(Ω)

≤ εC(v, ϑ),

where C(v, ϑ) depends only on v and ϑ. Hence, in this case, (u0,εk) is
a recovery sequence. In the general case, i.e. v ∈ HBN (Ω;R3) and ϑ ∈
H1

#(Ω;R), a standard diagonal argument concludes the proof.

6. Convergence of minima and minimizers

For every ε ∈ (0, 1] let us denote by ũε the solution of the following mini-
mization problem

min
{
Fε(u) : u ∈ H1(Ω;R3), u = 0 on S(0)

}
.

The existence of the solution can be proved by the direct method of the
Calculus of Variations and the uniqueness follows by the strict convexity of
the functional Fε.
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Corollary 6.1. The following minimization problem for the Γ-limit
functional F defined in (17)

min
{
F (v, ϑ) : v ∈ HBN (Ω;R3), ϑ ∈ H1(0, `), v = 0 on Sε(0), ϑ(0) = 0

}

admits a unique solution (ṽ, ϑ̃). Moreover, as ε → 0,

1. (ũε
1, ũ

ε
2, ũ

ε
3/ε) ⇀ ṽ in H1(Ω;R3);

2. (W εũε)12 ⇀ −ϑ̃ in L2(Ω);
3. (1/ε2)Fε(ũε) converges to F (ṽ, ϑ̃).

Proof. Property 3 and the weak convergence in 1 and 2 follow from the Γ-
convergence Theorem 5.1, the uniform coercivity of the sequence (1/ε2)Fε

and the variational property of Γ-convergence (see for instance Dal Maso2

or Freddi and Paroni,6 Proposition 3.4).
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