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Abstract We consider variational problems defined on domains ‘weakly’ con-
nected through a separation hyperplane (‘sieve plane’) by an ε-periodically dis-
tributed ‘contact zone’. We study the asymptotic behaviour as ε tends to 0 of in-
tegral functionals in such domains in the nonlinear and vector-valued case, showing
that the asymptotic memory of the sieve is described by a nonlinear ‘capacitary-
type’ formula. In particular we treat the case when the integral energies on both
sides of the sieve plane satisfy different growth conditions. We also study the case
of thin films, with flat profile and thickness ε, connected by the same sieve plane.

1 Introduction

In this paper we study the asymptotic behaviour of energies defined on domains
connected by a ‘finely-perforated’ separation interface. The model problem we
have in mind is that of the so-called ‘Neumann sieve’, which consists in studying
the irrotational flow of an incompressible fluid through a sieve. In mathematical
terms, we consider Ω a bounded open subset of Rn and a trasversal hyperplane Σ
such that Ω is divided in two open subsets Ω+ and Ω−. We assume that Ω+ and
Ω− are connected through an ε-periodic perforation of Σ; i.e., we consider a union
of ε-periodically distributed sets (the ‘holes’ of the sieve) which we denote by Tε.

1



We then study the following boundary value problem




−∆uε = f in Ω̂ε

uε ∈ H1(Ω̂ε)

∂
∂nuε = 0 on both sides of (Ω ∩ Σ) \ Tε

∂
∂nuε = 0 on ∂Ω ;

(1.1)

where Ω̂ε =: Ω+ ∪Ω− ∪ Tε, n is the outer normal and uε is the potential function
of the velocity (see e.g. [16] and [17]). Note that in this problem the main role is
played by the Neumann boundary condition on (Ω ∩ Σ) \ Tε, while the boundary
condition on ∂Ω can be replaced by any variational condition.

The Neumann sieve problem was proposed by Sanchez Palencia in [23], who
gave a formal asymptotic expansion of the solution uε. The problem was then
studied by Attouch-Damlamian-Murat-Picard (see [13], [20] and [21]) essentially
in the case where the perforations are unions of open balls Bn−1

i,ε in Rn−1 with
center xε

i = iε, for i ∈ Zn−1, and radius ρε of order ε(n−1)/(n−2) (if n ≥ 3). They
proved (among others results) that the sequence uε of solutions of (1.1) converges
weakly in H1(Ω+)×H1(Ω−) to a solution (u+, u−) of the following limit problem





−∆u± = f in Ω± (f ∈ L2(Ω))

u± ∈ H1(Ω±)

∂
∂n+

u+ = − ∂
∂n−

u− = c
4 (u+ − u−) in Ω ∩ Σ

∂
∂nu± = 0 on ∂Ω ,

where c is the 2-capacity of a rescaled perforation, Bn−1
1 (0) = {(xα, 0) ∈ Rn :

|xα| < 1}, with respect to Rn; i.e.,

c = inf
{∫

Rn

|Dψ|2dx : ψ ∈ H1(Rn), ψ = 1 on Bn−1
1 (0)

}
.

Attouch-Damlamian-Murat-Picard observed also that their result corresponds, in
terms of Γ-convergence, to proving that

Γ- lim
ε→0

(1
2

∫

Ω+∪Ω−
|Du|2 dx + I{u∈H1(Ω̂ε)}

)

=
1
2

(∫

Ω+
|Du+|2 dx +

∫

Ω−
|Du−|2 dx +

c

4

∫

Ω∩Σ

|u+ − u−|2 dxα

)
,

where I denotes the indicator function. This result implies that uε is also solution
of the minimum problem

min
{∫

Ω+∪Ω−
|Du|2 dx− 2

∫

Ω+∪Ω−
fu dx : u ∈ H1(Ω̂ε)

}
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and the limit (u+, u−) solves

min
{∫

Ω+
|Du+|2 dx +

∫

Ω−
|Du−|2 dx− 2

(∫

Ω+
fu+ dx +

∫

Ω−
fu− dx

)

+
c

4

∫

Ω∩Σ

|u+ − u−|2 dxα : (u+, u−) ∈ H1(Ω+)×H1(Ω−)
}

,

by the Γ-convergence’s properties of convergence of minima and stability with
respect to continuous perturbations. For related problems to this subject see also
Attouch-Picard [4], Conca [9] [10] [11], Del Vecchio [14] and Sanchez Palencia [22]
[24].

In this paper we generalize the Γ-convergence result above to the non-convex
vector-valued case, considering in addition the interaction through the separat-
ing surface of two different energies, possibly satisfying also different growth con-
ditions, defined in Ω+ and Ω−, respectively. More precisely, let ω be an open
bounded subset of Rn−1, for the sake of simplicity we take Σ = {xn = 0}, so that
ω×{0} = Ω∩{xn = 0}, Ω+ = Ω∩{xn > 0} and Ω− = Ω∩{xn < 0}. Let m, n ∈ N
with m ≥ 1 and let p, q > 1 with min{p, q} < n be fixed (the case min{p, q} = n
differing in technical details only and the case min{p, q} > n being trivial). We
suppose p < q (the case p = q being treated similarly). For all ε > 0 we define

ωε =
⋃

i∈Zn−1

Bn−1
i,ε ∩ ω,

where Bn−1
i,ε is defined as above; hence,

Ω̂ε = Ω+ ∪ Ω− ∪ (ωε × {0})

(note that ωε is the union of the perforations, including those intersecting ∂ω).
Let V p,q(Ω̂ε;Rm) = W 1,p(Ω̂ε;Rm)∩W 1,q(Ω−;Rm) and let Wp,Wq :Mm×n 7→

[0, +∞) be Borel functions satisfying a growth condition of order p and q, respec-
tively. With fixed a sequence (εj) of positive numbers converging to 0 we define

Fj(u) =





∫

Ω+
Wp(Du) dx +

∫

Ω−
Wq(Du) dx if u ∈ V p,q(Ω̂εj ;Rm)

+∞ otherwise .

Note that the choice of the functions Wp,Wq with p < q corresponds to considering
two different (possibly nonlinear) media in Ω+ and Ω− connected through the
perforations of the surface Σ. The main part of this work is devoted to proving
that if the radii ρεj of the perforation satisfy

lim
j→+∞

ρn−p
εj

εn−1
j

= R < +∞ (1.2)
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then, upon extracting a subsequence, Fj Γ-converge to

F (u+, u−) =
∫

Ω+
QWp(Du+) dx +

∫

Ω−
QWq(Du−) dx + R

∫

ω

ϕ(u+ − u−) dxα

on W 1,p(Ω+;Rm)×W 1,q(Ω−;Rm) with respect to a suitable convergence that we
introduce in Definition 3.1, where QWp and QWq denote the quasiconvexification
of Wp and Wq, respectively, and ϕ is given by the formula

ϕ(z) = inf
{∫

Rn
+

Ŵp(Dζ) dx : ζ − z ∈ W 1,p(Rn
+;Rm), ζ = 0 on Bn−1

1 (0)
}

(1.3)

which generalizes the classical p-capacity of Bn−1
1 (0) with respect to Rn. Note

that the larger exponent q does not appear in the definition of ϕ (the formula is
slightly different in the case p = q); for example, if Wp(ξ) = |ξ|p and Wq(ξ) = |ξ|q
then ϕ(z) = c|z|p∧q. The function Ŵp is the pointwise limit of a sequence that
we obtain by scaling QWp, to the end of studying the behaviour of the infima of
integral functionals on domains independent of the parameter εj ; i.e.,

Ŵp(A) = lim
j

ρp
εj

QWp

(
ρ−1

εj
A

)
.

We show that this limit always exists upon passing to a subsequence. This passage
to a subsequence cannot be avoided; hence, ϕ may depend on (the subsequence
of) (εj). For notational simplicity we do not treat the case n = p, which can be
dealt with similarly; for the necessary changes in the statements see e.g. [20].

The proof of our result (Theorem 3.2) consists in a direct computation of the
Γ-limit; it is based on a technical result (Lemma 3.4) that allows us to modify a se-
quence (uj), on suitable n-dimensional annuli surrounding the (n−1)-dimensional
perforations Bn−1

i,ε , and to study the behaviour of Fj along the new modified
sequence. It gives rise to three terms in the Γ-limit F . The first two terms rep-
resent the contribution of the new sequence ‘far’ from the Bn−1

i,ε ; more precisely,
they are the Γ-limit of the two uncoupled problems defined on W 1,p(Ω+;Rm) and
W 1,q(Ω−;Rm), respectively. The third one describes, by the nonlinear capacitary
formula ϕ, the contribution ‘near’ to Bn−1

i,ε . This approch follows the method in-
troduced by Ansini-Braides [2] to study the asymptotic behaviour of periodically-
perforated nonlinear domains (see also Ansini-Braides [3] for an applications to
periodic microstructures); Lemma 3.4 is a suitable variant, for the sieve problem,
of Lemma 3.1 in [2].

The second goal of the paper is to study the case of nonlinearly elastic thin
films connected by a periodically perforated sieve; that is, we consider the domain

Ωεj =
(
ω × (−εj , 0)

) ∪ (
ω × (0, εj)

) ∪ (
ωεj × {0}

)
,

with ωεj defined as above; hence, the thickness is not fixed but it is equal to the
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parameter εj . In this case the sequence of functionals that we consider is

Fj(u) =





1
εj

(∫

Ω+
εj

Wp(Du) dx +
∫

Ω−εj

Wq(Du) dx
)

if u ∈ V p,q(Ωεj ;Rm)

+∞ otherwise

where Ω±εj
= Ωεj

∩ {±xn > 0} and V p,q(Ωεj
;Rm) is defined as above with Ωεj

in
place of Ω̂εj

and Ω− = ω × (−1, 0).
The two integral terms in Fj , separately considered, represent the analytic

description of the energies of nonlinearly elastic thin films in the domains Ω+
εj

and
Ω−εj

, respectively; their Γ-convergence has been proved by Le Dret-Raoult in [18]

to (n− 1)-dimensional integral functionals whose energy densities W̃p and W̃q are
completely described by the following formulas

W̃p(F ) = Qn−1W p(F ) , W̃q(F ) = Qn−1W q(F )

where W p(F ) = infFn Wp(F, Fn), W q(F ) = infFn Wq(F , Fn); here Qn−1 denotes
the operation of (n− 1)-quasiconvexification and F = (F1, . . . , Fn−1) ∈Mm×n−1.

Although the thickness of Ωεj depends on εj , we observe that the construction
of the annuli, that we make in Lemma 3.4 to separate the contribution near the
balls Bn−1

i,ε and far from them, may be applied unchanged since the annuli are still
contained in the strips ω × (0, εj) and ω × (−εj , 0); hence, we have just to define
the convergence of a sequence uj ∈ V p,q(Ωεj ;Rm) to (u+, u−) ∈ W 1,p(ω+;Rm)×
W 1,q(ω−;Rm) (see Definition 8.1) and repeat the proof of Lemma 3.4.

The meaningful scaling for the radii of the perforations in this case turns out
to be ε

n/(n−p)
j , and we get that the Γ-limit is given by

F (u+, u−) =
∫

ω

W̃p(Dαu+) dxα +
∫

ω

W̃q(Dαu−) dxα + T

∫

ω

ϕ(u+ − u−) dxα

where T = limj→+∞
ρn−p

εj

εn
j

< +∞ and ϕ is described by the same formula (1.3).

2 Notation and Preliminaries

In all that follows m, n ∈ N with m ≥ 1 and p, q > 1 with p = min{p, q} < n are
fixed . If x ∈ Rn then xα = (x1, . . . , xn−1) ∈ Rn−1 is the vector of the first n− 1
components of x, and Dα =

(
∂

∂x1
, . . . , ∂

∂xn−1

)
. We denote Rn

± = {(xα, xn) ∈ Rn :
±xn > 0}, respectively.

The notation Mm×n stands for the space of m× n matrices. Given a matrix
F ∈ Mm×n, and following the notation introduced in [18], we write F = (F |Fn),
where Fi denotes the i-th column of F , 1 ≤ i ≤ n, and F = (F1, . . . , Fn−1) ∈
Mm×n−1 is the matrix of the first n− 1 columns of F .
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The Hausdorff k-dimensional measure is denoted as Hk. If E ⊂ Rn is a
Lebesgue-measurable set then |E| is its Lebesgue measure. If E is a subset of Rn

then χE is its characteristic function.
We use standard notation for Lebesgue and Sobolev spaces Ls(U ;Rm) and

W 1,s(U ;Rm). The letter c will stand for an arbitrary fixed strictly-positive con-
stant.

Let Ω be a bounded open subset of Rn and let ω be a bounded open subset
of Rn−1 such that

ω × {0} = Ω ∩ {x ∈ Rn : xn = 0} , (2.1)

we denote

Ω+ = Ω ∩ {x ∈ Rn : xn > 0} Ω− = Ω ∩ {x ∈ Rn : xn < 0} . (2.2)

If u is a function defined on Ω+ or Ω−, we use the same symbol u to indicate
its trace on ω × {0}. We denote

Bn−1
1 (0) = {(xα, 0) ∈ Rn : |xα| < 1} , C1,N =

{
(xα, 0) ∈ Rn : 1 ≤ |xα| < N

}
,

(2.3)
Br(x) is the open ball in Rn of center x and radius r, B±

r (xα, 0) = Br(xα, 0) ∩
{±xn > 0}. We denote by (u±j ) the restriction of a given sequence (uj) to Ω±,
respectively; or, when no confusion may arise, a sequence defined on Ω±, respec-
tively.

For p ≥ 1, we denote the p-capacity of Bn−1
1 (0) with respect to BN (0) by

Cp(Bn−1
1 (0); BN (0)) = inf

{∫

BN (0)

|Dψ|p dx : ψ ∈ W 1,p
0 (BN (0)),

ψ = 1 on Bn−1
1 (0)

}
,

and the p-capacity of Bn−1
1 (0) with respect to Rn by

Cp(Bn−1
1 (0);Rn) = inf

{∫

Rn

|Dψ|p dx : ψ ∈ W 1,p(Rn),

ψ = 1 on Bn−1
1 (0)

}
.

2.1 Quasiconvexity

If h :Mm×n → [0, +∞) is a Borel function, the (W 1,s-)quasiconvexification of h is
given by the formula

Qh(A) = inf
{∫

(0,1)n

h(A + Du) dx : u ∈ W 1,s
0 ((0, 1)n;Rm)

}
(2.4)
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for A ∈ Mm×n. We say that h is (W 1,s-)quasiconvex if Qh = h (see [19], [5], [7]).
If h : Mm×n−1 → [0, +∞) we denote Qn−1h the (W 1,s-) quasiconvexification of h.

We recall that if h is a Borel function as above, and there exist constants
c1, c2 > 0 such that c1(|A|s − 1) ≤ h(A) ≤ c2(|A|s + 1), then the function Qh is
quasiconvex (see [7] Proposition 6.7) and the functional

H(u) =
∫

Ω

Qh(Du) dx

is the lower-semicontinuous envelope of the functional

H(u) =
∫

Ω

h(Du) dx

on W 1,s(Ω;Rm) with respect to the Ls(Ω;Rm) convergence (see e.g. [7]).

2.2 Γ-convergence

Let U be an open subset of Rn. We recall the definition of Γ-convergence of a se-
quence (Φj) of functionals defined on W 1,s(U ;Rm) (with respect to the Ls(U ;Rm)-
convergence). We say that (Φj) Γ-converges to Φ0 on W 1,s(U ;Rm) if for all
u ∈ W 1,s(Ω;Rm) we have:

(i) (liminf inequality) for all (uj) sequences of functions in W 1,s(U ;Rm) con-
verging to u ∈ W 1,s(U ;Rm) in Ls(U ;Rm) we have

Φ0(u) ≤ lim inf
j

Φj(uj);

(ii) (limsup inequality: existence of a recovery sequence) for all η > 0 there
exists a sequence (uj) of functions in W 1,s(U ;Rm) converging to u ∈ W 1,s(U ;Rm)
in Ls(U ;Rm) such that

Φ0(u) ≥ lim sup
j

Φj(uj)− η.

If (i) and (ii) hold we write Φ0(u) = Γ-limj Φj(u)
We will say that a family (Φε) Γ-converges to Φ0 if for all sequences (εj) of

positive numbers converging to 0 (i) and (ii) above are satisfied with Φεj in place
of Φj .

We recall the following property and fundamental theorem (see e.g. [7] Re-
mark 7.4, Theorem 7.2).

Remark 2.1 If Φj = Φ for all j ∈ N then the Γ-limit Φ0 is the lower- semicon-
tinuous envelope of the functional Φ on W 1,s(U ;Rm) with respect to Ls(U ;Rm)
convergence.
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Theorem 2.2 Let Φj Γ-converge to Φ0 on W 1,s(U ;Rm). Let there exist a com-
pact set K ⊂ W 1,s(U ;Rm) with respect to the Ls(U ;Rm) convergence, such that
inf Φj = infK Φj for all j ∈ N. Then there exists minΦ0 = limj inf Φj. Moreover,
if (jk) is an increasing sequence of integers and (uk) is a converging sequence such
that limk Φjk

(uk) = limj inf Φj then its limit is a minimum point for Φ0.

For an introduction to Γ-convergence we refer to [12], [6] and Part II of [7].

3 Domains connected by a periodically perforated
interface

Given a sequence (εj) of positive number converging to 0, we consider the lattice
εjZn−1 whose points will be denoted by xε

i = iεj (i ∈ Zn−1). Moreover, for all
i ∈ Zn−1

Bn−1
i,ε = B(xε

i , ρεj )

denotes the open ball in Rn−1 of center xε
i and radius ρεj . Hence, we define

ωεj =
⋃

i∈Zn−1

Bn−1
i,ε ∩ ω

and
Ω̂εj =: Ω+ ∪ Ω− ∪

(
ωεj × {0}

)
, (3.1)

where ω and Ω± are given by (2.1) and (2.2).

ω 

Β
n−1

ε

Ω+

Ω−

x {0}

x {0}
i, 

j

ε

ω( )

Figure 1: The domain Ω̂εj

Let Ω̂εj be defined by (3.1) (see Figure 1) and let (uj) be a sequence of
functions defined on such domain; since Ω̂εj varies with εj we have to precise the
meaning of ‘converging sequence’.
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Definition 3.1 Let

V p,q(Ω̂εj ;Rm) = W 1,p(Ω̂εj ;Rm) ∩W 1,q(Ω−;Rm) .

We say that uj ∈ V p,q(Ω̂εj ;Rm) converge to (u+, u−) ∈ W 1,p(Ω+;Rm)×W 1,q(Ω−;Rm),
uj → (u+, u−), if

uj |Ω+ = u+
j → u+ in Lp(Ω+;Rm)

uj |Ω− = u−j → u− in Lq(Ω−;Rm) .

We say that (uj) converges weakly to (u+, u−), uj ⇀ (u+, u−), if

uj |Ω+ = u+
j ⇀ u+ weakly in W 1,p(Ω+;Rm)

uj |Ω− = u−j ⇀ u− weakly in W 1,q(Ω−;Rm) .

In this paper we prove the following result for domains with a periodically
perforated interface (we state it in the case p < q; for the changes in the case p = q
see Remark 3.3 (a)).

Theorem 3.2 Let (εj) and (ρεj ) be sequences of strictly positive numbers con-
verging to 0 such that

0 < lim
j→+∞

ρn−p
εj

εn−1
j

= R < +∞ .

Let ω be a bounded open subset of Rn−1 defined by (2.1) such that Hn−1(∂ω) = 0
and let Ω+, Ω− and Ω̂εj be defined by (2.2) and (3.1). Let 1 < p < q and let
Wp,Wq : Mm×n 7→ [0,+∞) be Borel functions satisfying a growth condition of
order p and q, respectively: there exists a constant c1 > 0 such that

|A|p − 1 ≤ Wp(A) ≤ c1(1 + |A|p) (3.2)

and there exists a constant c2 > 0 such that

|A|q − 1 ≤ Wq(A) ≤ c2(1 + |A|q) (3.3)

for all A ∈Mm×n. Then, upon possibly extracting a subsequence, for all A ∈Mm×n

there exists the limit
Ŵp(A) = lim

j
ρp

εj
QWp

(
ρ−1

εj
A

)
, (3.4)

where QWp denotes the quasiconvexification of Wp, so that the value

ϕ(z) = inf
{∫

Rn
+

Ŵp(Dζ) dx : ζ − z ∈ W 1,p(Rn
+;Rm), ζ = 0 on Bn−1

1 (0)
}

(3.5)
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is well defined for all z ∈ Rm. Moreover, the functionals defined by

Fj(u) =





∫

Ω+
Wp(Du) dx +

∫

Ω−
Wq(Du) dx if u ∈ V p,q(Ω̂εj ;Rm)

+∞ otherwise

Γ-converge to the functional defined by

F (u+, u−) =
∫

Ω+
QWp(Du+) dx +

∫

Ω−
QWq(Du−) dx + R

∫

ω

ϕ(u+ − u−) dxα

on W 1,p(Ω+;Rm) × W 1,q(Ω−;Rm) with respect to the convergence introduced in
Definition 3.1.

Remark 3.3 (a) Let us denote Up the function that in Fj plays the role of Wq

but with q = p. In this case the proof of Theorem 3.2 is the same but we get a
different formula for the function ϕ:

ϕ(z) = inf
{∫

Rn
+

Ŵp(Dζ) dx +
∫

Rn
−

Ûp(Dζ) dx : ζ ∈ W 1,p(Rn
+,− ∪Bn−1

1 (0);Rm)

ζ − z

2
∈ W 1,p(Rn

+;Rm), ζ +
z

2
∈ W 1,p(Rn

−;Rm)
}

where Rn
+,− = Rn

+ ∪ Rn
− (see Section 7).

(b) We prove Theorem 3.2 when Wp,Wq are quasiconvex functions; the gen-
eralization to the arbitrary Wp,Wq Borel functions can be treated by preliminary
relaxation as in [2] with slight modifications of the proof (see Remark 2.1 and
Section 2.1).

To compute the Γ-limit of functionals Fj , following the definition of Γ-
convergence (see Section 2.2), we have to study the behaviour of Fj(uj) with (uj)
converging to (u+, u−). In analogy with the method introduced by Ansini-Braides
in [2], we wish to separate the contribution due to Duj near the balls Bn−1

i,ε and far
from them. This is possible since we can repeat the proof of Lemma 3.1 in [2], with
suitable variants for the sieve problem. Since the sequence (uj) is not defined in
(ω \ ωεj )×{0} in order to isolate the two contributions (near and far from Bn−1

i,ε )
we have to construct a suitable annuli surrounding the perforations in Ω+ ∪ Ω−

(instead of ω×{0}). Even the modifications are technical and not substantial, we
include the proof of the Lemma for sieve problem for the reader convenience.

Lemma 3.4 Let (uj) be bounded in W 1,p(Ω+ ∪Ω−;Rm) ∩W 1,q(Ω−;Rm) and let
N, k ∈ N. Let (εj) be a sequence of positive numbers converging to 0 and let

Zj = {i ∈ Zn−1 : dist ((xε
i , 0), ∂Ω) > εj}.
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Let (ρεj ) be a sequence of positive numbers with Nρεj < εj/2. For all i ∈ Zj there
exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i =

{
x ∈ Rn : 2−ki−1Nρεj

< |x− (xε
i , 0)| < 2−kiNρεj

}
, (3.6)

ui±
j = −

∫

Cj
i
∩{±xn>0}

uj dx (the mean value of uj on Cj
i ∩ {±xn > 0} ), (3.7)

and
ρi

j =
3
4
2−kiNρεj

, (the middle radius of Cj
i ), (3.8)

there exists a sequence (wj) such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i , (3.9)

wj(x) = ui±
j if |x− (xε

i , 0)| = ρi
j and ±xn > 0, respectively, for i ∈ Zj (3.10)

and
∑

i∈Zj

(∫

Cj
i
∩{xn>0}

(
Wp(Dwj) + Wp(Duj)

)
dx

+
∫

Cj
i
∩{−xn>0}

(
Wq(Dwj) + Wq(Duj)

)
dx

)
≤ c

k
. (3.11)

Moreover, if ρn
εj

= o
(
εn−1
j

)
and the sequences (|Duj |p), (|Duj |q) are equi-integrable

in Ω±, respectively, then we can choose ki = 0 for all i ∈ Zj and

lim
j→+∞

(∑

i∈Zj

∫

Cj
i
∩{xn>0}

(
Wp(Dwj) + Wp(Duj)

)
dx

+
∫

Cj
i
∩{−xn>0}

(
Wq(Dwj) + Wq(Duj)

)
dx

)
= 0. (3.12)

Proof. For all j ∈ N, i ∈ Zj and h ∈ {0, ..., k − 1} let

Cj
i,h =

{
x ∈ Rn : 2−h−1Nρεj < |x− (xε

i , 0)| < 2−hNρεj

}
,

and let
(ui,h

j )± = −
∫

Cj
i,h
∩{±xn>0}

uj dx,

and
ρi,h

j =
3
4
2−hNρεj .
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Consider a function φ = φj
i,h ∈ C∞0 (Cj

i,h) such that φ = 1 on ∂Bρi,h
j

(xε
i , 0) and

|Dφ| ≤ c/2−hNρεj = c/ρi,h
j . Let wi,h

j be defined on Cj
i,h by

wi,h
j = (ui,h

j )±φ + (1− φ)uj on Cj
i,h ∩ {±xn > 0}, respectively

with φ = φj
i,h as above. We then have,

∫

Cj
i,h
∩{xn>0}

Wp(Dwi,h
j ) dx +

∫

Cj
i,h
∩{−xn>0}

Wq(Dwi,h
j ) dx

≤ c
(∫

Cj
i,h
∩{xn>0}

(1 + |Dφ|p|uj − (ui,h
j )+|p + |Duj |p) dx

+
∫

Cj
i,h
∩{−xn>0}

(1 + |Dφ|q|uj − (ui,h
j )−|q + |Duj |q) dx

)

By the Poincaré inequality and its scaling properties we have
∫

Cj
i,h
∩{±xn>0}

|uj − (ui,h
j )±|s dx ≤ c(ρi,h

j )s

∫

Cj
i,h
∩{±xn>0}

|Duj |s dx, (3.13)

so that, recalling that |Dφ| ≤ c/ρi,h
j , by (3.13) with s = p and s = q, respectively,

we have
∫

Cj
i,h
∩{xn>0}

Wp(Dwi,h
j ) dx ≤ c

∫

Cj
i,h
∩{xn>0}

(1 + |Duj |p) dx (3.14)

and
∫

Cj
i,h
∩{−xn>0}

Wq(Dwi,h
j ) dx ≤ c

∫

Cj
i,h
∩{−xn>0}

(1 + |Duj |q) dx . (3.15)

Since by summing up in h we trivially have

k−1∑

h=0

∫

Cj
i,h
∩{xn>0}

(1 + |Duj |p) dx +
∫

Cj
i,h
∩{−xn>0}

(1 + |Duj |q) dx

≤ |BNρεj
|+

∫

B+
Nρεj

|Duj |p dx +
∫

B−
Nρεj

|Duj |q dx

where B±
Nρεj

= BNρεj
(xε

i , 0) ∩ {±xn > 0}; there exists ki ∈ {0, . . . , k − 1} such
that

∫

Cj
i,ki

∩{xn>0}
(1 + |Duj |p) dx +

∫

Cj
i,ki

∩{−xn>0}
(1 + |Duj |q) dx

≤ 1
k

(
|BNρεj

|+
∫

B+
Nρεj

|Duj |p dx +
∫

B−
Nρεj

|Duj |q dx
)

. (3.16)
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There follows that
∫

Cj
i,ki

∩{xn>0}
Wp(Dwi,ki

j ) dx +
∫

Cj
i,ki

∩{−xn>0}
Wq(Dwi,ki

j ) dx

≤ c

k

(
|BNρεj

|+
∫

B+
Nρεj

|Duj |p dx +
∫

B−
Nρεj

|Duj |q dx
)

. (3.17)

By (3.16), (3.17) we get

∑

i∈Zj

∫

Cj
i,ki

∩{xn>0}

(
Wp(Dwi,ki

j ) + Wp(Duj)
)

dx

+
∫

Cj
i,ki

∩{−xn>0}

(
Wq(Dwi,ki

j ) + Wq(Duj)
)

dx

≤ c

k

(
|Ω|+

∫

Ω+
|Duj |p dx +

∫

Ω−
|Duj |q dx

)
.

Note that if (|Duj |p) and (|Duj |q) are equi-integrable in Ω±, respectively, we may
simply choose ki = 0 for all i ∈ Zj ; hence, by (3.14) and (3.15), we get (3.12).

With this choice of ki for all i ∈ Zj , conditions (3.9)–(3.11) are satisfied by
choosing h = ki in the definitions above, i.e. with Cj

i = Cj
i,ki

ui±
j = (ui,ki

j )±,
ρi

j = ρi,ki

j , and wj defined by (3.9) and

wj = ui±
j φ + (1− φ)uj on Cj

i ∩ {±xn > 0}, respectively

with φ = φj
i,ki

.

Remark 3.5 Note that if uj → (u+, u−) and supj Fj(uj) < +∞ then (uj) con-
verges weakly to (u+, u−) in the sense of Definition 3.1. Moreover if (wj) is defined
as in Lemma 3.4 then wj → (u+, u−) (see e.g. [2] Lemma 3.1) and, since (wj) is
bounded in W 1,p(Ω+ ∪Ω−;Rm) ∩W 1,q(Ω−;Rm), we get that also (wj) converges
weakly to (u+, u−) in the sense of Definition 3.1.

If (|Duj |p) and (|Duj |q) are equi-integrable in Ω±, respectively, then also
(|Dwj |p) and (|Dwj |q) are equi-integrable.

4 Some preliminary results

In this section we prove some preliminary results which allow us to define the
function ϕ and to prove Theorem 3.2 (see Propositions 5.2 and 6.1).

We consider 1 < p < q and the functions gp
j , gq

j : Mm×n 7→ [0, +∞) defined
by

gp
j (A) = ρp

εj
Wp(ρ−1

εj
A) , gq

j (A) = ρq
εj

Wq(ρ−1
εj

A) .
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Since Wp is quasiconvex and satisfies a growth condition of order p it is locally
Lipschitz continuous on Mm×n: there exists C depending only on c1, p such that

|Wp(A)−Wp(B)| ≤ C(1 + |A|p−1 + |B|p−1)|A−B|
for all A, B ∈Mm×n (see [7] Remark 4.13); by definition of gp

j we get that

|gp
j (A)− gp

j (B)| ≤ C(ρp−1
εj

+ |A|p−1 + |B|p−1)|A−B| . (4.1)

Hence, there exists a subsequence (not relabeled) converging pointwise to some
limit function Ŵp; i.e.,

lim
j→+∞

gp
j (A) = Ŵp(A) (4.2)

for all A ∈Mm×n. Note that, if there exists the limit

lim
t→+∞

Wp(tA)
tp

= Ŵp(A) (4.3)

(it has that the limit is independent of subsequences) then A 7→ Ŵp(A) is positively
homogeneous of degree p.

We consider the functionals defined on Lp(BN (0) \ C1,N ;Rm) by

Gj(u) =





∫

B+
N

(0)

gp
j (Du) dy + ρp−q

εj

∫

B−
N

(0)

gq
j (Du) dy u ∈ W 1,p(BN (0) \ C1,N ;Rm)

u = z on ∂B+
N (0),

u = 0 on ∂B−
N (0)

+∞ otherwise ,

where C1,N is defined as in (2.3) (see Figure 2).

N

C1,N

Figure 2: The domain BN (0) \ C1,N

The reason why we are interested in studying the Γ-convergence of (Gj) and,
as a consequence, the convergence of minimum problem (see Proposition 4.1 and
Corollary 4.2) is that (Gj) is the sequence of functionals that we obtain studying
the contribution near the balls Bn−1

i,ε and it gives rise to the term in ϕ (see in the
following (5.5), (6.5)).
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Proposition 4.1 Let (Gj) be given as above and let (ρεj ) be a sequence of pos-
itive numbers converging to 0; then there exists the Γ-limit with respect to the
Lp-convergence

Γ- lim
j→+∞

Gj(u) =
∫

B+
N

(0)

Ŵp(Du) dx

for all u ∈ W 1,p(BN (0) \ C1,N ;Rm) such that u = z on ∂B+
N (0) and u = 0 on

B−
N (0).

Proof. We first deal with the liminf inequality. Let uj → u in Lp(BN (0) \
C1,N ;Rm), such that uj = z on ∂B+

N (0), uj = 0 on ∂B−
N (0) and

lim inf
j→+∞

Gj(uj) < c ; (4.4)

in particular, uj ⇀ u in W 1,q(B−
N (0);Rm). Since p < q, for every K > 0 there

exists jK such that ρp−q
εj

> K for every j > jK ; hence, by the standard growth
condition (3.3), we have

lim inf
j→+∞

Gj(uj) ≥ lim inf
j→+∞

∫

B+
N

(0)

gp
j (Duj) dx+K lim inf

j→+∞

(∫

B−
N

(0)

|Duj |q dx−|B−
N |ρq

εj

)
.

By (4.2) and [7] Proposition 12.8, we have

Γ- lim
j→+∞

∫

B+
N

(0)

gp
j (Du) dx =

∫

B+
N

(0)

Ŵp(Du) dx (4.5)

for every u ∈ W 1,p(B+
N (0);Rm). Hence,

lim inf
j→+∞

∫

B+
N

(0)

gp
j (Duj) dx ≥

∫

B+
N

(0)

Ŵp(Du) dx

and, by the lower semicontinuity of
∫

B−
N

(0)
|Du|q dx, we get that

lim inf
j→+∞

Gj(uj) ≥
∫

B+
N

(0)

Ŵp(Du) dx + K

∫

B−
N

(0)

|Du|q dx

for every K > 0. By (4.4), there follows that
∫

B−
N

(0)

|Du|q dx ≤ 1
K

(
c−

∫

B+
N

(0)

Ŵp(Du) dx
)

for every K > 0; hence, passing to the limit as K tends to +∞, we get that u = 0
on B−

N (0), and

lim inf
j→+∞

Gj(uj) ≥
∫

B+
N

(0)

Ŵp(Du) dx ,
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which proves the liminf inequality.
Now we pass to compute the limsup inequality. Let u ∈ W 1,p(BN (0) \

C1,N ;Rm) such that u = z on ∂B+
N (0) and u = 0 on B−

N (0). By the standard
growth condition (3.2), the sequence of functionals

∫
B+

N
(0)

gp
j (Du) dx satisfies the

Lp-fundamental estimate (see [7] Proposition 12.2); hence, by [7] Proposition 11.7,
there exists a sequence (vj) ∈ W 1,p(B+

N (0);Rm) converging to u in Lp(B+
N (0);Rm)

such that vj = z on ∂B+
N (0) and vj = 0 on Bn−1

1 (0) and

lim
j→+∞

∫

B+
N

(0)

gp
j (Dvj) dx =

∫

B+
N

(0)

Ŵp(Du) dx .

We can define (ṽj) on BN (0) \ C1,N extending vj on B−
N (0) such that

ṽj(x) =
{

vj(x) if x ∈ B+
N (0)

0 if x ∈ B−
N (0) ;

the new sequence (ṽj) belongs to W 1,p(BN (0) \ C1,N ;Rm), it converges to u in
Lp(BN (0) \ C1,N ;Rm) and satisfies the limsup inequality

lim sup
j→+∞

Gj(ṽj) = lim sup
j→+∞

(∫

B+
N

(0)

gp
j (Dvj) dx + ρp

εj

∫

B−
N

(0)

W q(0) dx
)

=
∫

B+
N

(0)

Ŵp(Du) dx,

which concludes the proof.

Corollary 4.2 (Convergence of minimum problems) The minimum values

ϕN,j(z) = inf
{∫

B+
N

(0)

gp
j (Dζ) dy + ρp−q

εj

∫

B−
N

(0)

gq
j (Dζ) dy : (4.6)

ζ ∈ W 1,p(BN (0) \ C1,N ;Rm) ζ = z on ∂B+
N (0), ζ = 0 on ∂B−

N (0)
}

converge to

ϕN (z) = inf
{∫

B+
N

(0)

Ŵp(Dζ) dy : ζ ∈ W 1,p(BN (0) \ C1,N ;Rm)

ζ = z on ∂B+
N (0), ζ = 0 on B−

N (0)
}

(4.7)

as j tends to +∞.

Proof. By Proposition 4.1, the sequence of functionals (Gj) Γ-converges to∫
B+

N
(0)

Ŵp(Du) dx for all u ∈ W 1,p(BN (0) \C1,N ;Rm) such that u = z on ∂B+
N (0)

and u = 0 on B−
N (0). Since infX Gj < +∞ for every j ∈ N, where

X = {u ∈ W 1,p(BN (0) \ C1,N ;Rm) : u = z on ∂B+
N (0), u = 0 on ∂B−

N (0)} ,
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there exists c > 0 such that c > infX Gj for every j ∈ N; hence, we can apply the
Theorem 2.2 with

K =
{

u ∈ W 1,p(BN (0) \ C1,N ;Rm) : u = z on ∂B+
N (0),

u = 0 on ∂B−
N (0),

∫

B+
N

|Du|p dx ≤ c
}

.

4.1 Some particular choices of Wp and Wq

In the following we show some examples of ϕN for a particular choice of Wp and
Wq. In the cases (b) and (c) the formula describing ϕN involves also the classical
p-capacity (see (4.9) and (4.11)).

(a) If Ŵp is homogeneous of degree p, (e.g. A 7→ Wp(A) satisfies (4.3)), then

ϕN (z) = |z|p inf
{∫

B+
N

(0)

Ŵp(Dζ) dy : ζ ∈ W 1,p(BN (0) \ C1,N ;Rm)

ζ =
z

|z| on ∂B+
N (0), ζ = 0 on B−

N (0)
}

. (4.8)

(b) If Wp(A) = |A|p and Wq(A) = |A|q with p < q, then

ϕN (z) = |z|p inf
{∫

B+
N

(0)

|Dζ|p dy : ζ ∈ W 1,p(BN (0) \ C1,N ;Rm)

ζ =
z

|z| on ∂B+
N (0), ζ = 0 on B−

N (0)
}

.

Since ϕN (z) is invariant by rotations, we can fix, for example, z
|z| = e1 and restrict

our attention to the following class of functions without increasing the infimum:

ϕN (z)
|z|p = inf

{∫

B+
N

(0)

|Dζ|p dx : ζ = ψe1, ψ ∈ W 1,p(BN (0) \ C1,N )

ψ = 1 on ∂B+
N (0), ψ = 0 on B−

N (0)
}

=
1
2

inf
{∫

BN (0)

|Dψ|p dx : ψ − 1 ∈ W 1,p
0 (BN (0)), ψ = 0 on Bn−1

1 (0)
}

=
1
2
Cp(Bn−1

1 (0); BN (0)) , (4.9)

where Bn−1
1 (0) is defined as in (2.3).
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(c) If q = p and Wp(A) = Wq(A) = |A|p then ϕN,j(z) = ϕN (z) for every j ∈ N.
Reasoning as in the case (b), we can fix z

|z| = e1; hence,

ϕN (z)
|z|p = inf

{∫

B+
N

(0)

|Dζ|p dx +
∫

B−
N

(0)

|Dζ|p dx : ζ ∈ W 1,p(BN (0) \ C1,N ;Rm)

ζ = e1 on ∂B+
N (0), ζ = 0 on ∂B−

N (0)
}

= inf
{∫

B+
N

(0)

|Dψ|p dx +
∫

B−
N

(0)

|Dψ|p dx : ψ ∈ W 1,p(BN (0) \ C1,N )

ψ = 0 on ∂B+
N (0), ψ = 1 on ∂B−

N (0)
}

. (4.10)

Let ψ1 be the unique solution of the minimum problem defined in (4.10); since also
ψ2(x) = 1−ψ1(x) is a solution of the same minimum problem, by the uniqueness,
we have that 1− ψ1(x) = ψ1(x). In particular,

1− ψ1(xα, 0) = ψ1(xα, 0)

which implies that ψ1(xα, 0) = 1/2 for every (xα, 0) ∈ Bn−1
1 (0). Hence, we get

ϕN (z)
|z|p = inf

{∫

B+
N

(0)

|Dψ|p dx +
∫

B−
N

(0)

|Dψ|p dx : ψ ∈ W 1,p(BN (0) \ C1,N )

ψ = 0 on ∂B+
N (0), ψ =

1
2

on Bn−1
1 (0), ψ = 1 on ∂B−

N (0)
}

= 2 inf
{∫

B+
N

(0)

|Dψ|p dx : ψ ∈ W 1,p(BN (0) \ C1,N )

ψ = 0 on ∂B+
N (0), ψ =

1
2

on Bn−1
1 (0)

}

= 2
1
2p

inf
{∫

B+
N

(0)

|Dψ|p dx : ψ ∈ W 1,p(BN (0) \ C1,N )

ψ = 0 on ∂B+
N (0), ψ = 1 on Bn−1

1 (0)
}

=
1
2p

Cp(Bn−1
1 (0); BN (0)) . (4.11)

Remark 4.3 By comparing (b) and (c) we note the discontinuous dependence of
ϕN on q as q → p. (see (4.9) and (4.11)).

4.2 Properties of the functions ϕN,j and ϕN

By the pointwise convergence of (ϕN,j)j to ϕN (see Corollary 4.2), we can define
ϕ as the pointwise limit of ϕN ; i.e.,

ϕ(z) = inf
N

ϕN (z) .
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Since pointwise convergence is not sufficient to prove that our sequence of function-
als (Fj) Γ-converges to F (Theorem 3.2), to get this result we prove the uniform
convergence on compact sets of Rm by Ascoli Arzela’s Theorem; hence, we start
from the property of equi-continuity.

(1) Equi-continuity of (ϕN,j)j

For all N ∈ N and N > 2 there exists cN such that

|ϕN,j(z)− ϕN,j(w)| ≤ c |w − z|
(
ρp−1

εj
cN + |z|p−1 + |w|p−1

)
(4.12)

for all z, w ∈ Rm and j, where cN = (1 + |BN (0)|(p−1)/p).
By definition of ϕN,j(z), fixed η > 0 there exists ζ ∈ W 1,p(BN (0)\C1,N ;Rm)

such that ζ = 0 on ∂B+
N (0), ζ = −z on ∂B−

N (0) and
∫

B+
N

(0)

gp
j (Dζ) dy + ρp−q

εj

∫

B−
N

(0)

gq
j (Dζ) dy ≤ ϕN,j(z) + η . (4.13)

Let ϕ ∈ C∞0 (B+
2 (0)) be a cut-off function such that ϕ = 1 on B+

1 (0) and |Dϕ| ≤ c.
Let w ∈ Rm, if we define

ζ̃ =





ζ + (1− ϕ)(w − z) on B+
N (0) ∪Bn−1

1 (0)

ζ on B−
N (0)

then ζ̃ ∈ W 1,p(BN (0) \C1,N ;Rm) such that ζ̃ = w− z on ∂B+
N (0) and ζ̃ = −z on

∂B−
N (0); hence, it is a test function for ϕN,j(w) and we can estimate the difference

with ϕN,j(z) in the following way by (4.1)

ϕN,j(w)− ϕN,j(z)

≤
∫

B+
N

(0)

(
gp

j (Dζ̃)− gp
j (Dζ)

)
dx + η

≤
∫

B+
N

(0)

c
(
ρp−1

εj
+ |Dζ̃|p−1 + |Dζ|p−1

)∣∣∣Dζ̃ −Dζ
∣∣∣ dx + η . (4.14)

Note that since ζ̃ = ζ on B−
N (0) we lose the contribution of B−

N (0); hence, by
(4.14) and Hölder’s inequality, we have

ϕN,j(w)− ϕN,j(z)

≤
∫

B+
N

(0)

c
(
ρp−1

εj
+ 2|Dζ|p−1 + |w − z|p−1|Dϕ|p−1

)
|w − z||Dϕ| dx + η

≤ c|w − z|
(
ρp−1

εj

∫

B+
N

(0)

|Dϕ| dx +
(∫

B+
N

(0)

|Dζ|p dx
)(p−1)/p(∫

B+
N

(0)

|Dϕ|p dx
)1/p)

+|w − z|p
∫

B+
N

(0)

|Dϕ|p dx + η . (4.15)
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Since N > 2 we have that
∫

B+
N

(0)
|Dϕ| dx and

∫
B+

N
(0)
|Dϕ|p dx are constant inde-

pendent from N ; moreover, by the standard growth condition (3.2) and (4.13) we
get

∫

B+
N

(0)

|Dζ|p dx ≤
∫

B+
N

(0)

gp
j (Dζ) dx + ρp

εj
|BN |

≤ ϕN,j(z) + η + ρp
εj
|BN | . (4.16)

Since ϕN,j(z) ≤ ϕN (z), for all j ∈ N, and |A|p ≤ Ŵp(A) ≤ c1|A|p, we have that

ϕN,j(z) ≤ c1 inf
{∫

B+
N

(0)

|Dφ|p dx : φ ∈ W 1,p(BN (0) \ C1,N ;Rm)

φ =
z

|z| on ∂B+
N (0), φ = 0 on B−

N (0)
}

;

hence, reasoning as in Section 4.1 case (b), we get that

ϕN,j(z) ≤ c1
|z|p
2

Cp(Bn−1
1 (0); BN (0)) ≤ c1

|z|p
2

Cp(Bn−1
1 (0);Rn)

for every N > 2.
By (4.16) we then have

∫

B+
N

(0)

|Dζ|p dx ≤ c (ρp
εj
|BN |+ |z|p) + η

which implies, togheter with (4.15), that

ϕN,j(w)− ϕN,j(z)

≤ c|w − z|
(
ρp

εj
+ ρp−1

εj
|BN (0)|(p−1)/p + |z|p−1 + η(p−1)/p

)

+c̃|w − z|p + η

≤ c |w − z|
(
ρp−1

εj
(1 + |BN (0)|(p−1)/p) + |z|p−1 + |w|p−1 + η(p−1)/p

)
+ η ,

and by the arbitrariness of η we get then (4.12).

(2) Uniform convergence of (ϕN,j)j

From (4.12) we deduce that

ϕN,j → ϕN uniformly (4.17)

on compact sets of Rm by Ascoli Arzela’s Theorem.

(3) Equi-continuity of ϕN

Passing to the limit in (4.12), as j tends to +∞, we get

|ϕN (z)− ϕN (w)| ≤ c |w − z| (|z|p−1 + |w|p−1) (4.18)
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for all z, w ∈ Rm.

(4) Uniform convergence of ϕN

From (4.18) we deduce that

ϕN → ϕ uniformly (4.19)

on compact sets of Rm by Ascoli Arzela’s Theorem.

Proposition 4.4 Let (uj) be a sequence converging to (u+, u−) weakly in the
sense of Definition 3.1 and bounded in L∞(Ω+ ∪Ω−;Rm). Let (ui±

j ) be defined by
(3.7) and let ψj be defined by

Qε
i,n−1 = (xε

i , 0) +
(
−εj

2
,
εj

2

)n−1

, ψj =
∑

i∈Zj

ϕN,j(ui+
j − ui−

j )χQε
i,n−1

. (4.20)

Then we have
lim

j→+∞

∫

ω

∣∣∣ψj − ϕN (u+ − u−)
∣∣∣ dxα = 0. (4.21)

Proof. Reasoning as in [2] Proposition 4.3; if |z| ≤ supj(‖u+
j ‖∞ + ‖u−j ‖∞)

then we have, by (4.17),

|ϕN,j(z)− ϕN (z)| ≤ o(1)

as j → +∞, uniformly in z. Set

ψ̂j =
∑

i∈Zj

ϕN (ui+
j − ui−

j )χQε
i,n−1

, (4.22)

we deduce that the limit in (4.21) is equal to the limits

lim
j

∫

ω

∣∣∣ψ̂j − ϕN (u+ − u−)
∣∣∣ dxα

= lim
j

(∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ϕN (ui+
j − ui−

j )− ϕN (u+ − u−)
∣∣∣ dxα

)

≤ c lim
j→+∞

(∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui−
j − u−

∣∣∣ +
∣∣∣ui+

j − u+
∣∣∣ dxα

)
(4.23)

by (4.18).
We now estimate
∫

Qε
i,n−1

∣∣∣ui+
j − u+

∣∣∣ dxα ≤
∫

Qε
i,n−1

∣∣∣ui+
j − u+

j

∣∣∣ dxα +
∫

Qε
i,n−1

∣∣∣u+
j − u+

∣∣∣ dxα ;
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by [1] Theorem 6.2

lim
j

∑

i∈Zj

∫

Qε
i,n−1

∣∣∣u+
j − u+

∣∣∣ dxα = 0

while, by Hölder’s inequalities,

∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui+
j − u+

j

∣∣∣ dxα ≤
(∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui+
j − u+

j

∣∣∣
p

dxα

)1/p

. (4.24)

By [1] Lemma 5.19, we have that
∫

Qε
i,n−1

∣∣∣ui+
j −u+

j

∣∣∣
p

dxα ≤ c
( 1

εj

∫

Qε
i,n

|ui+
j −u+

j |p dx+εp−1
j

∫

Qε
i,n

|Du+
j |p dx

)
(4.25)

where
Qε

i,n = (xε
i , 0) +

((
−εj

2
,
εj

2

)n−1

× (0, εj)
)

and, by Poincaré’s inequality, we get
∫

Qε
i,n

|ui+
j − u+

j |p dx ≤ c εp
j

∫

Qε
i,n

|Du+
j |p dx . (4.26)

Taking (4.25) and (4.26) into account, we get

(∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui+
j − u+

j

∣∣∣
p

dxα

)1/p

≤ c ε
(p−1)/p
j sup

j

(∫

Ω+
|Du+

j |p dx
)1/p

which implies, by (4.24), that

lim
j

∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui+
j − u+

j

∣∣∣ dxα = 0 .

Reasoning as above, we get

lim
j

∑

i∈Zj

∫

Qε
i,n−1

∣∣∣ui−
j − u−j

∣∣∣ dxα = 0 ;

hence, by (4.23), (4.21) is proved.

5 Liminf inequality

Let uj → (u+, u−) be such that supj Fεj (uj) < +∞. We fix k, N ∈ N with N > 2k,
and define (wj) as in Lemma 3.4 with

ρn
εj

= o(εn−1
j ) . (5.1)
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Let
E±

j =
⋃

i∈Zj

Bj±
i , where Bj±

i = Bρi
j
(xε

i , 0) ∩ {±xn > 0} (5.2)

for all i ∈ Zj .
The following proposition shows that the ‘contribution far from’ the balls

Bn−1
i,ε can be estimated by the Γ-limit of the two uncoupled problems

F+
j (u) =

∫

Ω+
Wp(Du) dx , F−j (u) =

∫

Ω−
Wq(Du) dx (5.3)

for all j ∈ N. Since Wp and Wq are quasiconvex we have that

Γ- lim
j

F+
j (u) =

∫

Ω+
Wp(Du) dx , Γ- lim

j
F−j (u) =

∫

Ω−
Wq(Du) dx

(see Remark 2.1 and Section 2.1).

Proposition 5.1 We have

lim inf
j→+∞

(∫

Ω+
Wp(Duj) dx +

∫

Ω−
Wq(Duj) dx

)

≥
∫

Ω+
Wp(Du+) dx +

∫

Ω−
Wq(Du−) dx

+ lim inf
j→+∞

(∫

E+
j

Wp(Dwj) dx +
∫

E−
j

Wq(Dwj) dx
)
− c

k
. (5.4)

Proof. Let us define

v+
j =

{
ui+

j on Bj+
i , i ∈ Zj

wj on Ω+ \ E+
j ,

v−j =

{
ui−

j on Bj−
i , i ∈ Zj

wj on Ω− \ E−
j .

By Remark 3.5 (v+
j ) is bounded in W 1,p(Ω+;Rm) and (v−j ) in W 1,q(Ω−;Rm).

Moreover, by (5.1) we have that limj→+∞ |E±
j | = 0; hence, limj→+∞ |{x ∈ Ω± :

wj 6= v±j }| = 0 which implies that v+
j ⇀ u+ in W 1,p(Ω+;Rm) and v−j ⇀ u− in

W 1,q(Ω−;Rm), so that, by Lemma 3.4

lim inf
j→+∞

(∫

Ω+\E+
j

Wp(Duj) dx +
∫

Ω−\E−
j

Wq(Duj) dx
)

+
c

k

≥ lim inf
j→+∞

(∫

Ω+\E+
j

Wp(Dwj) dx +
∫

Ω−\E−
j

Wq(Dwj) dx
)

= lim inf
j→+∞

(∫

Ω+
Wp(Dv+

j ) dx +
∫

Ω−
Wq(Dv−j ) dx

)

≥
∫

Ω+
Wp(Du+) dx +

∫

Ω−
Wq(Du−) dx .

23



Let us estimate the contribution on E+
j ∪ E−

j . With fixed j ∈ N and i ∈ Zj

we define
Ci

1, 3
4 2−kiN =

{
(xα, 0) ∈ Rn : 1 ≤ |xα| < 3

4
2−kiN

}

and

ζ(x) =





wj((xε
i , 0) + ρεj

x)− ui−
j if x ∈ B 3

4 2−kiN (0) \ Ci
1, 3

42−ki N

ui+
j − ui−

j if x ∈ B+
N (0) \B+

3
42−kiN

(0)

0 if x ∈ B−
N (0) \B−

3
42−kiN

(0) .

By a change of variables and (4.6) we obtain
∫

Bj+
i

Wp(Dwj) dx +
∫

Bj−
i

Wq(Dwj) dx + (Wp(0) + Wq(0)) |B+
Nρεj

\Bj+
i |

=
∫

B+
N

(0)

ρn
εj

Wp(ρ−1
εj

Dζ) dx +
∫

B−
N

(0)

ρn
εj

Wq(ρ−1
εj

Dζ) dx

= ρn−p
εj

∫

B+
N

(0)

gp
j (Dζ) dx + ρn−q

εj

∫

B−
N

(0)

gq
j (Dζ) dx

= ρn−p
εj

(∫

B+
N

(0)

gp
j (Dζ) dx + ρp−q

εj

∫

B−
N

(0)

gq
j (Dζ) dx

)

≥ ρn−p
εj

ϕN,j(ui+
j − ui−

j ) ; (5.5)

hence, we get

lim inf
j→+∞

∫

E+
j

Wp(Dwj) dx +
∫

E−
j

Wq(Dwj) dx

≥ lim inf
j→+∞

(ρn−p
εj

εn−1
j

) ∑

i∈Zj

εn−1
j ϕN,j(ui+

j − ui−
j )

= lim
j→+∞

(ρn−p
εj

εn−1
j

)
lim inf
j→+∞

∑

i∈Zj

εn−1
j ϕN,j(ui+

j − ui−
j ) . (5.6)

We use this inequality to prove the following liminf inequality.

Proposition 5.2 Let (ρεj ) be a sequence of positive numbers converging to 0 such
that

0 < lim
j→+∞

ρn−p
εj

εn−1
j

= R < +∞ ;
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then for every sequence (uj) ∈ V p,q(Ω̂εj ;Rm) converging to (u+, u−), in the sense
of Definition 3.1, we have

lim inf
j→+∞

Fj(uj) ≥
∫

Ω+
Wp(Du+) dx +

∫

Ω−
Wq(Du−) dx

+R

∫

ω

ϕ(u+ − u−) dxα .

Proof. Let uj → (u+, u−). We can always assume, up to a subsequence,
that there exists the limit

lim
j

Fj(uj) < +∞,

so that uj ⇀ (u+, u−) in the sense of Definition 3.1. By [8] Lemma 3.5, upon
passing to a further subsequence, for all M ∈ N and η > 0 there exists RM > M
and a Lipschitz function ΦM of Lipschitz constant 1 such that ΦM (z) = z if
|z| < RM and ΦM (z) = 0 if |z| > 2RM , and

lim
j

Fj(uj) ≥ lim inf
j

Fj(ΦM (uj))− η. (5.7)

Note that ΦM (uj) ∈ V p,q(Ω̂εj ;Rm) ∩ L∞(Ω̂εj ;Rm) and

ΦM (uj) → (ΦM (u+),ΦM (u−)) .

Moreover ΦM (u+) ⇀ u+ in W 1,p(Ω+;Rm) and ΦM (u−) ⇀ u− in W 1,q(Ω−;Rm)
as M tends to +∞, which implies that

ΦM (u+) → u+ , ΦM (u−) → u− in L1(ω;Rm) .

Note that the L1-convergence of the traces is sufficient to our aims since we use it
just when we apply inequality (4.18) to prove that

lim
j

∫

ω

ϕ(ΦM (u+)− ΦM (u−)) dxα =
∫

ω

ϕ(u+ − u−) dxα . (5.8)

Reasoning as in [2] Proposition 5.2, if we apply Lemma 3.4, (5.6), (5.4) and Propo-
sition 4.4 to (ΦM (uj)) in place of (uj), we get that

lim inf
j

Fj(ΦM (uj)) ≥
∫

Ω+
Wp(DΦM (u+)) dx +

∫

Ω−
Wq(DΦM (u−)) dx

+R

∫

ω

ϕ(ΦM (u+)− ΦM (u−)) dxα .

By the lower semicontinuity of
∫
Ω+ Wp(Dζ) dx and

∫
Ω− Wq(Dζ) dx with respect

to the weak convergence and (5.8), we get the liminf inequality.
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Remark 5.3 Note that 0 < limj→+∞
ρn−p

εj

εn−1
j

= R < +∞ is the only meaningful

scaling for the radii of the perforation. In fact, if R = 0, i.e. if ρεj tends to zero
faster than ε

(n−1)/(n−p)
j , then we obtain two uncoupled problems in Ω+ and Ω−;

while, if R = +∞, i.e. if ρεj tends to zero more slowly than ε
(n−1)/(n−p)
j , then u+ =

u− on ω × {0} and the limit function (u+, u−) ∈ W 1,p(Ω+;Rm) ×W 1,q(Ω−;Rm)
defines a unique function in W 1,p(Ω;Rm).

6 Limsup inequality

For every (u+, u−) ∈ W 1,p(Ω+;Rm)×W 1,q(Ω−;Rm) the limsup inequality is ob-
tained by suitably modifying the function v = u+χΩ+ + u−χΩ− to get a recovery
sequence defined on Ω̂εj . Note that if we remove the quasiconvexity assumptions
on Wp and Wq, we have to consider the recovery sequences for the Γ-limits of
F+

j (u) =
∫
Ω+ Wp(Du) dx and F−j (u) =

∫
Ω− Wq(Du) dx, in place of u+ and u−,

respectively (see Remark 3.3).

Proposition 6.1 Let (ρεj ) be a sequence of positive numbers converging to 0 such
that

0 < lim
j→+∞

ρn−p
εj

εn−1
j

= R < +∞ ;

if Hn−1(∂ω) = 0 then for all (u+, u−) ∈ W 1,p(Ω+;Rm) ×W 1,q(Ω−;Rm) and for
all η > 0 there exists a sequence uj ∈ V p,q(Ω̂εj ;Rm) converging to (u+, u−) such
that

lim sup
j→+∞

Fj(uj) ≤
∫

Ω+
Wp(Du+) dx +

∫

Ω−
Wq(Du−) dx

+R

∫

ω

ϕ(u+ − u−) dxα + ηHn−1(ω) .

Proof. Let

v = u+χΩ+ + u−χΩ− ∈ W 1,p(Ω+ ∪ Ω−;Rm) ∩W 1,q(Ω−;Rm) . (6.1)

With fixed N ∈ N, by Lemma 3.4 applied with (uj) and (ρεj ) replaced by (v)
and ( 4

3ρεj ), respectively, and taking the equi-integrability condition into account
we obtain a sequence (wj) which equals the constants vi±

j = −∫
Cj

i
∩{±xn>0} v dx on

∂B±
Nρεj

, respectively, for all i ∈ Zj .

We recall that BNρεj
denotes BNρεj

(xε
i , 0) and B±

Nρεj
= BNρεj

∩{±xn > 0}.
Reasoning as in [2] Proposition 6.1, we first assume that in addition (u+, u−) ∈

L∞(Ω±;Rm). We define the sequence (uj) by

uj = wj on Ω± \
( ⋃

i∈Zn−1

B±
Nρεj

)
;
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hence,

lim sup
j→+∞

Fj(uj) ≤ lim sup
j→+∞

(∫

Ω+\
⋃

i∈Zn−1 B+
Nρεj

Wp(Dwj) dx

+
∫

Ω−\
⋃

i∈Zn−1 B−
Nρεj

Wq(Dwj) dx
)

+ lim sup
j→+∞

(∫

Ω+∩
⋃

i∈Zn−1 B+
Nρεj

Wp(Duj) dx

+
∫

Ω−∩
⋃

i∈Zn−1 B−
Nρεj

Wq(Duj) dx
)

=
∫

Ω+
Wp(Du+) dx +

∫

Ω−
Wq(Du−) dx

+ lim sup
j→+∞

(∫

Ω+∩
⋃

i∈Zn−1 B+
Nρεj

Wp(Duj) dx

+
∫

Ω−∩
⋃

i∈Zn−1 B−
Nρεj

Wq(Duj) dx
)

.

We now define uj on Ω̂εj ∩
⋃

i∈Zn−1 BNρεj
, and we compute the limit

lim sup
j→+∞

(∫

Ω+∩
⋃

i∈Zn−1 B+
Nρεj

Wp(Duj) dx +
∫

Ω−∩
⋃

i∈Zn−1 B−
Nρεj

Wq(Duj) dx
)

.

Let us consider the case i ∈ Zj . Let

M = max{‖u+‖L∞ , ‖u−‖L∞} ,

fixed η > 0, by the uniform convergence of ϕN,j → ϕN and ϕN → ϕ on compact
sets of Rm, there exists N such that

ϕ(z) ≥ ϕN (z)− η

3
(6.2)

for all |z| ≤ M and
|ϕN,j(z)− ϕN (z)| ≤ η

3
(6.3)

for all |z| ≤ M and j ∈ N. Moreover, by (4.6), there exists ζi
j ∈ W 1,p(BN (0) \

C1,N ;Rm) such that

ζi
j =

{
vi+

j − vi−
j on ∂B+

N (0)
0 on ∂B−

N (0)
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and
∫

B+
N

(0)

gp
j (Dζi

j) dy + ρp−q
εj

∫

B−
N

(0)

gq
j (Dζi

j) dx ≤ ϕN,j(vi+
j − vi−

j ) +
η

3

≤ ϕ(vi+
j − vi−

j ) + η (6.4)

by (6.2) and (6.3). Hence, if we define uj on Ω̂εj
∩BNρεj

by

uj = ζi
j

(x− (xε
i , 0)

ρεj

)
+ vi−

j

then, by (6.4), we get
∫

B+
Nρεj

Wp(Duj) dx +
∫

B−
Nρεj

Wq(Duj) dx

= ρn−p
εj

(∫

B+
N

(0)

gp
j (Dζi

j) dy + ρp−q
εj

∫

B−
N

(0)

gq
j (Dζi

j) dx
)

≤
(ρn−p

εj

εn−1
j

)(
εn−1

j ϕ(vi+
j − vi−

j ) + εn−1
j η

)
(6.5)

for all i ∈ Zj .
If i 6∈ Zj , it is not possible to use the construction above since BNρεj

might
intersect ∂Ω. We then consider a scalar 0 ≤ ζ ≤ 1 on BN (0) \ C1,N such that

ζ(x) =
{

1 on ∂B+
N (0)

0 on B−
N (0)

and ζ̃(x) = 1 − ζ(x). We can define the extension of w+
j = wjχΩ+ to Ω as the

function wp
j (xα, xn) = w+

j (xα,−xn) and the extension of w−j = wjχΩ− to Ω
as the function wq

j (xα, xn) = w−j (xα,−xn), such that wp
j ∈ W 1,p(Ω;Rm) and

wq
j ∈ W 1,q(Ω;Rm).

Hence, uj is defined by

uj(x) = ζ
(x− (xε

i , 0)
ρεj

)
wp

j (x) + ζ̃
(x− (xε

i , 0)
ρεj

)
wq

j (x)

on BNρεj
∩ Ω̂εj , and

Duj =





ζDw+
j +

1
ρεj

Dζ(w+
j − wq

j ) + ζ̃Dwq
j on B+

Nρεj
∩ Ω+

Dw−j on B−
Nρεj

∩ Ω− .
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By the standard growth conditions (3.2), (3.3) and Hölder’s inequality, we have
∫

B+
Nρεj

∩Ω+
Wp(Duj) dx +

∫

B−
Nρεj

∩Ω−
Wq(Duj) dx

≤ c
(
|BNρεj

|+
∫

B+
Nρεj

∩Ω+
|Duj |p dx +

∫

B−
Nρεj

∩Ω−
|Duj |q dx

)

≤ c
(
|BNρεj

|+ 1
ρp

εj

∫

B+
Nρεj

(xε
i
,0)∩Ω+

|Dζ|p(|w+
j |p + |wq

j |p) dx

+
∫

B+
Nρεj

∩Ω+
|Dw+

j |p dx +
∫

B+
Nρεj

∩Ω+
|Dwq

j |p dx +
∫

B−
Nρεj

∩Ω−
|Dw−j |q dx

)

≤ c
(
|BNρεj

|+ Mpρn−p
εj

∫

B+
N

(0)

|Dζ|p dy +
∫

B+
Nρεj

∩Ω+
|Dw+

j |p dx

+
(∫

B−
Nρεj

∩Ω−
|Dw−j |q dx

)p/q

|B−
Nρεj

∩ Ω−|(q−p)/q +
∫

B−
Nρεj

∩Ω−
|Dw−j |q dx

)
,

where we have also taken into account that ‖w+
j ‖L∞ + ‖wq

j‖L∞ ≤ 2 M .
Let ω′j =

⋃
i∈Zn−1\Zj

Qε
i,n−1, since

lim
j→+∞

∣∣∣
⋃

i∈Zn−1\Zj

BNρεj
∩ Ω

∣∣∣ = 0

by the equi-integrability of |Dw+
j |p and |Dw−j |q (see Remark 3.5), we get

lim sup
j→+∞

( ∑

i∈Zn−1\Zj

∫

B+
Nρεj

∩Ω+
Wp(Duj) dx +

∫

B−
Nρεj

∩Ω−
Wq(Duj) dx

)

≤ c lim
j→+∞

(ρn−p
εj

εn−1
j

)
lim

j→+∞
Hn−1(ω′j) ≤ c RHn−1(∂ω) = 0 . (6.6)

Taking (6.5) and (6.6) into account, by Proposition 4.4, we have

lim sup
j→+∞

( ∑

i∈Zn−1

∫

B+
Nρεj

(xε
i
,0)∩Ω+

Wp(Duj) dx +
∫

B−
Nρεj

(xε
i
,0)∩Ω−

Wq(Duj) dx
)

≤ R
(
lim sup
j→+∞

∑

i∈Zj

εn−1
j ϕ(vi+

j − vi−
j ) + ηHn−1(ω)

)

= R

∫

ω

ϕ(u+ − u−) dxα + ηHn−1(ω) .

We conclude the proof of the limsup inequality for arbitrary (u+, u−) ∈
W 1,p(Ω+;Rm) × W 1,q(Ω−;Rm), simply noting that u+ can be approximated by
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a sequence of functions v+
j ∈ W 1,p(Ω+;Rm) ∩ L∞(Ω+;Rm) and u− by v−j ∈

W 1,q(Ω−;Rm)∩L∞(Ω−;Rm) with respect to the strong convergence of W 1,p and
W 1,q, respectively.

7 The case p=q

If q = p we consider a Borel function Up satisfying a growth condition of order
p in place of Wq. In this case we are in a simpler situation since Wp and Up are
rescaled in the same way and we get

ϕN,j(z) = inf
{∫

B+
N

(0)

ρp
εj

Wp(ρ−1
εj

Dζ) dy +
∫

B−
N

(0)

ρp
εj

Up(ρ−1
εj

Dζ) dy :

ζ ∈ W 1,p(BN (0) \ C1,N ;Rm) ζ = z on ∂B+
N (0), ζ = 0 on ∂B−

N (0)
}

.

Reasoning as in Section 4 the limit problem keeps the same boundary conditions
on the test function ζ as j → +∞

ϕN (z) = inf
{∫

B+
N

(0)

Ŵp(Dζ) dy +
∫

B−
N

(0)

Ûp(Dζ) dy :

ζ ∈ W 1,p(BN (0) \ C1,N ;Rm), ζ = z on ∂B+
N (0), ζ = 0 on ∂B−

N (0)
}

= inf
{∫

B+
N

(0)

Ŵp(Dζ) dy +
∫

B−
N

(0)

Ûp(Dζ) dy :

ζ ∈ W 1,p(BN (0) \ C1,N ;Rm), ζ =
z

2
on ∂B+

N (0), ζ = −z

2
on ∂B−

N (0)
}

;

hence, passing to the limit as N → +∞, we get that

ϕ(z) = inf
{∫

Rn
+

Ŵp(Dζ) dx +
∫

Rn
−

Ûp(Dζ) dx : ζ ∈ W 1,p(Rn
+,− ∪Bn−1

1 (0);Rm)

ζ − z

2
∈ W 1,p(Rn

+;Rm), ζ +
z

2
∈ W 1,p(Rn

−;Rm)
}

where Rn
+,− = Rn

+∪Rn
−. After having precise the definition of function ϕ, the proof

of Theorem 3.2, for q = p, follows as in Sections 5 and 6.

8 Thin films connected by a periodically perfo-
rated interface

Let us consider the following domain (see Figure 3)

Ωεj =
(
ω × (−εj , 0)

)
∪

(
ω × (0, εj)

)
∪

(
ωεj × {0}

)

=: Ω−εj
∪ Ω+

εj
∪

(
ωεj × {0}

)
. (8.1)
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Figure 3: The domain Ωεj

In analogy with the notation introduced in Section 2, we denote Ω = ω ×
(−1, 1), Ω+ = ω × (0, 1) and Ω− = ω × (−1, 0).

Definition 8.1 Let

V p,q(Ωεj ;Rm) = W 1,p(Ωεj ;Rm) ∩W 1,q(Ω−εj
;Rm) .

Given a sequence (uj) ∈ V p,q(Ωεj ;Rm), we define ûj(xα, xn) = uj(xα, εjxn). We
say that (uj) converges to (or converges weakly to) (u+, u−) ∈ W 1,p(ω;Rm) ×
W 1,q(ω;Rm) if we have

û+
j = ûj|Ω+ → u+ in Lp(Ω+;Rm) (or weakly in W 1,p(Ω+;Rm)) (8.2)

û−j = ûj|Ω− → u− in Lq(Ω−;Rm) (or weakly in W 1,q(Ω−;Rm)) . (8.3)

Equivalently: we can define the 2εj-periodic (in xn) extensions of u±j = uj |Ω±εj

as

the functions ũ±j in W 1,p(Ω;Rm) and W 1,q(Ω;Rm), respectively; such that

ũ±j (xα,−xn) = ũ±j (xα, xn)

and
ũ±j (x) = uj(x) on Ω±εj

.

Then (8.2) and (8.3) above are equivalent to

ũ±j → u±

in Lp(Ω;Rm) and Lq(Ω;Rm), respectively (or weakly in W 1,p(Ω;Rm) and W 1,q(Ω;Rm),
respectively).

If v ∈ Lp(ω;Rm) we identify it with v ∈ Lp(Ω;Rm) (independent of xn),
similarly for the other spaces Lq, W 1,p and W 1,q.

We prove the following result for thin films with periodically perforated in-
terface in the case p < q; q = p can be treated as in Section 7.
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Theorem 8.2 Let (εj) and (ρεj ) be sequences of strictly positive numbers con-
verging to 0 such that

0 < lim
j→+∞

ρn−p
εj

εn
j

= T < +∞ .

Let ω be a bounded open subset of Rn−1 with Lipschitz boundary and let Ω+
εj

, Ω−εj

and Ωεj be defined as in (8.1). Let 1 < p < q and let Wp,Wq :Mm×n 7→ [0, +∞) be
Borel functions satisfying a growth condition of order p and q, respectively: there
exists a constant c1 > 0 such that

|A|p − 1 ≤ Wp(A) ≤ c1(1 + |A|p) (8.4)

and there exists a constant c2 > 0 such that

|A|q − 1 ≤ Wq(A) ≤ c2(1 + |A|q) (8.5)

for all A ∈Mm×n. Then, upon possibly extracting a subsequence, for all A ∈Mm×n

there exists the limit
Ŵp(A) = lim

j
ρp

εj
QWp

(
ρ−1

εj
A

)
, (8.6)

where QWp denotes the quasiconvexification of Wp, so that the value

ϕ(z) = inf
{∫

Rn
+

Ŵp(Dζ) dx : ζ − z ∈ W 1,p(Rn
+;Rm), ζ = 0 on Bn−1

1 (0)
}

(8.7)

is well defined for all z ∈ Rm. Moreover, the functionals defined by

Fj(u) =





1
εj

(∫

Ω+
εj

Wp(Du) dx +
∫

Ω−εj

Wq(Du) dx
)

if u ∈ V p,q(Ωεj ;Rm)

+∞ otherwise

Γ-converge to the functional defined by

F (u+, u−) =
∫

ω

W̃p(Dαu+) dxα +
∫

ω

W̃q(Dαu−) dxα + T

∫

ω

ϕ(u+ − u−) dxα

on W 1,p(ω;Rm)×W 1,q(ω;Rm) with respect to the convergence introduced in Def-
inition 8.1. The functions W̃p and W̃q are given by

W̃p(F ) = Qn−1W p(F ) , W̃q(F ) = Qn−1W q(F ) ,

for all F ∈Mm×n−1, where

W p(F ) = inf
Fn

Wp(F, Fn) , W q(F ) = inf
Fn

Wq(F, Fn) ,

and Qn−1 denotes the operation of (n− 1)-quasiconvexification.
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Proof. To prove the theorem we can follow the lines of the proof of Theorem
3.2. In fact, among the hypothesis of Lemma 3.4, we have that, fixed N ∈ N,
Nρεj

< εj/2; hence, ⋃

i∈Zj

Cj
i ∩ {±xn > 0} ⊂ Ω±ε

where Cj
i are defined in (3.6).

Therefore we can repeat the proof of Lemma 3.4 with Ω+
εj
∪ Ω−εj

in place of
Ω+ ∪ Ω− and with respect to the convergence introduced in Definition 8.1.

The fact that the thickness εj tends to zero, as j → +∞, does not influence
the contribution near the balls Bn−1

i,ε , except that in the determination of the

critical size of the perforations that, in this case, is of order ε
n/(n−p)
j . In fact, let

us deal with the liminf inequality: reasoning as in Section 5, we get the analog of
(5.6) for the contribution on E+

j ∪ E−
j ; i .e.,

lim inf
j→+∞

1
εj

(∫

E+
j

Wp(Dwj) dx +
∫

E−
j

Wq(Dwj) dx
)

≥ lim
j→+∞

(ρn−p
εj

εn
j

)
lim inf
j→+∞

∑

i∈Zj

εn
j ϕN,j(ui+

j − ui−
j ) ,

where (wj) is defined by the Lemma suitably modified for the case of thin films.
There follows that we have to choose ρεj such that

0 < lim
j→+∞

ρn−p
εj

εn
j

= T < +∞ ,

but all the rest is unchanged and it gives rise to the same function ϕ defined in
(8.7). To conclude the proof of the liminf inequality we estimate the contribution
far from the balls Bn−1

i,ε applying the following Γ-convergence result due to Le
Dret-Raoult [18]; i .e., the sequence of functionals

F+
j (u) =





1
εj

∫

Ω+
εj

Wp(Du) dx if u ∈ W 1,p(Ω+
εj

;Rm)

+∞ otherwise

Γ-converges, with respect to the Lp(Ω+;Rm) convergence, to

F+(u+) =

{∫

ω

W̃p(Dαu+) dxα if u+ ∈ W 1,p(ω;Rm)

+∞ otherwise ,
(8.8)

and, similarly,

F−j (u) =





1
εj

∫

Ω−εj

Wq(Du) dx if u ∈ W 1,q(Ω−εj
;Rm)

+∞ otherwise
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Γ-converges, with respect to the Lq(Ω−;Rm) convergence, to

F−(u−) =

{∫

ω

W̃q(Dαu−) dxα if u− ∈ W 1,q(ω;Rm)

+∞ otherwise .
(8.9)

Also for the limsup inequality we can repeat the proof of Proposition 6.1 but in
this case we do not apply Lemma 3.4 to the sequence (v), defined in (6.1), but to
the sequence

vj = v+
j χΩ+

ε
+ v−j χΩ−ε

where (v+
j ), (v−j ) are the recovery sequence for the Γ-limits (8.8) and (8.9).
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