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Abstract We consider variational problems defined on domains ‘weakly’ con-
nected through a separation hyperplane (‘sieve plane’) by an e-periodically dis-
tributed ‘contact zone’. We study the asymptotic behaviour as e tends to 0 of in-
tegral functionals in such domains in the nonlinear and vector-valued case, showing
that the asymptotic memory of the sieve is described by a nonlinear ‘capacitary-
type’ formula. In particular we treat the case when the integral energies on both
sides of the sieve plane satisfy different growth conditions. We also study the case
of thin films, with flat profile and thickness ¢, connected by the same sieve plane.

1 Introduction

In this paper we study the asymptotic behaviour of energies defined on domains
connected by a ‘finely-perforated’ separation interface. The model problem we
have in mind is that of the so-called ‘Neumann sieve’, which consists in studying
the irrotational flow of an incompressible fluid through a sieve. In mathematical
terms, we consider €2 a bounded open subset of R and a trasversal hyperplane X
such that € is divided in two open subsets Q1 and Q~. We assume that QF and
Q)™ are connected through an e-periodic perforation of ¥; i.e., we consider a union
of e-periodically distributed sets (the ‘holes’ of the sieve) which we denote by Tk.



We then study the following boundary value problem
—Au. = f in (AZE

u. € H'(9.)

a—anug =0 on both sides of (2N %)\ T

%UE:O on 01);

where (AZE = QT UQ~ UT,, nis the outer normal and u, is the potential function
of the velocity (see e.g. [16] and [17]). Note that in this problem the main role is
played by the Neumann boundary condition on (2N X) \ 7., while the boundary
condition on 02 can be replaced by any variational condition.

The Neumann sieve problem was proposed by Sanchez Palencia in [23], who
gave a formal asymptotic expansion of the solution u.. The problem was then
studied by Attouch-Damlamian-Murat-Picard (see [13], [20] and [21]) essentially
in the case where the perforations are unions of open balls BZE_ Lin R* ! with
center 25 = ig, for i € Z"!, and radius p. of order e(=D/("=2) (if p > 3). They
proved (among others results) that the sequence w. of solutions of (1.1) converges
weakly in H'(QF) x H*(Q7) to a solution (u™,u~) of the following limit problem

—Aut=f in Q*  (f € L?Q)
ut € HY(OF)

%u* —w%u’ =fut—u") mQNY

a%ui = on Jf) |

where ¢ is the 2-capacity of a rescaled perforation, B 1(0) = {(z4,0) € R" :
|zo| < 1}, with respect to R™; i.e.,

c= inf{/ |Dy|2dz : ¢ € HYR™), ¢ =1 on B{L_l(O)}.
Rn

Attouch-Damlamian-Murat-Picard observed also that their result corresponds, in
terms of I'-convergence, to proving that

.1 5
Dilﬂ%(i /Q+UQ— [Dul dx“{ueHl@)})

1
= 7(/ | Dut|? dx—i—/ |Du~|? dx + E/ lu™ —u*|2dxa),
2\ o+ 0- 4 Jons

where I denotes the indicator function. This result implies that u. is also solution
of the minimum problem

min{/ |Du|2dx—2/ fudm:ueHl(ﬁg)}
Q+tuQ- QtuQ-



and the limit (u*,u™) solves

min{/ |Dut|? dx—i—/ |Du~ |? d:c—2(/ futdr + fu~ dx)
o+ o- o+ o-

+E/ lut —u [P dr, (u+,u_)€H1(Q+)XH1(Q_)},
4 Jons

by the I'-convergence’s properties of convergence of minima and stability with
respect to continuous perturbations. For related problems to this subject see also
Attouch-Picard [4], Conca [9] [10] [11], Del Vecchio [14] and Sanchez Palencia [22]
[24].

In this paper we generalize the I'-convergence result above to the non-convex
vector-valued case, considering in addition the interaction through the separat-
ing surface of two different energies, possibly satisfying also different growth con-
ditions, defined in Q7 and Q~, respectively. More precisely, let w be an open
bounded subset of R?~!, for the sake of simplicity we take ¥ = {z,, = 0}, so that
wx {0} =Qn{x, =0}, QT = Qn{z, >0} and @~ = QN{x, < 0}. Let m,n € N
with m > 1 and let p,q > 1 with min{p, ¢} < n be fixed (the case min{p,q} = n
differing in technical details only and the case min{p, ¢} > n being trivial). We
suppose p < ¢ (the case p = ¢ being treated similarly). For all € > 0 we define

-1
we = U BZE Nw,

iezn—1

where Bffg_l is defined as above; hence,
Q. =0T UQ U (we x {0})

(note that w, is the union of the perforations, including those intersecting dw).
Let VP4(Q; R™) = WLP(Q; R™)NWH2(Q~; R™) and let W, W, : M™*™

[0, 4+00) be Borel functions satisfying a growth condition of order p and ¢, respec-

tively. With fixed a sequence (¢;) of positive numbers converging to 0 we define

Wy (Du)dz + [ Wy(Du)dz if u € VPI(Q ;R™)
Fj(u) = § Ja+ Q-

+00 otherwise.

Note that the choice of the functions W, W, with p < ¢ corresponds to considering
two different (possibly nonlinear) media in Q7 and Q= connected through the
perforations of the surface ¥. The main part of this work is devoted to proving
that if the radii p.; of the perforation satisfy

S

pe P
lim —X5 =R < +00 (1.2)
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then, upon extracting a subsequence, F; I'-converge to

Fut,u™) = QW,(Du™) dx + / QWy(Du™)dz + R / o(ut —u)dz,
Qt Q- w
on WHP(Q+H;R™) x Whe(Q~;R™) with respect to a suitable convergence that we
introduce in Definition 3.1, where QW) and QW, denote the quasiconvexification
of W, and Wy, respectively, and ¢ is given by the formula
o(z) = inf{ Wo(D¢)dx: ¢ — 2 € WHP(RT;R™), ¢ =0on Bf‘l(o)} (1.3)

R}

which generalizes the classical p-capacity of BJ~'(0) with respect to R™. Note
that the larger exponent ¢ does not appear in the definition of ¢ (the formula is
slightly different in the case p = ¢); for example, if W,(§) = |£|P and W, (&) = |£|?
then ¢(z) = ¢|z[P". The function /Wp is the pointwise limit of a sequence that
we obtain by scaling QW), to the end of studying the behaviour of the infima of
integral functionals on domains independent of the parameter €;; i.e.,

/WP(A) = lim pgj QW) (Ps_le> .
J

We show that this limit always exists upon passing to a subsequence. This passage
to a subsequence cannot be avoided; hence, ¢ may depend on (the subsequence
of) (g;). For notational simplicity we do not treat the case n = p, which can be
dealt with similarly; for the necessary changes in the statements see e.g. [20].

The proof of our result (Theorem 3.2) consists in a direct computation of the
I'-limit; it is based on a technical result (Lemma 3.4) that allows us to modify a se-
quence (u;), on suitable n-dimensional annuli surrounding the (n —1)-dimensional
perforations Bﬁgl, and to study the behaviour of Fj; along the new modified
sequence. It gives rise to three terms in the I'-limit F. The first two terms rep-
resent the contribution of the new sequence ‘far’ from the B;'_ 1. more precisely,
they are the I-limit of the two uncoupled problems defined on W1?(QF;R™) and
WL4(Q=;R™), respectively. The third one describes, by the nonlinear capacitary
formula ¢, the contribution ‘near’ to BZlE_ L This approch follows the method in-
troduced by Ansini-Braides [2] to study the asymptotic behaviour of periodically-
perforated nonlinear domains (see also Ansini-Braides [3] for an applications to
periodic microstructures); Lemma 3.4 is a suitable variant, for the sieve problem,
of Lemma 3.1 in [2].

The second goal of the paper is to study the case of nonlinearly elastic thin
films connected by a periodically perforated sieve; that is, we consider the domain

e, = (wx (—€5,0)) U (wx (0,g;)) U (we, x {0}),

with we; defined as above; hence, the thickness is not fixed but it is equal to the



parameter €;. In this case the sequence of functionals that we consider is

1
—( W,(Du)dz+ [ W,(Du) dx) if u e VPI(Q. ;R™)
Fj(u) = { € Vad, Qr, i
400 otherwise

where fo? = Q, N{*x, > 0} and V(. ;R™) is defined as above with . in

place of ﬁsj and Q7 =w x (—1,0).
The two integral terms in F}, separately considered, represent the analytic
description of the energies of nonlinearly elastic thin films in the domains Qj] and

), respectively; their I'-convergence has been proved by Le Dret-Raoult in [18]

£;57
to (n — 1)-dimensional integral functionals whose energy densities W, and W, are
completely described by the following formulas

W,(F) = QuaWy(F) , Wy(F) = Quo1W,(F)

where W, (F) = infp, W, (F, F,), W,(F) = infp, W,(F, F,,); here Q,,—1 denotes
the operation of (n — 1)-quasiconvexification and F = (Fy,..., F,_1) € M™*n~1,
Although the thickness of €., depends on ¢;, we observe that the construction
of the annuli, that we make in Lemma 3.4 to separate the contribution near the
balls B;f;l and far from them, may be applied unchanged since the annuli are still
contained in the strips w x (0,¢;) and w x (—¢;,0); hence, we have just to define
the convergence of a sequence u; € VP4(Q. ;R™) to (ut,u™) € WHP(wh; R™) x
Whe(w=;R™) (see Definition 8.1) and repeat the proof of Lemma 3.4.

The meaningful scaling for the radii of the perforations in this case turns out
n/(n—p)

to be ¢; , and we get that the I'-limit is given by

w

F(u+,u_):/Wp(Dau+)dﬂca+/Wq(Dau_)dxa—l—T/<p(u+—u_)dxa

n—p
€

—I— < +o00 and ¢ is described by the same formula (1.3).

where T' = lim;_, 4 oo —

2 Notation and Preliminaries

In all that follows m,n € N with m > 1 and p,q > 1 with p = min{p, ¢} < n are
fixed . If x € R™ then z, = (21,...,2,_1) € R*! is the vector of the first n — 1

components of z, and D, = ( o ... L). We denote R} = {(zq,zn) € R™:

oz’ ? Oy 1
+x, > 0}, respectively.
The notation M™*™ stands for the space of m x n matrices. Given a matrix
F € M™*" and following the notation introduced in [18], we write F' = (F|F,),
where F; denotes the i-th column of F, 1 < i < n, and F = (Fy,...,F,_1) €
M™*"—1 is the matrix of the first n — 1 columns of F.



The Hausdorff k-dimensional measure is denoted as H*. If E C R" is a
Lebesgue-measurable set then |E| is its Lebesgue measure. If E is a subset of R™
then x g is its characteristic function.

We use standard notation for Lebesgue and Sobolev spaces L*(U;R™) and
Whs(U;R™). The letter ¢ will stand for an arbitrary fixed strictly-positive con-
stant.

Let © be a bounded open subset of R” and let w be a bounded open subset
of R"~! such that

wx{0}=Qn{zeR": 2, =0}, (2.1)

we denote
QO =Qn{zeR": 2, >0} Q" =0n{zeR": 2, <0}. (2.2)

If u is a function defined on Q% or 27, we use the same symbol u to indicate
its trace on w x {0}. We denote

BI7H0) = {(2a,0) €R" : fza| < 1}, Cin = { (20,0) €R" i 1 < [za] < N},
(2.3)
B,(x) is the open ball in R" of center x and radius 7, B;*(24,0) = B,(74,0) N
{£z, > 0}. We denote by (u;t) the restriction of a given sequence (u;) to QF,
respectively; or, when no confusion may arise, a sequence defined on QF, respec-
tively.
For p > 1, we denote the p-capacity of B}~ '(0) with respect to By (0) by

G0 n(0)) = intf [ DU € W (By(0),
b =1on BI7(0)},

and the p-capacity of BT~'(0) with respect to R™ by

C,(BY 1 (0);R™") = inf{/Rn |DY|P dx < p € WHP(R™),

¥ =1on 3?71(0)}.

2.1 Quasiconvexity

If h: M™*™ — [0, +00) is a Borel function, the (W':5-)quasiconvezification of h is
given by the formula

Qh(A) = inf{/(o . h(A + Du)dz - u € WE*((0, 1)";Rm)} (2.4)



for A € M™*". We say that h is (W15-)quasiconvez if Qh = h (see [19], [5], [7]).
If h : M™*"=1 — [0, +00) we denote @,,_1h the (W4-) quasiconvexification of h.

We recall that if h is a Borel function as above, and there exist constants
c1,¢2 > 0 such that ¢;(JA|* — 1) < h(A) < c2(JA]® + 1), then the function Qh is
quasiconvex (see [7] Proposition 6.7) and the functional

H(u) = / Qh(Du) dx
Q
is the lower-semicontinuous envelope of the functional
H(u) = / h(Du) dx
Q
on Whe(Q;R™) with respect to the L*(£;R™) convergence (see e.g. [7]).

2.2 TI'-convergence

Let U be an open subset of R™. We recall the definition of I'-convergence of a se-
quence (®;) of functionals defined on W#(U; R™) (with respect to the L*(U; R™)-
convergence). We say that (®;) I-converges to ®; on Wh*(U;R™) if for all
u € WH5(Q; R™) we have:

(i) (liminf inequality) for all (u;) sequences of functions in W (U;R™) con-
verging to u € W1#(U;R™) in L*(U;R™) we have

Qo(u) < liminf &, (u;);
J

(ii) (limsup inequality: existence of a recovery sequence) for all n > 0 there
exists a sequence (u;) of functions in W#(U;R™) converging to u € W (U;R™)
in L*(U;R™) such that

Oo(u) > limsup ;(u;) —n.
J
If (i) and (ii) hold we write ®g(u) = I-lim; ®;(u)

We will say that a family (®.) I'-converges to ®y if for all sequences (e;) of
positive numbers converging to 0 (i) and (ii) above are satisfied with ®., in place
of ‘P]

We recall the following property and fundamental theorem (see e.g. [7] Re-
mark 7.4, Theorem 7.2).

Remark 2.1 If ®; = ® for all j € N then the I'-limit ®¢ is the lower- semicon-
tinuous envelope of the functional ® on W1 (U;R™) with respect to L*(U;R™)
convergence.



Theorem 2.2 Let ®; I'-converge to &g on W5(U;R™). Let there exist a com-
pact set K C WH5(U;R™) with respect to the L*(U;R™) convergence, such that
inf ®; = infx ®; for all j € N. Then there exists min &g = lim; inf ;. Moreover,
if (Jx) is an increasing sequence of integers and (ux) is a converging sequence such
that limy, @, (uy) = lim; inf ®; then its limit is a minimum point for ®q.

For an introduction to I'-convergence we refer to [12], [6] and Part II of [7].

3 Domains connected by a periodically perforated
interface

Given a sequence (g;) of positive number converging to 0, we consider the lattice
;2" whose points will be denoted by z§ = ic; (i € Z"~!). Moreover, for all
iezn !
B;,,fg_l = B(‘rf7paj)
denotes the open ball in R"~! of center z{ and radius pe,;- Hence, we define
We,; = U Bg; "w
iezn—1

and N
Q., = QTuQ U (wsj X {0}) , (3.1)

where w and QF are given by (2.1) and (2.2).
o
(60 @) {0}

47 x {0}

Figure 1: The domain QEJ.

Let er be defined by (3.1) (see Figure 1) and let (u;) be a sequence of

functions defined on such domain; since )., varies with ¢; we have to precise the
meaning of ‘converging sequence’.



Definition 3.1 Let
VPaQ R™) = WHP(Q R™) N WRI(Q T R™)

We say that uj € V”vq(ﬁgj;Rm) converge to (ut,u™) € WHP(QH; R™)xWhH1(Q—; R™),
uj — (UJF,Ui), if
Uj i+ = uj' —ut in LP(QT;R™)

Ujj- =u; —u in LI(Q7;R™).
We say that (u;) converges weakly to (u™,u™), u; — (u,u™), if

Ujig+ = uj' — ut weakly in WP (QT;R™)

Ujjg- = Uy — u” weakly in Whe(Q—;R™).

In this paper we prove the following result for domains with a periodically
perforated interface (we state it in the case p < ¢; for the changes in the case p = ¢
see Remark 3.3 (a)).

Theorem 3.2 Let (¢j) and (p.;) be sequences of strictly positive numbers con-
verging to 0 such that

pe "
0< lim —%5 =R < +c0.
Jj—+o0 €;

Let w be a bounded open subset of R"~! defined by (2.1) such that H" 1 (0w) = 0
and let QF, Q~ and ﬁgj be defined by (2.2) and (3.1). Let 1 < p < ¢ and let
Wy, Wy« M™*™ — [0, +00) be Borel functions satisfying a growth condition of
order p and q, respectively: there exists a constant ¢; > 0 such that

JA[P =1 < Wp(A4) < er(1+[A]F) (3:2)
and there exists a constant co > 0 such that
JA]T =1 < Wy(A) < ea(1 + [A]7) (3.3)

for all A € M™*™. Then, upon possibly extracting a subsequence, for all A € M™*™
there exists the limit

ﬁ@(A)=lhnp£AQW%(p;4A), (3.4)
1 .

where QW,, denotes the quasiconvezification of Wy, so that the value

o(z)=inf{ | Wy(DQ)dw: ¢~z € WHRLR™), (=00on BT (0)} (3.5)

R}



is well defined for all z € R™. Moreover, the functionals defined by

W,(Du)dz + | Wy(Du)dz if ue VPI(Q.,;R™)
Fj(u) = q Jo+ Q-

+00 otherwise

I'-converge to the functional defined by

Fut,u™) = QW,(Du™) dx + QWy(Du™)dz+ R / out —u7) dz,
Q+ Q- w

on WHP(QF:R™) x Whe(Q~;R™) with respect to the convergence introduced in

Definition 3.1.

Remark 3.3 (a) Let us denote U, the function that in F; plays the role of W,
but with ¢ = p. In this case the proof of Theorem 3.2 is the same but we get a
different formula for the function ¢:

pz) = iff s W, (DC) d:c—i—/Rn Up(DQ)dw = ¢ € WHP(RY _ UBY ' (0);R™)

(-ZeW'P®RLR™), (+1e Whe (R R™) )
where R} _ =R} UR” (see Section 7).

(b) We prove Theorem 3.2 when W,,, W, are quasiconvex functions; the gen-
eralization to the arbitrary W, W, Borel functions can be treated by preliminary
relaxation as in [2] with slight modifications of the proof (see Remark 2.1 and
Section 2.1).

To compute the I'-limit of functionals F}, following the definition of I'-
convergence (see Section 2.2), we have to study the behaviour of Fj(u;) with (u;)
converging to (u™,u ™). In analogy with the method introduced by Ansini-Braides
in [2], we wish to separate the contribution due to Du; near the balls B}’ ! and far
from them. This is possible since we can repeat the proof of Lemma 3.1 in [2], with
suitable variants for the sieve problem. Since the sequence (u;) is not defined in
(w\we,;) x {0} in order to isolate the two contributions (near and far from Bzgl)
we have to construct a suitable annuli surrounding the perforations in QU Q™
(instead of w x {0}). Even the modifications are technical and not substantial, we
include the proof of the Lemma for sieve problem for the reader convenience.

Lemma 3.4 Let (u;) be bounded in WHP(QT UQ—;R™) N Whe(Q~;R™) and let
N,k e N. Let (¢;) be a sequence of positive numbers converging to 0 and let

Z;={iez" ' dist((25,0),00) > ¢;}.

10



Let (pe;) be a sequence of positive numbers with Np., < e;/2. For all i € Z; there
exists k; € {0,...,k — 1} such that, having set

o = {x ER": 27K INp. < |z — (25,0)] < szinsj}, (3.6)

u;i :][ ,- ujdr (the mean value of u; on C’ij N{xz, >0} ), (3.7
C/n{£z,>0}

and
pi = %Q*kwpaj, (the middle radius of CY), (3.8)

there exists a sequence (w;) such that

w; =u; onQ\ U c?, (3.9)
€2

wi(z) =u'® if |z —(2f,0)| = ,0;. and £z, >0, respectively, fori € Z; (3.10)

and

zezzj (/C,ijm{rn>0} (Wp(ij) + Wp(Duj)) dx

* /C':Zﬂ{—xn>0} (Wq<ij) + WQ(Duj)) daﬁ) < - (3.11)

o

Moreover, if p, = 0(8?_1> and the sequences (|Du;|P), (|Du;|9) are equi-integrable

in QF, respectively, then we can choose k; = 0 for all i € Z; and

]EIEOO(GXZ:] /Cih{zn>o} (Wp(ij) " Wp(Duj)) dx

+/Cijm{_%>0} (Wa(Dwy) + Wy(Dyy)) da) = 0. (3.12)
ProOF. Forall j e N,i€ Z; and h € {0,...,k — 1} let
C’ih = {x eR": 2*h*1Np5]. < |z —(z7,0)] < Q*thEj},
and let

(u] ) :]['_ u; dz,
C] ,n{£zn>0}

N .
p] = 12 thEj'

and

11



Consider a function ¢ = ¢fh € CSO(Cg’h) such that ¢ = 1 on 0B i (25,0) and
|D¢| < ¢/27"Np., = c/p}". Let w?" be defined on C{, by
i,k

wit = (u;.’h)iqb +(1—-¢)u; on Cij,h N {£z, > 0}, respectively

with ¢ = (;5{ ,, as above. We then have,

/ W,(Dwi") da + / Wo(Dwi™) da
c?, n{z,>0} ¢ n{—zn>0}

< o[ @IDaPlu - WP+ Dul)do
! n{z,>0}

) (14 1D6fu; = (") 1" + | Dul?) do)
C!n{—z,>0}
By the Poincaré inequality and its scaling properties we have

/ uj — (uf™) | dw < c(p;’fh)S/ |Duy|* dz,  (3.13)
7, n{xz,>0} Cf ,n{tz,>0}

so that, recalling that |Dg¢| < c/pjﬁh, by (3.13) with s = p and s = ¢, respectively,
we have

/_ W,(Dw!") da < c/‘ (1 + | Du,|P) dz (3.14)
! n{z,>0} Cl  n{zn,>0}
and
/v Wy(Dw?™) da < c/_ (1+|Du,|) d . (3.15)
Cl n{—z,>0} C) ,n{—zn>0}
Since by summing up in h we trivially have
k-1
S [ apundes [ (1 D7) da
h=o0 " Ci ,N{zn>0} Cl ,n{—zn>0}
< |By,. | +/ \Duy|? di +/ \Duj |t do
J + —
BNﬂsj BNPEj

where B]%,p = Bny., (25,0) N {xx, > 0}; there exists k; € {0,...,k — 1} such
<
that

/, (1+|Duj|p)dx+/, (1+ |Duy|?) da
Cikiﬁ{mn>0} c?, N{—z,>0}

ik

1
< P |9 . .
k:<|BNp€J" +/+ | Duj| d:ch/_ | Dujl dx) (3.16)

B
N . N .
PEJ st

12



There follows that

[ wouas [ WD) ds
¢, N{zn>0} . N{=0>0}
= E<|BNPE-|+/ lDujI’"dw+/ IDuj\qu)- (3.17)
K T8, By,
J J

By (3.16), (3.17) we get

1.

i€ Z;

+ / | (Wa(Dw}) + Wy (Duy)) da
Cf,kiﬂ{—%>0}

< E(|Q|+/ |Duj\1’da:+/ \Duj|qdz).
k o+ Q-

Note that if (|Du;|P) and (|Du;|?) are equi-integrable in QF, respectively, we may
simply choose k; = 0 for all ¢ € Z}; hence, by (3.14) and (3.15), we get (3.12).
With this choice of k; for all i € Z;, conditions (3.9)—(3.11) are satisfied by

(Wy(Dwi™) + Wy (Duy)) de
; N{z,>0}

k

choosing h = k; in the definitions above, i.e. with Cij = ka uj-i = (uj-’k'i)i,
p; = pé’ki, and w; defined by (3.9) and
wj = u§i¢ + (1 = ¢)uj on CJ N {+x, > 0}, respectively
with ¢ = ¢ ;.
|

Remark 3.5 Note that if u; — (u™,u~) and sup; Fj(u;) < 400 then (u;) con-
verges weakly to (v, u ™) in the sense of Definition 3.1. Moreover if (w;) is defined
as in Lemma 3.4 then w; — (ut,u™) (see e.g. [2] Lemma 3.1) and, since (w;) is
bounded in WHP(QT UQ=;R™) N Wh4(Q~;R™), we get that also (w;) converges
weakly to (u™,u”) in the sense of Definition 3.1.

If (|Du,;[P) and (|Duy|9) are equi-integrable in QF, respectively, then also
(|Dw,|?) and (|Dw,|?) are equi-integrable.

4 Some preliminary results

In this section we prove some preliminary results which allow us to define the
function ¢ and to prove Theorem 3.2 (see Propositions 5.2 and 6.1).
We consider 1 < p < ¢ and the functions g7, g{ : M™*" i [0, +00) defined
by
gy (A) = pE Wy(ptA) , gl(A) = pl, W,(p ! A).
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Since W), is quasiconvex and satisfies a growth condition of order p it is locally
Lipschitz continuous on M™*™: there exists C' depending only on ¢, p such that

[Wy(A) = W,(B)| < C(1+ AP~ + |BP~H)|A - B
for all A, B € M™*" (see [7] Remark 4.13); by definition of g% we get that
l97(A) = g7 (B)| < C(p2 "t +[AP~! + |BP™)|A - BJ. (4.1)

Hence, there exists a subsequence (not relabeled) converging pointwise to some
limit function W,; i.e.,

Tim_ gP(A) = W,(A) (4.2)
J—-+oo
for all A € M™*™. Note that, if there exists the limit
. WL(tA) =
Jim =22 T (4) (4.3)

(it has that the limit is independent of subsequences) then A — /V[7p(A) is positively
homogeneous of degree p.
We consider the functionals defined on LP(By(0) \ C1,n;R™) by

[ goudgeet [ giDudy we WhrBy(0)\ CriR?)
B (0) B (0)
G,(u) = u = z on OBF(0),

! u =0 on 0By(0)

400 otherwise,

where C y is defined as in (2.3) (see Figure 2).

Cl,N

Figure 2: The domain By (0) \ C1 n

The reason why we are interested in studying the I'-convergence of (G;) and,
as a consequence, the convergence of minimum problem (see Proposition 4.1 and
Corollary 4.2) is that (G;) is the sequence of functionals that we obtain studying
the contribution near the balls B;fs_l and it gives rise to the term in ¢ (see in the
following (5.5), (6.5)).
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Proposition 4.1 Let (G;) be given as above and let (p.,) be a sequence of pos-
itive numbers converging to 0; then there exists the I'-limit with respect to the

LP-convergence
j—too

I'- lim Gj(u) = / Wp(Du) dx
B(0)

for all u € WHP(By(0) \ C1 n;R™) such that uw = z on OBf(0) and u = 0 on
By (0).

PrOOF. We first deal with the liminf inequality. Let u; — w in LP(By(0) \
Cy,n;R™), such that u; = z on dBX(0), u; = 0 on 9By (0) and

hmlnfG( ;) < ¢ (4.4)

Jj—+oo

in particular, u; — u in Wh4(By(0); R™). Since p < g, for every K > 0 there
exists jx such that pe > K for every j > jk; hence, by the standard growth
condition (3.3), we have

liminf Gj(u;) > lim inf g5 (Duy) dz+K hmlnf(/ |Duj|qu—|B;,|pgj> .
~(0)

j—+o0 j—+o0 B;\;(O) j——+oo

By (4.2) and [7] Proposition 12.8, we have

- lim 9% (Du) dx = / WP(DU) dx (4.5)
J=+o0 )BT (0) B (0)

for every u € WHP(B5;(0); R™). Hence,

hmlnf/ g5 (Duy) dx 2/ WP(DU) dx
B(0) (0)

j—+oo

and, by the lower semicontinuity of [,- © |Du|? dx, we get that
N
liminf G (u;) > / W »(Du)de + K / | Du|? dx
Jmtoo 4 (0) By (0)
for every K > 0. By (4.4), there follows that

1 —~
/ |Dul9dx < —(c - / W, (Du) dx)
B(0) K B (0)

for every K > 0; hence, passing to the limit as K tends to +oo, we get that u =0
on By (0), and

j—+o0

liminf G (u;) > / Wp(Du) dx,
B}(0)
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which proves the liminf inequality.

Now we pass to compute the limsup inequality. Let u € WYP(Bx(0) \
Cy,n;R™) such that u = 2 on OB} (0) and u = 0 on By(0). By the standard
growth condition (3.2), the sequence of functionals fBj(,(o) g5 (Du) dz satisfies the
LP-fundamental estimate (see [7] Proposition 12.2); hence, by [7] Proposition 11.7,
there exists a sequence (v;) € WHP(BJ;(0); R™) converging to u in LP(B};(0); R™)
such that v; = 2z on 9B} (0) and v; = 0 on B}~ *(0) and

lim g% (Dv;) dz = / Wy(Du) dz .
J=+o0 /Bt (0) ! ’ B (0) !

We can define (9;) on By (0) \ C1,n extending v; on By (0) such that

- ~ [ wi(z) ifxze BY(0)
”j(x)_{o 1fxeBg(0) ;

the new sequence (9;) belongs to WP(Bx(0) \ Ci n;R™), it converges to u in
LP(Bn(0) \ C1,n;R™) and satisfies the limsup inequality

limsup G,(9;) = limsup(/fﬁ(()) g; (Dvj;) dx + pZ, /B(O) W9(0) d:c)
N N

j—+oo j—too

/ Wp(Du) dz,
By (0)
which concludes the proof. O
Corollary 4.2 (Convergence of minimum problems) The minimum values
ows@) = wt{ [ gy [ gipody: (46)
B3(0) By (0)

¢ e WHP(By(0)\ CLxiR™) ¢ =z on dBL(0), ¢ =0 on 63;,(0)}

converge to
on(e) = inf{/ W,(DC) dy : ¢ € WP(By(0)\ Crn; R™)
B (0)

C=2zondBL(0), ¢=0on B;V(O)} (4.7)

as j tends to 4o00.

PrOOF. By Proposition 4.1, the sequence of functionals (G;) I'-converges to
fov(O) W, (Du) dz for all u € WHP(By(0) \ C1,n;R™) such that u = z on dB};(0)
and u = 0 on By (0). Since infx G; < +oo for every j € N, where

X ={ue W"P(Bx(0)\ Oy n;R™) : u=2o0ndB%(0), u=0on dBy(0)},
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there exists ¢ > 0 such that ¢ > infx G; for every j € N; hence, we can apply the
Theorem 2.2 with

K = {uer’p(BN(O)\Cl,N;Rm): u =z on OB} (0),

u =0 on 9By(0), / |Du|? dz < c} .
Bt

N

4.1 Some particular choices of W, and W,

In the following we show some examples of ¢y for a particular choice of W, and
W,. In the cases (b) and (c) the formula describing ¢y involves also the classical
p-capacity (see (4.9) and (4.11)).

(a) If ﬁ/\p is homogeneous of degree p, (e.g. A — W),(A) satisfies (4.3)), then
en(z) = |zP inf{/+ WP(DC) dy: ¢ € WHP(By(0)\ Cy v R™)
B (0)

(= ondB§(0), ¢=0on B;V(O)}. (4.8)

2|
(b) If W,(A) = |A|P and W,(A) = |A|? with p < g, then
ow(z) = |epint{ [ 1DOPdysCe WP (By(0)\ CriRY)
B(0)

(= on0BL(0), ¢ =0on By(0)}.

2|

Since pn(z) is invariant by rotations, we can fix, for example, é = e1 and restrict
our attention to the following class of functions without increasing the infimum:

en(2)
|2|P

_ inf{/ IDCPdz: ¢ = ey, e WP(By(0)\ Cry)
B%(0)

¥ =10ondB4(0), ¥=0o0n B;V(O)}

2

_ %OP(B{‘_l(O);BN(O)), (4.9)

= 1inf{/ |Dyp|Pdx ) — 1€ V[/Ol’p(BI\/(()))7 1 =0 on 3?71(0)}
Bn(0)

where B}'"*(0) is defined as in (2.3).
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(c) If ¢ = p and W,(A) = W,(A) = |AJP then ¢pn ;(2) = ¢n(z) for every j € N.
Reasoning as in the case (b), we can fix 11 = €1; hence,

en(z) mf{/ |D<|de+/ \DCPdx: ¢ € WEP(By(0)\ oy R™)
|2|P BL(0) By (0)

¢ =e; on dBF(0), (=0 on 835,(0)}

- mf{/ |D¢|pdx+/
B (0) B (0

N

% =0on dBL(0), ¥ =1 on aB;V(O)} . (4.10)

) |DY|Pdx : b € WHP(By(0) \ Chv)

Let 1)1 be the unique solution of the minimum problem defined in (4.10); since also
Ya(x) = 1 —1)1(x) is a solution of the same minimum problem, by the uniqueness,
we have that 1 — ¢1(z) = ¢1(z). In particular,

1 = 9Y1(%a,0) = Y1(2a,0)

which implies that t; (x4, 0) = 1/2 for every (z4,0) € B}~ *(0). Hence, we get

en(2) mf{/ |D¢|de+/ |DY[P da : 4 € WHP(By(0) \ Ch )
|z|P B}(0) By (0)

¢ =0 on dB(0), ¢ = % on BY0), ¥ =1 on aB;[(O)}
_ 9 mf{/ D[P da v € WP (By (0)\ Co)
B} (0)

¥=00m 0B(0), =5 on By~ (0)}

P . 1,
= 22—p 1nf{/B;(0) |DyPdx : p € WHP(By(0) \ C1n)
% =0on dBL(0), ¥ =1 on B;H(O)}

= 5 GBI (0): Ba(0). (4.11)

Remark 4.3 By comparing (b) and (c) we note the discontinuous dependence of

wn on g as ¢ — p. (see (4.9) and (4.11)).

4.2 Properties of the functions ¢y ; and ¢y

By the pointwise convergence of (¢n ;); to ¢n (see Corollary 4.2), we can define
@ as the pointwise limit of py; i.e.,

o(z) = 111\17f on(2).
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Since pointwise convergence is not sufficient to prove that our sequence of function-
als (Fj) I-converges to F' (Theorem 3.2), to get this result we prove the uniform
convergence on compact sets of R™ by Ascoli Arzela’s Theorem; hence, we start
from the property of equi-continuity.

(1) Equi-continuity of (¢w ;);
For all N € N and N > 2 there exists ¢y such that

oni(2) = ong @) < elw—zl(pk en + P+ W) (412)

for all z,w € R™ and j, where ¢y = (1 + |By(0)|P~1/7).
By definition of ¢y ;(2), fixed n > 0 there exists ¢ € WP(By(0)\ C1,n; R™)
such that ¢ =0 on 9B%(0), ¢ = —2 on dBy(0) and

/ 95 (DC) dy + p’s’;q/ g5 (DQ) dy < o j(2) +1. (4.13)
B} (0) T By

N

Let ¢ € C§°(B5 (0)) be a cut-off function such that ¢ = 1 on By (0) and |Dy| < c.
Let w € R™, if we define

¢+ (1—9)(w=-2) onBL(0)UBI~(0)

7Y
Il

¢ on By (0)

then ¢ € WHP(By(0) \ Oy, v; R™) such that ¢ = w — z on dB;(0) and ¢ = —z on
0By (0); hence, it is a test function for ¢y ;j(w) and we can estimate the difference
with ¢y j(2) in the following way by (4.1)

en,j(w) —on,;(2)
[ (500~ g(D0) do+1
By (0)

IN

IN

/ c(pg;l +|DEPt + |D§|p*1> ‘Df - Dg‘ dz+7.  (4.14)
B (0)

Note that since ¢ = ¢ on By (0) we lose the contribution of By (0); hence, by
(4.14) and Holder’s inequality, we have

en,j(w) —on,j(2)

< [ et D 2P Dl 2Dl da o
Bf;(0)

. (p—1)/p 1/p
< cul(t;t [ peldos ([ pepan)” ([ ipglran) )
*JBh0) B(0) B(0)
+|w—z|p/ |Do|P dx + 7. (4.15)

B}(0)
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Since N > 2 we have that fB*(o) |Dg| dz and fB*(o) |Dl|P da are constant inde-
N N

pendent from N; moreover, by the standard growth condition (3.2) and (4.13) we
get

/ DePdr < / ¢(DC) di + o2 | By
(0 Bt (0) ’

By (

< on(2) + 0+ o |Bnl. (4.16)
Since pn;(2) < @n(2), for all j € N, and |A[P < W,(A) < ¢1]AJ?, we have that

eni(z) < ¢ inf{/BH ) |D@|P dx - ¢ € leZD(BN(O) \ C1.n;R™)
0

N
z

2|

hence, reasoning as in Section 4.1 case (b), we get that

1) on B3 (0), ¢ =0on BR,(O)};

z|P n— z|P n— n
ons(2) € 1 0GB 0): B(0) < e (87 ) )

for every N > 2.
By (4.16) we then have

L 1PEP S (2 B+ )

By

which implies, togheter with (4.15), that

on,j(w) = on,;(2)

< clw — 2l (o, + 2 BN O] 4 [z 0P
+e|lw—zP + 1
< cfw— 2| (o7 (1 By (0)| 7707 4 2P w4 D) o,

and by the arbitrariness of  we get then (4.12).

(2) Uniform convergence of (¢n ;);
From (4.12) we deduce that

ONj — PN uniformly (4.17)

on compact sets of R™ by Ascoli Arzela’s Theorem.

(3) Equi-continuity of ¢y
Passing to the limit in (4.12), as j tends to 400, we get

lon(2) = v (w)] < clw = 2] (|27~ + |w]P™) (4.18)

20



for all z,w € R™.

(4) Uniform convergence of ¢y
From (4.18) we deduce that

ON — P uniformly (4.19)
on compact sets of R™ by Ascoli Arzela’s Theorem.
Proposition 4.4 Let (uj) be a sequence converging to (u™,u”) weakly in the

)
sense of Definition 3.1 and bounded in L>=°(QTUQ™;R™). Let (u;i) be defined by
(3.7) and let 1; be defined by

g; i\ 1 i i
in—1 = (77,0) + <—§J, é) ; (s Z onj(uyt —ul IXqs, - (4.20)
’LGZj
Then we have
_11111 /’zbj —on(ut fu*)‘dxa =0. (4.21)
j—+oo J,,

PROOF. Reasoning as in [2] Proposition 4.3; if |z| < Supj(||u;r||oo + 5 o)
then we have, by (4.17),

lon,(2) —on(2)] < o(1)

as j — +oo, uniformly in z. Set

Y= Z on (uft — U;:‘_)XQfmfl ; (4.22)
iEZj

we deduce that the limit in (4.21) is equal to the limits

tim [
(3,

1€Z; Qi,nfl

e pim (3 [

iGZj Qf,nfl

1@- —on(ut - u_)’ dz,,

)@N(u?‘ - u;_) —on(ut — u_)‘ dma>

IN

ué-_ —u_‘—l—

u?' — u+‘ dxa> (4.23)

by (4.18).
We now estimate

/ u§+—u+’dxa§/
Q Q

it o+
Uy — U j

dxa—|—/
Q

‘u'ﬁ' — u+‘ dz,, ;

€ € €
in—1 imn—1 im—1
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by [1] Theorem 6.2
limz ‘uj—u"”dma:()
J iGZj Qf,nfl
while, by Hoélder’s inequalities,

Z/E u;+—uj‘dxa§<2/a

i€Z; Qi,nfl i€Z; Qi,n—l

wt —

P 1/p
e dxa) . (4.24)

By [1] Lemma 5.19, we have that

J

where

) P 1
u”—u*‘ dzy < c(—
j J e
J

/QE u;+—u;|pdx+s§1/Qs |Duj+|pdx) (4.25)

€
imn—1 i

= @0+ (2 0.e)

and, by Poincaré’s inequality, we get

J

€
in in

/Q uft —uf|Pde < cef /QE |Duf [P da . (4.26)

Taking (4.25) and (4.26) into account, we get
i+t

(Z /E uit — pdxa)l/p < ceg-p*l)/p su}p(/QJr \Duﬂp dm) e

iGZj Q'L,nfl J

which implies, by (4.24), that

Reasoning as above, we get

i |

i€Z; Qf,ml

u}f—u;‘dxazo;

hence, by (4.23), (4.21) is proved. 0

5 Liminf inequality

Let uj — (u™,u™) be such that sup; F., (u;) < +o00. We fix k, N € N with N > 2k
and define (w;) as in Lemma 3.4 with

pr = o(el ). (5.1)
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Let
Bf=J B/*, where B/F= B, (25,0) N {#z, >0} (5.2)
iEZ]'
for all i € Z;.

The following proposition shows that the ‘contribution far from’ the balls
BZE_ ! can be estimated by the I-limit of the two uncoupled problems

Ff(u) = W, (Du) dz Fi(u) = W,(Du) dx (5.3)
Q+ Q-

for all 7 € N. Since W), and W, are quasiconvex we have that

I-lim Fj+ (u) = Wy(Du)dz, T-limF; (u) = Wy (Du) dz
J Q+ J Q-

(see Remark 2.1 and Section 2.1).

Proposition 5.1 We have

Jj—-+oo

Liminf(/ Wp(Duj)d:E—l—/ Wq(Duj)dx)
Q+ Q-

> / Wp(Du+)dx+/ Wy(Du™)dx
ot Q-

—Himinf(/ W,(Dw;) dx + Wq(ij)dm) _ g, (5.4)
J—+o0 E* E; k
PROOF. Let us define
ot = utt on Bl i€ Z - ul~ on Bl i€ Z
) wy onQ‘*‘\E;', ) wy on Q7 \ E; .

By Remark 3.5 (v]") is bounded in W'P(Q™;R™) and (v;) in WhHe(Q—;R™).
Moreover, by (5.1) we have that lim;_, 4 |Eji\ = 0; hence, lim;_ o |[{z € QF :
wj # vji}\ = 0 which implies that v;” — ™ in WHP(Q*;R™) and v; — ™ in
Whe(Q=;R™), so that, by Lemma 3.4

c
lim inf Wy(Duy) d +/ Wy(Duj)dz ) + —
jlgﬁgo (/Q+\E;r p(Duy) dx a-\E: q(Du;) w) %

> Timjnf / W, (Dw;) dz + / Wy(Duw;) dz)
Jj—+oo Q+\E;r Q*\E;

_ . . + —

= ljlgﬁgf(/gﬁ Wy(Dv}) dx + /Q_ Wo(Dv; )dw)

>

/Q+ Wp(Du'*')dx—i—/Sr Wy (Du™)dx.
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O

Let us estimate the contribution on Ej' U E;. With fixed j € Nand ¢ € Z;
we define

i n 3.5
O} 4ovn = {(@as0) €R™ 1< ] < T27MN}
and

w]((wf,())—f—paf’lﬁ)—u;i if,ﬁCEBSQ klN( \Cl 32 ki N
C(a) = ult —ul” if z € Bf(0 )\Bd2 ()
0 if . € By(0 )\B%rku\/(o) .

By a change of variables and (4.6) we obtain

- W, (Dw;) dzx + - Wy(Dw;) dx + (W, (0) + W,(0)) |B \BZJ+|

= [ Wl DG det [ g W DO de
B} (0) ~ (0

o [ gwoderp [ oo
B (0) By (0)

- p?,_”(/ 97 (D¢) dx+p§,‘q/ g93(DC) dx)
T NBH) ' JBR0)

PPN (Ut —uf7); (5.5)

Y

hence, we get

lim mf/ W, (Dw;) dx + Wy (Dw;) dx
fr

Jj—4o00

B
o) 5 et -
J i€Z;
= lim (P? p) lim inf ey Lo (utt —ui™). (5.6)
j—too\ el ™ oo R

j
We use this inequality to prove the following liminf inequality.

Proposition 5.2 Let (p,) be a sequence of positive numbers converging to 0 such
that

pe®
0< lim —
Jj—too g

T = R < +o0;

Q§
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then for every sequence (u;) € Vp’q(ﬁgj;Rm) converging to (uT,u™), in the sense
of Definition 3.1, we have

liminf F;(u;) > W, (Du™) dzx + W, (Du™)dx
Jj—+o0 Q+ Q-

+R/gp(u+—u_)da:a.

PROOF. Let u; — (u™,u™). We can always assume, up to a subsequence,
that there exists the limit
lim F (u;) < 400,
J

so that u; — (u™,u™) in the sense of Definition 3.1. By [8] Lemma 3.5, upon
passing to a further subsequence, for all M € N and n > 0 there exists Ry; > M
and a Lipschitz function ®,; of Lipschitz constant 1 such that ®,/(z) = z if
|z| < Ry and ®ps(z) = 0 if |z| > 2Ry, and

lim Fj(u;) > liminf F;(®a(uy)) — 1. (5.7)
J j

Note that ®ps(u;) € Vp’q(ﬁgj;}Rm) N L“((AZEJ.;RT"‘) and
Dar(uj) — (Par(uh), ®ar(u”)).

Moreover @/ (ut) — ut in WHP(QT;R™) and ®ps(u~) — u™ in WHe(Q™;R™)
as M tends to +oo, which implies that
Opr(ut) — u't , Dpr(u™) = u” in  L'(w;R™).

Note that the L'-convergence of the traces is sufficient to our aims since we use it
just when we apply inequality (4.18) to prove that

lijr_n/ o(Ppr(u®) — ®pr(u”)) dzg :/go(u+ —u”)dz, . (5.8)

Reasoning as in [2] Proposition 5.2, if we apply Lemma 3.4, (5.6), (5.4) and Propo-
sition 4.4 to (®ar(u,)) in place of (u;), we get that

liminf F(®pr(uj)) > Wy (D® s (uh)) dx + Wy (D®p(u™)) da
J Qt Q-

R / P @1 () — Dar(u)) e

By the lower semicontinuity of [,, W,(D(¢)dx and [, W,(D(¢)dx with respect
to the weak convergence and (5.8), we get the liminf inequality. O
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n—p
ps

Remark 5.3 Note that 0 < lim;_,4 T = = R < 400 is the only meaningful
scaling for the radii of the perforation. In fact, if R =0, i.e. if p; tends to zero
faster than 5§n_1)/(n_p), then we obtain two uncoupled problems in Q% and Q~;
while, if R = +o0, i.e. if p.; tends to zero more slowly than Egnfl)/(nfp), then ut =
u” on w x {0} and the limit function (u*,u~) € WhP(QF;R™) x WL4(Q—;R™)
defines a unique function in W1P(Q;R™).

6 Limsup inequality

For every (ut,u™) € WhP(QH;R™) x WH4(Q~; R™) the limsup inequality is ob-
tained by suitably modifying the function v = utxq+ +u” xo- to get a recovery
sequence defined on {).,. Note that if we remove the quasiconvexity assumptions
on W and Wy, we have to consider the recovery sequences for the I'-limits of

= [o+ Wp(Du)dx and F; (u) = [, Wy(Du)dz, in place of u* and u~,
respectlvely (see Remark 3.3).

Proposition 6.1 Let (p.,) be a sequence of positive numbers converging to 0 such
that

p" P
0< lim —
Jj—+oo g

if H"Y(0w) = 0 then for all (ut,u™) € WHP(QT;R™) x WL4(Q~;R™) and for
all n > 0 there exists a sequence u; € VP9(Q. ;R™) converging to (u*,u™) such
that

T = R < +oo;

“3

limsup Fj(u;) < W »(Dut)dx + Wy (Du™)dx
j—+4oo Q-
+R/ ) dro 4+ ().
PRrROOF. Let
v=u"xor +u xq- € WQTUQT;R™) N WhI(QT;R™). (6.1)

With fixed N € N, by Lemma 3.4 applied with (u;) and (p;) replaced by (v)
and (%psj), respectively, and taking the equi-integrability condition into account
we obtain a sequence (w;) which equals the constants U;—i = f—C{m{imn>0} vdx on
6Bf, pe.? respectively, for all i € Z;.

<

We recall that By, denotes By, (25,0) and Bﬁpgj = By, N {xz, > 0}.

Reasoning as in [2] Proposition 6.1, we first assume that in addition (u™,u™) €
L= (9% R™). We define the sequence (u;) by

Uj = w; on Qi\( U BNpg>'

iezn—1
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hence,

lim sup F (u;)

j——+oo

We now define u; on €2,

lim sup (/
j=Foo Maral ), oy

B
NPE]'

< limsup ( / W,(Dw;) dx
Jj—+oo QJr\Uiez"*l BI’PE'
Lo o, o)
Qi\Uiexn—l B;’/Jaj
+ lim sup (/ Wy (Du;) da
j—4o0 Q+mUieZ"71 Bj\}p5~
Loy, M)
QinUieanl B;fpgj
= | Wy(Dut)dw+ [ Wy(Du)dz
o+ @
+ lim sup (/ Wy (Du;) da
j—+o0 Q+mUieZ"—1 B]‘Cp5~
J

+/ . Wq(Duj)dx).
QinUieznfl BNF’EJ‘

NU;ezn—1 Bnp.,, and we compute the limit

Wy (Du;) dx —I—/

QiﬂUieanl BNpsj

W, (Duy;) dm) .

+

Let us consider the case i € Z;. Let

M = max{||u™||pe, |u" || L=},

fixed 7 > 0, by the uniform convergence of ¢ ; — ¢n and pny — ¢ on compact
sets of R™, there exists N such that

for all |z| < M and

©(z) > on(2) — g (6.2)

lon 5 (2) —en(2)] < (6.3)

w3

for all [z| < M and j € N. Moreover, by (4.6), there exists ¢} € W'?(By(0) \

C1 n; R™) such that

it i
=4 Y
7710

on 9B (0)
on 9By (0)
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and
D i - q i it i— n
g-(DC‘)dy+pp,‘I/ gl (DCYdr < oy (Wit —viT) 4+ 2
/BI,(O) J J €j BX,(O) J J J\"g 7 3
< gp(v;Jr —v; )+ (6.4)

by (6.2) and (6.3). Hence, if we define u; on ﬁsj N By, by

uy = ¢ (E RO

€j

then, by (6.4), we get

/B+ Wp(Duj)der/i W,(Duy) dz

= p?jp(L+()gj(DC)dy+p§7 /B_(O)gf(DC;)d”)
< (5 (et~ v ) o

for all ¢ € Z;.
If i & Z;, it is not possible to use the construction above since By, might
intersect O02. We then consider a scalar 0 < ¢ <1 on By(0) \ C1,§ such that

_[1 ondB(0)
() = {O on B;[JE[O)

and ((z) = 1 — ¢(z). We can define the extension of w;r = wjXq+ to Q as the
function w?(xa,xn) = w;r(xa,—xn) and the extension of w; = wjxo- to Q
as the function wf(za,r,) = w; (Ta, —2,), such that w} € WLP(Q;R™) and
w? € WhHa(Q;R™).

Hence, u; is defined by

on BNst N Q€j7 and

1 i
(Dw} + p—Dc(wj+ —wf) +(Dw] on By, Nat
D’LLJ' = €j

ij_ on B;]pgj n O

28



By the standard growth conditions (3.2), (3.3) and Holder’s inequality, we have

/ +
BNP&

(Byo, |+ [ iDwPdes [ |Dulrde)
! B, na+ By, NQ-

Npe; NPE7‘

W, (Du;) dz + / Wy (Duy;) dz

O+ By, N~
J

Nf)sj

IA

J

1

P
Pe;

|ij'|p dx + /
: i

Np

IN

/ IDCP (17 + ) do
Bt (2£,00nQ+F

) | Dw; |4 dz)

(1Byi, | +
| Dwf|P dz + /
naQt BN/’E n

+/
B B _
J J

cl|Bnp. | + MPpl™P D(|P dy + Dwi P dx
Pe Pe J
’ © B

B Q
B

N/’Ej
where we have also taken into account that Hw;—HLoc + ||'Lqu-||Loo <2M.
Let wj = Uiezn—l\zj Q5 ,,—1, since

+ +
Noe, nQ

IN

Dw; |9dx ol By, nQ~|@p/a g
_ J Npe, .

Npe

|ij_|qu> ,
no-
J

Noe, nQ

by the equi-integrability of |ij+|p and [Dw; |7 (see Remark 3.5), we get

lim sup( Z / Wp(Duj) dx + / Wq(DUj) dl‘)
j——+oo iezn\z, B;pa_ noQ+ By,. NQ-
. p?_p . —1 / —1
< ¢ lim ( ]71) lim H" (W) < e RH" H(0w) = 0. (6.6)
j—+oo 5‘? Jj—+oo J

Taking (6.5) and (6.6) into account, by Proposition 4.4, we have

lim sup( /
Jj—oo Z Bf,

iezn—1 Npe

J
R (hmsup Z 5?_1<p(11;+ — ’U;'_) + WHnil(W))

I=+ ey,

= R/gp(u+fu*)dza+nH"71(w).

W, (Du;) dz + / W, (Duy;) dm)

(z£,0)nQ+ B;,paj (x5,0)NQ—

IN

We conclude the proof of the limsup inequality for arbitrary (ut,u™) €
Whr(Q+t;R™) x WH4(Q~;R™), simply noting that u* can be approximated by
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a sequence of functions v;’ € WHP(QH;R™) N L>(QF;R™) and u~ by v; €
Wha(Q=;R™) N L>®(Q~;R™) with respect to the strong convergence of W? and
Wha, respectively. O

7 The case p=q

If ¢ = p we consider a Borel function U, satisfying a growth condition of order
p in place of W,. In this case we are in a simpler situation since W, and U, are
rescaled in the same way and we get

owo@) = el [ W DO+ [ U DG dy
B1(0) By (0)
¢ € WP (By(0)\ Cy;R™) ¢ =z on dBE(0), ¢ =0on aB;V(O)} .

Reasoning as in Section 4 the limit problem keeps the same boundary conditions
on the test function ¢ as j — +oo

SDN(Z) = inf{/ /WP(DC) dy""/ [/jp<DC) dy :
B} (0) B (0)
¢ € WH(By(0)\ G R™), ¢ = 2 on OBS(0), ¢ =0on 9B5(0)}
— inf{/ W,(D¢) dy +/ Up(DC) dy -
B} (0) B (0)
¢ e W (By(0)\ CrwiR™), ¢ = 2 on 9BF(0), ¢ =2 on dBy(0)};
hence, passing to the limit as N — 400, we get that

plz) = inf{ WP(DC) d:ch/ (Afp(DC)dx: (e Wl’p(R’j_’_UB’f_l(O);Rm)
R

R™
z z
(- e W RLR™), (+2 € WHRLR™) |
where R} = R} UR™. After having precise the definition of function ¢, the proof

of Theorem 3.2, for ¢ = p, follows as in Sections 5 and 6.

8 Thin films connected by a periodically perfo-
rated interface

Let us consider the following domain (see Figure 3)

Q. = (w X (—sj,O)) U (w x (o,ej)) U (wej X {0})
= 0 UQiu (ng x {o}). (8.1)
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n-1
Bi, € X{O}

—g (0 wﬁ) x{0}

Figure 3: The domain €.,
In analogy with the notation introduced in Section 2, we denote 2 = w X
(—=1,1), Q" =w x (0,1) and Q™ = w x (—1,0).
Definition 8.1 Let
VP s R™) = WHP(Q s R™) nWH(Q;R™).
Given a sequence (uj) € VPI(Q ;R™), we define Uj(2a,Tn) = uj(Ta,c57n). We

say that (uj) converges to (or converges weakly to) (u™,u~) € W1P(w;R™) x
Whe(w; R™) if we have

>

j‘ = djo+ —ut in LP(QT;R™) (or weakly in WHP(QFT;R™)) (8.2)

a; = djo- —u in LY(QT;R™) (or weakly in WH4(Q™;R™)) . (8.3)

Equivalently: we can define the 2¢;-periodic (in x,) extensions of uji = Ujoz as
<
the functions ﬁji in WHP(Q;R™) and WH4(Q; R™), respectively; such that

ﬂjc(:zra, —x,) = ﬁ]j-:(za, Zn)

and
ﬂf(m) = u;j(z) on Qai] .

Then (8.2) and (8.3) above are equivalent to

ﬂji —
in LP(Q; R™) and L(;R™), respectively (or weakly in WP (Q; R™) and W4 (Q; R™),
respectively).

If v € LP(w;R™) we identify it with v € LP(Q;R™) (independent of x,,),
similarly for the other spaces L1, WP and W14,

We prove the following result for thin films with periodically perforated in-
terface in the case p < g; ¢ = p can be treated as in Section 7.
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Theorem 8.2 Let (¢;) and (pc;) be sequences of strictly positive numbers con-

verging to 0 such that
. Pt
0< lim —— =T < +oc0.

j—-+oo Ej

Let w be a bounded open subset of R"~1 with Lipschitz boundary and let ij, QE_J
and Q. ; be defined as in (8.1). Let 1 < p < q and let Wy, Wy : M™*" — [0, +-00) be
Borel functions satisfying a growth condition of order p and q, respectively: there
exists a constant c¢; > 0 such that

|A[P =1 < Wp(A) < er(1+[A]F) (8.4)
and there exists a constant co > 0 such that
JA]T =1 < Wy(A) < ea(1 + [A]7) (8.5)

for all A € M™>"™. Then, upon possibly extracting a subsequence, for all A € M™*"
there exists the limit

Wy(A) = lim p2, QW, (o7 4), (8.6)
J J J

where QW,, denotes the quasiconvezification of W), so that the value

o(z)=inf{ | Wy(DQ)dw: ¢~z € WHRLR™), ¢ =00n BT (0)} (8.7)

RY

is well defined for all z € R™. Moreover, the functionals defined by

1
7( W,(Du)dz+ [ W,(Du) dx) ifu e VraQ, ;R™)

Fy(u) = { & Maz, = ’
400 otherwise

I'-converge to the functional defined by
Fut,u™) = / /V[v/p(Daiﬁ) dz,, —|—/ /Wq(Dauf)dxa +7T / o(ut —u) dry

on WHP(w; R™) x Wha(w; R™) with respect to the convergence introduced in Def-
inition 8.1. The functions Wy, and Wy are given by

Wo(F) = QuoaW,(F),  Wo(F) = Qu-aWW,(F)
for all F € M™*"~1 where
W,(F) = ilgf W,(F,F,), WyF)= ilglf W,(F, F,),

and Qn—1 denotes the operation of (n — 1)-quasiconvezification.
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PRrROOF. To prove the theorem we can follow the lines of the proof of Theorem
3.2. In fact, among the hypothesis of Lemma 3.4, we have that, fixed N € N,
Np., < €;j/2; hence,
U ¢/ n{te, >0} cof
1€2;

where €7 are defined in (3.6).

Therefore we can repeat the proof of Lemma 3.4 with Qjﬂ U Q;] in place of
QT UQ™ and with respect to the convergence introduced in Definition 8.1.

The fact that the thickness €; tends to zero, as j — 400, does not influence
the contribution near the balls B?~!, except that in the determination of the

i,
critical size of the perforations that, in this case, is of order 5?/ ("=P) Tn fact, let
us deal with the liminf inequality: reasoning as in Section 5, we get the analog of
(5.6) for the contribution on Ef UES ;i.e.,

1
timinf —( [ Wy (Dwy)dz+ | W,(Dwj)dr)
=i 2\ gy 5

> lim (pg]ﬁp) lim inf E €% on (Ut —ulT)

T j—otoo E? Jj—+oo = J I U

J

where (w;) is defined by the Lemma suitably modified for the case of thin films.
There follows that we have to choose p.; such that

peP
0< lim —— =T < +oo,
Jj—+o0 €j
but all the rest is unchanged and it gives rise to the same function ¢ defined in
(8.7). To conclude the proof of the liminf inequality we estimate the contribution
far from the balls B’ L applying the following I-convergence result due to Le
Dret-Raoult [18]; i.e., the sequence of functionals

1

— W,(Du)dx if wlrp(Qt R™
F]-Jr(u) =9 & Jar p(Du)de if u e ( ;0 )

400 otherwise

I'-converges, with respect to the LP(Q; R™) convergence, to

FHut) = {/WWP(DQUJF) dre ifut € WHP(w;R™) (8.8)
+00 otherwise ,
and, similarly,
1
_ — W, (Du)dz if w e WH(Q ;R™
Frw =] 2 W (2, R™)
+o00 otherwise
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I-converges, with respect to the LI(27;R™) convergence, to

F(u) = {/UJWq(Daumxa if u” € Whi(w; R™) (8.9)
400 otherwise .

Also for the limsup inequality we can repeat the proof of Proposition 6.1 but in
this case we do not apply Lemma 3.4 to the sequence (v), defined in (6.1), but to
the sequence

v = U;‘rXQ: +v; Xz
where (v;r), (v;") are the recovery sequence for the I-limits (8.8) and (8.9). O
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