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Abstract. We illustrate some recent developments of the theory of flows associated
to weakly differentiable vector fields, listing the regularity/structural conditions consid-
ered so far, extensions to state spaces more general than Euclidean and open problems.
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1. Introduction. In the last few years quite some progress has been
made on the well-posedness of the continuity and transport equation

∂twt +∇ · (btwt) = 0, (1.1)

∂tft + bt · ∇ft = 0 (1.2)

and the relation of these well-posedness results with the existence and sta-
bility of the flow X(t, x) associated to b, namely the family of solutions
to

ẋ(t) = bt(x(t)) for a.e. t ∈ (0, T ). (1.3)

Here b(t, x) = bt(x) : (0, T ) × Rd → Rd is a possibly nonautonomous
Borel velocity field in Rd. In order to fix the ideas and to avoid global
issues, I will make the standing assumption that b is globally bounded and
I will focus, in the same spirit of [4], on the continuity equation (1.1) only,
departing a bit from the seminal paper [42]: the conservative form is more
amenable for nonsmooth vector fields, possibly having also an unbounded
divergence (and in the case of bounded divergence there is no essential
difference between (1.1) and (1.2), provided we allow right hand sides of
the form cwt, cft).
Let us recall the definition of Regular Lagrangian Flow (RLF in short)
associated to b:
Definition 1.1 (L d-RLF in Rd). Let X(t, x) : [0, T ] × Rd → Rd. We
say that X(t, x) is a L d-RLF in Rd (relative to b) if the following two
conditions are fulfilled:

(i) for L d-a.e. x, the function t 7→ X(t, x) is an absolutely continuous
integral solution to the ODE (1.3) in [0, T ] with X(0, x) = x;
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(ii) X(t, ·)]L d ≤ CL d for all t ∈ [0, T ], for some constant C inde-
pendent of t.

Here and in the sequel I use the notation L d for the Lebesgue measure
in Rd and I use f] to denote the push forward operator between measures
induced by f , namely f]µ(E) = µ(f−1(E)).
Notice that, while (i) imposes a natural condition on the individual paths
X(·, x), (ii) should be understood as a global condition on this family of
paths: heuristically it means that we are selecting paths which do not
concentrate too much, and we don’t rule out the possibility of the existence
of concentrating paths (see in particular the illustration of the square root
example in [4]). The following result is proved in [4, Theorem 19] for the
part concerning existence and in [4, Theorem 16, Remark 17] for the part
concerning uniqueness.
Theorem 1.1 (Existence and uniqueness of the L d-RLF). Assume that
(1.1) has (forward) existence and uniqueness in L∞+

(
[0, T ];L1 ∩ L∞(Rd)

)
.

Then the L d-RLF X exists and is unique.
Here uniqueness is understood in the following sense: if X and Y are
L d-RLF’s, then X(·, x) = Y (·, x) for L d-a.e. x ∈ Rd.
In the next sections I will address several questions relative to Theo-
rem 1.1 and some recent progress made in this area. The main question is:
which assumptions on b ensure that (1.1) has existence and uniqueness in
L∞+

(
[0, T ];L1 ∩ L∞(Rd)

)
?

2. Regularity of the vector field. DiPerna and Lions proved in
[42], among many other things, that (1.1) has existence and uniqueness in
the class

L∞
(
[0, T ];L1 ∩ L∞(Rd)

)
provided bt ∈W 1,1

loc for a.e. t ∈ (0, T ), with:
(i)

∫
BR

|∇bt| dx integrable in (0, T ) for all R > 0;
(ii) ‖∇ · bt‖∞ ∈ L1(0, T ).

Actually an inspection of the proof in [42] (or the stability under time rever-
sal of the assumptions) shows that (ii) ensures both forward and backward
uniqueness. On the other hand, bounds on the negative part of the diver-
gence suffice to obtain forward well-posedness, and it was pointed out in
[2] that only forward uniqueness is needed for the uniqueness of the (for-
ward) L d-RLF X. Also, existence and uniqueness in the smaller class
L∞+

(
[0, T ];L1 ∩ L∞(Rd)

)
of nonnegative solutions is sufficient to that pur-

pose. We shall comment more on the bounds on divergence in the next
section, and focus here on the regularity of b:
• (vector fields in LD) It was noticed in [26] that the isotropic smoothing
scheme of [42], on which the uniqueness proof relies, works under the only
assumption that the symmetric part Du+ tDu of the distributional deriva-
tive is absolutely continuous. This vector space, usually denoted by LD in
the theory of linear elasticity [60], can be strictly larger than W 1,1. Notice
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however that Du+ tDu ∈ Lp
loc for some p > 1 implies u ∈W 1,p

loc by a local
version of Korn’s inequality.
• (vector fields in BV ) Bouchut has been the first one to achieve in [18] this
extension, for Hamiltonian vector fields of the form bt(x, p) = (p, Vt(x)),
with Vt ∈ BVloc. The proof uses a clever anisotropic smoothing scheme,
where mollification in the “bad” variables x occurs at a faster rate. In [2]
(see also [30], [29] for intermediate results) the scheme has been improved
and extended to all BVloc vector fields (with global integrability in time of
the total variations |Dbt|(BR) for all R > 0), under the assumptions that
D · bt � L d and that the density divbt satisfies

‖[divbt]−‖∞ ∈ L1(0, T ). (2.1)

• (vector fields in BD) Recall that BD consists in the space of functions
u such that (Du + tDu) are representable by measures. The extension to
BD vector fields is still an open problem: indeed, one is tempted to use
symmetric mollifiers as in [26]. But, we know that even for BV vector
fields anisotropic mollifiers are needed to get the result. In [6] we follow a
different path and we achieve the result for SBD vector fields bt (namely
we need that (Dbt + tDbt) has no “Cantor” part).
• (vector fields representable as singular integrals) Recently Bouchut and
Crippa achieved in [24] a very nice extension of the theory to vector fields
bt that can be represented as a singular integral

bt(x) =
∫

Rd

K(x− y)Ft(y) dy (2.2)

with Ft ∈ [L1(Rd)]d. Here K is a matrix-valued map whose components
satisfy the standard assumption of the theory of singular integral opera-
tors (in particular |K(x)| ∼ |x|1−d as |x| → 0), so that weak L1 estimates
are available. The proof uses a very clever improvement of the maximal
estimates used in [10] and [33] (see Section 4 below) to obtain regularity
properties of the flow and effective stability estimates: the main new ingre-
dient is the use of a suitable family of maximal operators, instead of the
standard maximal operator on balls.
Notice that the class (2.2) includes W 1,1 functions g (and vector fields),
because the solution to ∆w = ∇ · F is representable by (with appropriate
boundary conditions)

w(x) = c(d)
∫

Rd

|y − x|2−d∇ · F (y) dy = c(d)(d− 2)
∫

Rd

y − x

|y − x|d
F (y) dy.

Choosing F = ∇g gives w = g and hence the desired representation of g.
It is also easily seen that the class of vector fields (2.2) is not contained in
W 1,1 or in BV , so that definitely [24] provides new results (and also new
applications to stability of solutions to incompressible Euler equations with
vorticity in L1). In this direction, it would be very nice to have an extension
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of this result to the case when Ft is just a measure, and not necessarily
an L1 function. This would include BV and even BD vectorfields, by the
same elliptic PDE argument illustrated above.
• (vector fields having a special structure) In this research field it is difficult
to imagine a result better than the others. Indeed, sometimes the special
structure of the vector field of b helps a lot in getting well-posedness, under
very mild regularity conditions. I will illustrate this by two examples.
The first example concerns bounded, divergence-free autonomous vector
fields b in the plane; they can obviously can be represented as rotations of
∇H, for some Lipschitz potential function H, and solutions to the ODE
should preserve H. This suggests a factorization of the dynamics on the
level sets of H. This argument has been used by Bouchut and Desvillettes
in [22] (see also [28], [45] for related results) to obtain well-posedness under
an additional local “regularity” assumption on b, and the assumption that
H maps the critical set Σ := {∇H = 0} into a L 1-negligible set (notice
that by Sard’s theorem this condition always holds if b is smooth). A much
more detailed analysis, performed by Alberti, Bianchini and Crippa in [1],
reveals that no extra regularity of b is needed, and that the “weak Sard”
condition

H](χΣL 2) � L 1

suffices for well-posedness of (1.1). Also, it turns out that a further refine-
ment of this condition, involving also the topology of the level sets of H, is
necessary and sufficient for well-posedness.
The second example concerns vector fields Bt of the form

Bt(x, y) :=
(
bt(x),∇bt(x)y

)
(2.3)

with bt ∈ W 1,1
loc . Here we see that the last d components of Bt have

no regularity in x, but they are very regular in y (on the other hand the
divergence of Bt is nice as long as the divergence of bt is nice, since ∇·Bt =
2∇·bt). Lions and Le Bris used in [48] this particular structure and adapted
Bouchut’s scheme [18] to obtain well-posedness of (1.1) (see also [49] for
related results in a BV framework). Here the function space where well-
posedness occurs is adapted to Bt:

L∞+
(
[0, T ];L1 ∩ L∞(R2d)

)
∩ L∞

(
[0, T ];L∞loc(Rd

x;L1(Rd
y))

)
.

The reason for the restriction to this smaller space is the fact that |Bt|/(1+
|x|+ |y|) in general does not belong to

L1
(
[0, T ];L1(Rd

x × Rd
y)

)
+ L1

(
[0, T ];L∞(Rd

x × Rd
y)

)
,

because the last d components do not tend to 0 as |y| → ∞ while x is
kept fixed (and their limit is possibly unbounded as a function of x). For
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this reason, a weaker growth condition on Bt turns into a stronger growth
condition on w, still compatible with existence of solutions.
As we will see later on, the vector fields (2.3) occur in the study of the
differentiability properties of the L d-RLF flow X associated to bt.

3. Bounds on divergence. The bound (2.1) on the divergence might
be too restrictive for some applications, where even a singular divergence
might appear. As an application, let us consider the multidimensional
version of the Keyfitz-Kranzer system considered in [25], [7], [5]:

∂tu+
d∑

i=1

∂i

(
f(|u|)u

)
= 0

with u : (0,+∞) × Rd → Rk and f : R+ → Rk smooth. The system
can formally be decoupled into a scalar conservation law and a transport
equation, in the polar variables u = ρθ, ρ = |u|:

∂tρ+∇ ·
(
f(ρ)ρ

)
= 0, ∂tθ + f(ρ) · ∇θ = 0.

If the initial condition ρ̄ = |ū| is sufficiently nice, say BVloc and L∞, then
Kruzkhov theory provides us with the unique entropy solution t 7→ ρt of
the scalar conservation law, and this solution is locally BV on bounded sets
of (0,+∞) × Rd. The vector field bt := f(ρt) appearing in the transport
equation for θ is bounded and BV , but its distributional divergence need
not be bounded or even absolutely continuous (for instance this can be seen
by computing the divergence on shocks, where ρ is discontinuous, if f is
injective). In [7], [5] this difficulty has been bypassed by considering the
autonomous, divergence-free and (d+ 1)-dimensional vector field

B(t, x) :=
(
ρt(x),f(ρt(x))ρt(x)

)
and building from the flow of B a “natural” flow of bt (by a reparameteri-
zation).
More generally, we may think that whenever we have a nonnegative func-
tion ρ satisfying

∂tρt +∇ · (btρt) = 0 (3.1)

then we should think to ρL d as our new reference measure and try to
obtain well-posedness, at least in the regions where ρ does not vanish. This
is particularly clear if ρ is independent of time: in this case ∇ · (btρ) = 0
precisely corresponds to the fact that the ρ-divergence of bt, namely the
L2(ρ) adjoint of the gradient, vanishes.
This point of view has been used in [8] (and more recently in [13]). The
uniqueness of the flow and the well-posedness of the PDE when bt ∈ BV
and the function ρ in (3.1) belongs to L∞ are still open problems: the main
result of [8] is to answer these questions affirmatively when bt ∈ SBV , and
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to relate this problem to a compactness conjecture of Bressan [25]: we prove
that if the limit field in Bressan’s conjecture is BV , then compactness hold
(see also [32] for a positive answer to the conjecture under W 1,p bounds,
p > 1).

4. Differentiability of the flow and effective stability results.
In this section we start from the discussion of the differentiability proper-
ties of the L d-RLF associated to W 1,1 vector fields, briefly describing the
results obtained in [48]. On the other hand, in the W 1,p case, with p > 1,
much stronger results are available [33], as we will see. The main theorem
in [48] is the following:
Theorem 4.1. Let b ∈ L1

(
(0, T );W 1,1

loc (Rd; Rd)
)

be satisfying

(i)
|b|

1 + |x|
∈ L1

(
(0, T );L1(Rd)

)
+ L1

(
(0, T );L∞(Rd)

)
;

(ii) [divbt] ∈ L1
(
(0, T );L∞(Rd)

)
;

and let X(t, x) be the corresponding L d-Lagrangian flow. Then for a.e.
t ∈ (0, T ) there exists a measurable function W t : Rd →Md×d such that

X(t, x+ εy)−X(t, x)
ε

→ W t(x)y locally in measure in Rd
x × Rd

y (4.1)

as ε ↓ 0, uniformly in time.
Actually in [48] it is not proved, or stated, that the limit of difference quo-
tients is linear in y, but this can be proved by an approximation argument,
using the stability properties of flows: indeed, it turns out that the differ-
ence quotients of X, together with X, are solutions to the ODE relative
to

Bε
t (x, y) :=

(
bt(x),

bt(x+ εy)− bt(x)
ε

)
whose limit is precisely the vector field Bt in (2.3). Hence, W t(x)y can
be recovered from the flow of Bt and it is clear that the linear structure is
preserved by a smooth approximation of bt (and of Bt as well). In [12] we
called W t(x), as defined by (4.1), “derivative in measure”: though strictly
weaker than many other differentiability concept (even approximate dif-
ferentiability, as proved in [12]), (4.1) is the only differentiability property
known in the W 1,1 case, and unknown in the BV case.
On the other hand, in the W 1,p case, p > 1, stronger results are available.
The first results relative to the approximative differentiability of the flow
have been obtained in [10], and then improved substantially in [33]. An
important fact is that the approach is completely different from the one of
[48]: the main idea is to estimate the difference quotient of bt in terms of
maximal functions of the modulus of ∇bt. More precisely, for all g ∈W 1,1

loc

we have the pointwise inequality

|g(x)− g(y)| ≤ cd|x− y| (M |∇g|(x) +M |∇g|(y))
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at all Lebesgue points x, y of g. The heuristic idea is to use this, in con-
junction with maximal inequalities and the no-concentration property ((ii)
in Definition 1.1) to get regularity properties of the flow.
The starting point of the estimates given in [33] is already present in [10]
(and, at least in a formal way, in the introduction of [42]): in a smooth
context, since we can differentiate in space the ODE to get

d

dt
∇X(t, x) = ∇bt

(
X(t, x)

)
∇X(t, x)

(i.e. the spatial gradient satisfies a linear ODE), so that we can control
from above the time derivative d

dt log (|∇X|) with |∇bt|(X). The latter
quantity belongs to Lp thanks to the regularity of the flow. The strategy
of [10] allows to make this remark rigorous: it is possible to consider some
integral quantities which contain a discretization of the space gradient of
the flow, more stable by approximation (by the concavity of the logarithm,
which results in a lack of lower semicontinuity, there is no way to pass
to the limit in the differential inequality, as stated above, from smooth to
nonsmooth flows).
Now we state simplified versions of the results of [33], referring to that
paper for the most general statements.
Theorem 4.2 (Lipschitz estimates). Let p > 1 and let bt ∈ W 1,p

loc be
divergence-free, uniformly bounded, with

∫ T

0

∫
BR

|∇bt|p dxdt < ∞ for all
R > 0. Then, for every ε, R > 0, we can find a compact set K ⊂ BR(0)
such that

(i) L d(BR(0) \K) ≤ ε;
(ii) the restriction of X to [0, T ]×K is Lipschitz continuous.

This result is remarkable: it shows that we can recover somehow the stan-
dard Cauchy-Lipschitz theory provided we remove sets of small measure
(the optimal statement, not given here, is quantitative). We conclude this
section showing another result obtained in [33] with techniques which are
very similar to the ones described so far: it provides a logarithmic error
estimate, implying in particular an effective stability result for RLF’s. Of
course this result yields uniqueness of the flow as a consequence, in this
respect see also [46].
Theorem 4.3 (Quantitative stability). Let b and b̃ be vector fields as in
the previous theorem, and let X and X̃ be the respective flows. Then, for
every τ ∈ [0, T ], we have

‖X(τ, ·)− X̃(τ, ·)‖L1(Br(0)) ≤ C
∣∣∣log

(
‖b− b̃‖L1([0,τ ]×BR(0))

)∣∣∣−1

,

where R− r > 0 and C depend only on the supremum and Sobolev bounds
on b and b̃.

5. Infinite-dimensional spaces. In this final section I will illustrate
two examples of extension of the theory to infinite-dimensional spaces. Here
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the main difficulty is that requiring that a reference measure (L d in the
Euclidean case) is invariant or quasi-invariant under the flow leads to a
severe restriction on the direction of the vector field. This seems to be a
limitation in the attempt to apply this theory to PDE’s (viewed as ODE’s
in an infinite-dimensional space): the only result I am aware of is [57].
In [16], see also the announcement [15], in the case when the state space
is P(Rd) (Borel probability measures in Rd) we have been able to use a
weaker regularity condition on the flow; however for the moment our results
apply only to the linear continuity equation

∂tµt +∇ · (btµt) = 0 (5.1)

which, in this abstract perspective, should be seen as a constant coefficient
ODE in P(Rd) (with rough coefficients if bt is rough).
Flows in Wiener spaces. Let us first introduce, briefly, the structure
of Gaussian Wiener space. We consider a separable Banach space X and
a nondegenerate, centered, Gaussian measure γ ∈ P(X). The Cameron-
Martin space H ⊂ X is the vector subspace of all h ∈ H such that (τh)]γ �
γ, where τh(x) = x+h. It turns out that γ(H) = 0 whenever X is infinite-
dimensional. The maps

R∗(x∗) := 〈x∗, ·〉X∗,X , R(f) :=
∫

X

f(x)x dγ(x)

(here the integral is understood in Bochner’s sense) provide canonical em-
beddings of X∗ in L2(X, γ) and of L2(X, γ) in X respectively, and it can
be proved that, denoting by H the closure of R∗X∗ in L2(X, γ), the re-
striction of R to H is injective and RH = H. With this notation we
can endow H with the L2 distance inherited from H and we have the
integration by parts formula (for sufficiently nice f and g)∫

X

f∂hg dγ = −
∫

X

g∂hf dγ +
∫

X

ĥfg dγ ∀h = Rĥ ∈ H. (5.2)

This formula corresponds precisely, in the standard (product) Gaussian
space (Rd, γd) with variance 1 in all coordinates, to∫

Rd

f∂ig dγd = −
∫

Rd

g∂if dγd +
∫

Rd

xifg dγd,

easy to obtain because γd is a constant multiple of e−|x|
2/2L d.

Using (5.2) it is not hard to define Sobolev spaces W 1,p and we may expect
that a theory analogous to the finite-dimensional one could be developed
for vector fields bt : X → H (the restriction on the target of bt being due
to quasi-invariance). This is the goal that we achieve in [14], assuming
bounds on the (intrinsic) divergence and on the Hilbert-Schmidt norm of
the gradient, now a linear operator from H to H. It is not easy to compare



FLOW ASSOCIATED TO WEAKLY DIFFERENTIABLE VECTOR FIELDS 9

the well-posedness results with those obtained, for instance, in [17] (see also
[34], [35], [36], [56]): therein the much weaker operator norm is considered,
but the norm is assumed to be exponentially integrable. So, the result in
[14] seem closer to the finite-dimensional theory and are perfectly consistent
with it (changing the reference measure from L d to γd in the same spirit
of Section 3).
Flows in P(Rd). As I anticipated, we may view (5.1) as an infinite-
dimensional ODE in P(Rd) and try to obtain existence and uniqueness
results for (5.1) in the same spirit of the finite-dimensional theory, starting
from the simple observation that t 7→ δX(t,x) solves (5.1) whenever t 7→
X(t, x) solves (1.3). We may expect that, if we fix a “good” measure ν
in the space P(Rd) of initial data, then existence, uniqueness ν-a.e. and
stability hold. Moreover, for ν-a.e. µ, the unique and stable solution of
(5.1) starting from µ should be given by

µ(t, µ) :=
∫
δX(t,x) dµ(x) ∀ t ∈ [0, T ], µ ∈ P(Rd). (5.3)

Let us start with a notation and a definition (I use M+(X) for the space of
positive finite Borel measures in X). Given a nonnegative σ-finite measure
ν ∈ M+(P(Rd)), I denote by Eν ∈ M+(Rd) its expectation, namely∫

Rd

φdEν =
∫

P(Rd)

∫
Rd

φdµ dν(µ) for all φ bounded Borel.

Definition 5.1 (Regular measures in M+(P(Rd))). We say that ν ∈
M+(P(Rd)) is regular if Eν ≤ CL d for some constant C.
We now observe that Definition 1.1 has a natural (but not perfect) trans-
position to flows in P(Rd):
Definition 5.2 (Regular Lagrangian flow in P(Rd)). Let µ : [0, T ] ×
P(Rd) → P(Rd) and ν ∈ M+(P(Rd)). We say that µ is a ν-RLF in
P(Rd) (relative to b) if

(i) for ν-a.e. µ, t 7→ µt := µ(t, µ) is continuous from [0, 1] to P(Rd)
with µ(0, µ) = µ, |b| ∈ L1

loc(µtdt) and µt solves (5.1) in the sense
of distributions;

(ii) E(µ(t, ·)]ν) ≤ CL d for all t ∈ [0, T ], for some constant C inde-
pendent of t.

Notice that condition (ii) is weaker than µ(t, ·)]ν ≤ Cν, which would be
the analogue of (ii) in Definition 1.1, and it is actually sufficient (at least
for the special ODE (5.1) in P(Rd)) and much more flexible for many
purposes.
Theorem 5.1 (Existence and uniqueness of the ν-RLF in P(Rd)). As-
sume that (1.1) has uniqueness in L∞+

(
[0, T ];L1(Rd)∩L∞(Rd)

)
. Then, for

all ν ∈ M+(P(Rd)) regular, there exists at most one ν-RLF in P(Rd).
If (1.1) has existence in L∞+

(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
, this unique flow is
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given by

µ(t, µ) :=
∫

Rd

δX(t,x) dµ(x)., (5.4)

where X(t, x) denotes the unique L d-RLF.
Of course the main point here is about uniqueness rather than existence,
since the linear formula (5.3) provides a natural recipe for the solution: it is
remarkable that the same condition used for the uniqueness of the L d-RLF
in Rd provides also uniqueness of the “higher level” flow in P(Rd). At the
level of existence, on the other hand, one may speculate about situations
where a ν-RLF µ exists in P(Rd), with ν regular, but the flow µ is not
induced by any L d-RLF X as in (5.3).
The main motivation for the development of the theory in [16] has been
an application to semiclassical limits, where not only uniqueness, but also
stability of the ν-RLF is relevant. In order to describe this application
briefly, let α ∈ (0, 1) and let ψε

x0,p0,t : Rn → C be a family of solutions to
the Schrödinger equation:{

iε∂tψ
ε
x0,p0,t = − ε2

2 ∆ψε
x0,p0,t + Uψε

x0,p0,t

ψε
x0,p0,0 = ε−nα/2φ0

(
x−x0

εα

)
ei(x·p0)/ε.

(5.5)

Here φ0 ∈ C2
c (Rn) and

∫
|φ0|2 dx = 1. When the potential U is of class C2,

it was proven in [53] that for every (x0, p0) the Wigner transforms

Wεψ
ε
x0,p0,t(x, p) :=

1
(2π)n

∫
Rn

ψε
x0,p0,t(x+

ε

2
y)ψε

x0,p0,t(x−
ε

2
y)e−ipydy

converge, in the natural dual space A′ for the Wigner transforms, to
δX(t,x0,p0) as ε ↓ 0. Here X(t, x, p) if the unique flow in R2n associated
to the Liouville equation

∂tW + p · ∇xW −∇U(x) · ∇pW = 0. (5.6)

In [16] we are able to consider a potential U which can be written as the sum
of a repulsive Coulomb potential Us plus a bounded Lipschitz interation
term Ub with ∇Ub ∈ BVloc. We observe that in this case the equation (5.6)
does not even make sense for measure initial data, as ∇U is not continuous
(so the product ∇U(x) ·∇pW is not a well-defined distribution, if W is just
a measure). Still, we can prove full convergence as ε ↓ 0, namely

lim
ε↓0

∫
Rd

ρ(x0, p0) sup
t∈[−T,T ]

dA′
(
Wεψ

ε
x0,p0

(t), δX(t,x0,p0)

)
dx0dp0 = 0 ∀T > 0

(5.7)
for all ρ ∈ L1(R2n) ∩ L∞(R2n) nonnegative, where X(t, x, p) if the unique
L 2n-RLF associated to (5.6) and dA′ is a bounded distance inducing the
weak∗ topology in the unit ball of A′.
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The proof of (5.7) relies on an application of the stability properties of the
flow in P(Rd) to the Husimi transforms of ψε

x0,p0
(t), namely the convolu-

tions with a Gaussian kernel with variance ε/2 of the Wigner transforms.
The scheme is sufficiently flexible to allow more general families of initial
conditions: for instance, the limiting case α = 1 in (5.5) leads to

lim
ε↓0

∫
Rd

ρ(x0) sup
t∈[−T,T ]

dA′
(
Wεψ

ε
x0,p0

(t),µ(t, µ(x0, p0))
)
dx0 = 0

for all T > 0, p0 ∈ Rn, ρ ∈ L1(Rn) ∩ L∞(Rn) nonnegative, with µ(t, µ)
given by (5.3) and µ(x0, p0) = δx0 × |φ̂0|2(· − p0)L n.
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[46] M.Hauray, C.Lebris, P.L.Lions: Two remarks on generalized flows for ordinary
differential equations. C. R. Acad. Sci. Paris Sér. I, 344 (2007), 759–764.

[47] B.L.Keyfitz & H.C.Kranzer: A system of nonstrictly hyperbolic conservation
laws arising in elasticity theory. Arch. Rational Mech. Anal. 1980, 72, 219–
241.

[48] C.Le Bris & P.L.Lions: Renormalized solutions of some transport equations with
partially W 1,1 velocities and applications. Annali di Matematica, 183 (2003),
97–130.

[49] N.Lerner: Transport equations with partially BV velocities. Ann. Sc. Norm. Su-
per. Pisa Cl. Sci., 3 (2004), 681–703.

[50] P.L.Lions: Mathematical topics in fluid mechanics, Vol. I: incompressible models.
Oxford Lecture Series in Mathematics and its applications, 3 (1996), Oxford
University Press.

[51] P.L.Lions: Mathematical topics in fluid mechanics, Vol. II: compressible models.
Oxford Lecture Series in Mathematics and its applications, 10 (1998), Oxford
University Press.
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