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1. Geometry of Submanifolds

The main objects we will consider are n–dimensional, complete submanifolds, immersed
in Rn+m, that is, pairs (M,ϕ) where M is an n–dimensional smooth manifold, compact,
connected with empty boundary, and a smooth map ϕ : M → Rn+m such that the rank of dϕ
is everywhere equal to n.
Good references for this section are [17, 23] (consider also [27, 28]).

The manifold M gets in a natural way a metric tensor g turning it in a Riemannian man-
ifold (M, g), by pulling back the standard scalar product of Rn+m with the immersion map
ϕ.

Taking local coordinates around p ∈ M given by a chart F : Rn ⊃ U → M , we identify
the map ϕ with its expression in coordinates ϕ ◦ F : Rn ⊃ U → Rn+m, then we have local
basis of TpM and T ∗pM , respectively given by vectors

{
∂
∂xi

}
and covectors {dxj}.
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We will denote vectors on M by X = Xi, which means X = Xi ∂
∂xi

, covectors by Y = Yj ,
that is, Y = Yjdxj and a general mixed tensor with T = T i1...ikj1...jl

, where the indices refer to the
local basis.

In all the formulas the convention to sum over repeated indices will be adopted.
The tangent space at p ∈M can be clearly identified with the vector subspace dϕp(TpM)

of Tϕ(p)Rn+m ≈ Rn+m. Then, we define its m–dimensional orthogonal complement NpM

to be the normal space to M at p. Clearly the trivial vector bundle TRn+m decomposes as
TRn+m = TM ⊕⊥ NM , that is, the orthogonal direct sum of the tangent bundle and the
normal bundle of M .

As the metric tensor g is induced by the scalar product of Rn+m, which will be denoted
with 〈· | ·〉, we have

gij(x) =

〈
∂ϕ(x)

∂xi

∣∣∣∣ ∂ϕ(x)

∂xj

〉
.

The metric g extends canonically to tensors as follows,

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl

where gij is the inverse of the matrix of the coefficients gij . Then we define the norm of a
tensor T as

|T | =
√
g(T, T ) .

By means of the scalar product of Rn+m we also define a metric tensor on the normal bundle
and, as above, on all the tensors acting or with values in NM .

The canonical measure induced by the metric g is given by µ =
√
GLn where G =

det(gij) and Ln is the standard Lebesgue measure on Rn.
The induced covariant derivatives on (M, g) of a tangent vector field X or of a 1–form ω

are given by

∇Mi Xj =
∂

∂xi
Xj + ΓjikX

k and ∇Mi ωj =
∂

∂xi
ωj − Γkijωk ,

where the Christoffel symbols Γ = Γkij are expressed by the following formula,

Γkij =
1

2
gkl
(
∂

∂xi
gjl +

∂

∂xj
gij −

∂

∂xl
gij

)
.

It is well know that, for a pair of tangent vector fields X and Y on M , we have

∇MX Y =
(
∇Rn+m
X Y

)M
where the symbol M denotes the orthogonal projection on the tangent space of M .
Here, ∇Rn+m

X Y at a point p ∈ M denotes the covariant derivative of Rn+m acting on some
local extensions of the fields X and Y in an open subset of Rn+m, once considered M (ac-
tually it is sufficient only a local embedding of M around p) as a subset of Rn+m. This is a
well defined expression, indeed, once identified any TpM as a vector subspace of Rn+m, the
extensions of the vector fields X and Y are vector fields in the ambient space Rn+m and it
is easy to check that (∇Rn+m

X Y )(p) depends only on the values of the two fields on M in the
embedded neighborhood of p, by the properties of the covariant derivative.
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The covariant derivative ∇MT of a tensor T = T i1...ikj1...jl
will be denoted by ∇Ms T

i1...ik
j1...jl

=

(∇MT )i1...iksj1...jl
and with ∇kT we will mean the k–th iterated covariant derivative.

The gradient ∇Mf of a function and the divergence divX of a tangent vector field are
defined respectively by

g(∇Mf, v) = dfp(v) ∀v ∈ TM
and

divX = Trace∇MX = ∇Mi Xi =
∂

∂xi
Xi + ΓiikX

k .

The Laplacian ∆MT of a tensor T is

∆MT = gij∇Mi ∇Mj T .

Using the notion of connection and covariant derivative on fiber bundles (for instance,
see [27, 28]), one can check that the following definition is actually the covariant derivative
associated to the metric g on the normal bundle of M .
For any normal vector field ν on M and a tangent vector field X , we set

∇⊥Xν =
(
∇Rn+m
X ν

)⊥
where the symbol ⊥ denotes the orthogonal projection on the normal space of M .
Then, we can consider from now on the following definition of covariant derivative of any
vector field (tangent or not) Y along M as follows

∇XY = ∇MX YM +∇⊥XY ⊥ =
(
∇Rn+m
X YM

)M
+
(
∇Rn+m
X Y ⊥

)⊥
,

where YM and Y ⊥ are respectively the tangent and normal components of the vector field
Y .

We extend this covariant derivative also to “mixed” tensors, that is, tensors acting also
on the normal bundle of M , not only on the tangent bundle.
For instance, if T “acts” on (k + l)–uple of vector fields along M such that the first k are
tangent and the other l are normal, we have

∇XT (X1, . . . , Xk, ν1, . . . , νl) = ∇X(T (X1, . . . , Xk, ν1, . . . , νl))

− T (∇MXX1, . . . , Xk, ν1, . . . , νl)− · · · − T (X1, . . . ,∇MXXk, ν1, . . . , νl)

− T (X1, . . . , Xk,∇⊥Xν1, . . . , νl)− · · · − T (X1, . . . , Xk, ν1, . . . ,∇⊥Xνl)

where∇X immediately after the equality “works” according to the “target” bundle of T .
Associated to the connection∇⊥ we have also a notion of curvature, called normal curva-

ture, defined in the standard way.
For a pair of tangent vector fields X , Y and any normal vector field ν, we set

R⊥(X,Y )ν = ∇⊥Y∇⊥Xν −∇⊥X∇⊥Y ν −∇⊥[Y,X]ν

and an associated (0, 4)–curvature tensor R⊥(X,Y, ν, ξ) = g(R⊥(X,Y )ν, ξ) which plays the
same role of the Riemann tensor in exchanging the covariant derivatives in the normal bun-
dle.
If ξα is a local basis of the normal bundle (which is locally trivial) and ν = ναξα, we have

(∇⊥)2
ijν

α − (∇⊥)2
jiν

α = R⊥ijβγg
βανγ .
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It is then natural to consider the following couple of tensors (their tensor nature can be
easily checked).
For a pair of tangent vector fields X and Y , the form

B(X,Y ) =
(
∇Rn+m
X Y

)⊥
measures the difference between the covariant derivative of (M, g) and the one of the ambi-
ent space Rn+m, indeed

(1.1) ∇MX Y =
(
∇Rn+m
X Y

)M
= ∇Rn+m

X Y − B(X,Y ) .

For a tangent vector field X and a normal one ν,

S(X, ν) = −
(
∇Rn+m
X ν

)M
which clearly satisfies

∇⊥Xν =
(
∇Rn+m
X ν

)⊥
= ∇Rn+m

X ν + S(X, ν) .

The form B is called second fundamental form and it is a symmetric bilinear form with
values in the normal bundle NM . Its symmetry can be seen easily as the two connections
have no torsion,

B(X,Y )− B(Y,X) = ∇MY X −∇MX Y −∇Rn+m
Y X +∇Rn+m

X Y = [X,Y ]Rn+m − [X,Y ]M = 0

and dϕ([X,Y ]M ) = [dϕ(X), dϕ(Y )]Rn+m .

The bilinear form S, with values in TM , can be seen as an operator S(·, ν) : TM → TM
(for every fixed normal vector field ν ∈ NM ) called shape operator. Actually, S is self–adjoint
and B is the associated quadratic form, if X , Y are tangent vector fields and ν is a normal
one, we have

g(Y, S(X, ν)) = − g
(
Y,
(
∇Rn+m
X ν

)M)
= −g(Y,∇Rn+m

X ν)(1.2)

= g(∇Rn+m
X Y, ν) = g

((
∇Rn+m
X Y

)⊥
, ν
)

= g(B(X,Y ), ν) ,

hence, B and S can be recovered each other.
By the symmetry of B it follows that

g(Y, S(X, ν)) = g(X,S(Y, Z))

hence, S(·, ν) is self–adjoint.
Finally, it is easy to check that |B|2 = |S|2 and also |∇kB|2 = |∇kS|2 for every k ∈ N.

We extend the forms B and S to any vector field along M as follows

B(X,Y ) = B(XM , YM ) ,(1.3)

S(X,Y ) = S(XM , Y ⊥) ,
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and, for any normal vector field ν we set

Bν(X,Y ) = 〈ν |B(XM , YM )〉 ,
Sν(X) = S(XM , ν) .

Clearly, by equation (1.2), it follows g(Y,Sν(X)) = Bν(X,Y ).
Choosing a local coordinate basis in M , we have

Bij = B(∂xi , ∂xj ) =
(
∇Rn+m
∂xi

∂xj

)⊥
=

(
∂

∂xi

∂ϕ

∂xj

)⊥
=

(
∂2ϕ

∂xi∂xj

)⊥
and

Bν
ij =

〈
ν
∣∣∣ ∂2ϕ

∂xi∂xj

〉
.

(Sν)i = S(∂xi , ν) = −
(
∂ν

∂xi

)M
.

which are the more familiar definition of second fundamental form and of the shape opera-
tor.
The mean curvature vector H is the trace (with the induced metric) of the second fundamental
form,

H = gijBij ,

by this definition, clearly H ∈ NM . We also define Hν = gijBν
ij .

Making explicit equation (1.1) and using identity (1.2) we have the so called Gauss–
Weingarten relations,

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ Bij

(
∂ν

∂xi

)M
= −Bν

ikg
kj ∂ϕ

∂xj

for every normal vector field ν along M .
Notice that the first relation implies

∆Mϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk

)
= gijBij = H ,

component by component.
The second fundamental form B embodies all information on the curvature properties of

M , this is expressed by the following relations with the Riemann curvature tensor of (M, g),

Rijkl = g(∇2
ji∂xk −∇

2
ij∂xk , ∂xl) = 〈Bik |Bjl〉 − 〈Bil |Bjk〉 ,

Rij = gklRikjl = 〈H |Bij〉 − gkl〈Bil |Bkj〉 ,
R = gijRicij = |H|2 − |B|2 ,

where the scalar products are meant in the normal space to M .

REMARK 1.1. These equations are often called Gauss equations by the connection with his
Theorema Egregium about the invariance by isometry of the Gaussian curvature G of a surface
in R3, which is actually expressed by the third equation, once we rewrite it as R = 2G.
We recall that the Gaussian curvature of a surface is the product of the principal eigenvalues
of B (in codimension one, B can be seen as a real valued bilinear form, as we will see in a
while). Equivalently, G = det Sν where ν is a local unit normal vector field.
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Then, the formulas for the interchange of covariant derivatives, which involve the Rie-
mann tensor, become

∇Mi ∇Mj Xs −∇Mj ∇Mi Xs = Rijklg
ksX l = (〈Bik |Bjl〉 − 〈Bil |Bjk〉) gksX l ,

∇Mi ∇Mj ωk −∇Mj ∇Mi ωk = Rijklg
lsωs = (〈Bik |Bjl〉 − 〈Bil |Bjk〉) glsωs .

About the normal curvature, the analogous of Gauss equations are called Ricci equations.
If ξα is a local basis of the normal bundle we have,

R⊥ijαβ = −g([Sα,Sβ]∂xi , ∂xj )

where Sα and Sβ are respectively the operators Sξα and Sξβ and [Sα, Sβ] denotes the commu-
tator operator SαSβ − SβSα : TM → TM .
Hence, the formula for the interchange of derivatives on the normal bundle become

∇⊥i ∇⊥j να −∇⊥j ∇⊥i να = R⊥ijβγg
βανγ = g([Sγ , Sβ]∂xi , ∂xj )g

βανγ ,

for every normal vector field ν = ναξα.
Finally, the following Codazzi equations hold

(∇XB)(Y,Z, ν) = (∇Y B)(X,Z, ν)

for every three tangent vector fields X , Y , Z and ν ∈ NM .
These equation are sometimes also called Codazzi–Mainardi equations as Delfino Codazzi [12]
and Gaspare Mainardi [31] independently derived them (actually, they were discovered ear-
lier by Karl M. Peterson [35]).
They can be seen as an analogous of the II Bianchi identity satisfied by the Riemann tensor.

The importance of the Gauss, Ricci and Codazzi equations is that they are the analogous
of the Frenet equations for space curves. They determine, up to isometry of the ambient
space, the immersed submanifold, as it is expressed by the following fundamental theorem
(first proved for surfaces in R3 by Pierre Ossian Bonnet [7, 8]), see [6, Chap. 2].

THEOREM 1.2. Let (M, g) be an n–dimensional Riemannian manifold with a Riemannian vec-
tor bundle NM of rank m. Let ∇⊥ a metric connection on NM and B a symmetric bilinear form
with values in NM . Define the operator S(·, ν) : TM → TM by g(Y,Sν(X)) = 〈ν |B(X,Y )〉 and
suppose that the equations of Gauss, Ricci and Codazzi are satisfied by these tensors.
Then, around any point p ∈ M there exists an open neighborhood U ⊂ M and an isometric immer-
sion ϕ : U → Rn+m such that B coincides with the second fundamental form of the immersion ϕ and
NM is isomorphic to the normal bundle.
The immersion is unique up to an isometry of Rn+m, moreover, if two immersions have the same
second fundamental form and normal connection, they locally coincide up to an isometry of Rn+m.
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A consequence of Codazzi equation is the following computation of the difference be-
tween ∆B and∇2H,

∆Bα
ij −∇2

ijH
α = gpq

{
∇2
pqB

α
ij −∇2

ijB
α
pq

}
(1.4)

= gpq
{
∇2
piB

α
qj −∇2

ijB
α
pq

}
= gpq

{
∇2
ipB

α
qj −∇2

ijB
α
pq

}
+ gpq (〈Bpq |Bil〉 − 〈Bpl |Biq〉) glsBα

sj

+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBα
sq

+ gpqg([Sγ , Sβ]∂xp , ∂xi)g
βαBγ

qj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBα
sj

+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBα
sq

+ gpq
[
g(Sβ(∂xp),Sγ(∂xi))− g(Sβ(∂xp), Sγ(∂xi))

]
gβαBγ

qj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBα
sj

+ gpq (〈Bpj |Bil〉 − 〈Bpl |Bij〉) glsBα
sq

+ gpq
(

Bβ
pkg

klBγ
il − Bγ

pkg
klBβ

il

)
gβαBγ

qj

= (〈H |Bil〉 − gpq〈Bpl |Biq〉) glsBα
sj

+ (〈Bpj |Bil〉 − 〈Bpl |Bij〉) gpqglsBα
sq

+ 〈Bil |Bqj〉gpqgklBα
pk − 〈Bpk |Bqj〉gpqgklBα

il

= 〈H |Bil〉glsBα
sj − 〈Bpl |Biq〉gpqglsBα

sj − 〈Bpl |Bjq〉gpqglsBα
si

+ (2〈Bpj |Bil〉 − 〈Bpl |Bij〉) gpqglsBα
sq .

Hence, such a difference is a third order homogeneous polynomial in B.

All the relations we discussed in this section are valid in the Euclidean ambient space. When the
ambient space is a general Riemannian manifolds all the formulas need a correction term due to its
curvature. See [17, Chap. 6] and [6, Chap. 2].

1.1. The Codimension One Case. When the codimension is one, the normal space is
one–dimensional, so at least locally we can define up to a sign (sometimes we will have to
deal with this ambiguity) a smooth unit local normal vector field to M .
Actually, if the hypersurface M is orientable, this choice can be done globally.

In the case the hypersurface M is compact and embedded (hence, it is also orientable),
we will always consider ν to be the unit inner normal.

The second fundamental form B then coincides with Bνν, hence in this case we can
actually consider the R–valued bilinear form Bν that, for sake of simplicity, we still call B,
for all this section.

We will denote with H the mean curvature function Hν = gijBν
ij and with S the shape

operator Sν = S(·, ν) : TM → TM .
Notice that B, S and H are defined up to the sign of ν (with the conventional choice above,
the second fundamental form of a convex hypersurface is nonnegative definite).
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In the codimension one case are commonly defined the so called principal curvatures of
M at a point p, as the eigenvalues of the form B (defined up to a sign).
The relative eigenvectors in TpM are called principal directions.

In this case, many of the previous formula simplifies, as every derivative of ν must be a
tangent field, hence, in particular∇⊥ν = 0,

∇MX Y = ∇Rn+m
X Y − B(X,Y )ν

∇Rn+m
X ν = −S(X)

g(Y,S(X)) = B(X,Y )

Bij =
〈
ν
∣∣∣ ∂2ϕ

∂xi∂xj

〉
The Gauss–Weingarten relations become

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ Bijν

∂ν

∂xi
= −Bikg

kj ∂ϕ

∂xj
.

The Riemann curvature tensor of (M, g) is given by,

Rijkl = BikBjl − BilBjk ,

Rij = HBij − glkBilBkj ,

R = |H|2 − |B|2 .

Notice that in these last formulas the ambiguity of the definition up to a sign of B and H
vanishes.
The Ricci equations are in this case trivial, the Codazzi equations get the simple form

∇Mi Bjk = ∇Mj Bik

and imply the following Simons’ identity [37]

∆MBij = ∇2
ijH + H Bilg

lsBsj − |B|2Bij .

Indeed, recalling the computation (1.4), as the normal space is one–dimensional, we have

∆MBij −∇2
ijH = HBilg

lsBsj − BplBiqg
pqglsBsj − BplBjqg

pqglsBsi

+ (2BpjBil − BplBij) g
pqglsBsq

= HBilg
lsBsj − |B|2Bij .

1.2. Example 1. Curves in the Plane. Let γ : (0, 1)→ R2 be a smooth curve in the plane,
suppose parametrized by the arclength s.
The metric is simply by ds2, we define the unit tangent vector τ = γs and we choose as unit
normal vector ν = Rτ where R is the counterclockwise rotation in R2.
The second fundamental form is given by

Bss = B(τ, τ) =
(
∇Rn+m
τ τ

)⊥
= (∂τγs)

⊥ = γ⊥ss = γss

as γss is a normal vector.
In the case the curve is not parametrized by arclength, the metric tensor is given by gss =
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|γs|2ds2 and

Bss = B(τ, τ) =
(
∇Rn+m
τ τ

)⊥
= (∂τγs)

⊥ = γ⊥ss = γss −
〈γss | γs〉γs
|γs|2

.

The mean curvature vector H is then

H = gssBss =
γss
|γs|2

− 〈γss | γs〉γs
|γs|4

= kν .

The mean curvature function k, which is defined up to the sign, is called by simplicity the
curvature of γ.

1.3. Example 2. Curves in Rn. Let γ : (0, 1) → Rn be a smooth curve in the space,
parametrized by the arclength s.
The metric is again given by ds2, and we still define the unit tangent vector τ = γs but now
we do not have an easy way to choose a unit normal vector as in the previous situation.
The second fundamental form is given by

Bss = B(τ, τ) =
(
∇Rn+m
τ τ

)⊥
= (∂τγs)

⊥ = γ⊥ss = γss

as γss is a normal vector. If γss 6= 0 we define |γss| = k 6= 0 and call unit normal of γ the vector
ν = γss/|γss|, that is, γss = kν and k is the (mean) curvature of γ which is defined up to the
sign.

2. Tangential Calculus

We consider now M as an actual subset of Rn+m, in order to use the coordinates of the
ambient space Rn+m, we can always do it at least locally as every immersion is locally an
embedding. At every point x ∈ M we have, as before, the n–dimensional tangent space
TxM ⊂ Rn+m with an associated linear map P (x) : Rn+m → Rn+m which is the orthogonal
projection on TxM . Then clearly, the map (I−P (x)) : Rn+m → Rn+m, where I is the identity
of Rn+m, is instead the orthogonal projection on the m–dimensional normal space NM at x
which is the orthogonal complement of TxM in Rn+m.

In this setting, the canonical measure µ =
√
GLn coincides with the n–dimensional

Hausdorff measure counting multiplicities H̃n M .
If M is actually embedded (or the self–intersections have zero measure), we have µ =
Hn M withHn the n–dimensional Hausdorff measure of Rn+m.

We call tangential gradient∇Mf(x) of aC1 function defined in a neighborhood U ⊂ Rn+m

of a point x ∈M as the projection of∇Rn+mf(x) on TxM .
It is easy to check that ∇Mf depends only on the restriction of f to M ∩ U . Moreover, an
extension argument shows that∇Mf can also be defined for functions initially defined only
on M ∩ U .
If Pij is the matrix of orthogonal projection P : Rn+m → Rn+m on the tangent space (here
the indices refer to the coordinates of Rn+m), we have∇Mi f(x) = Pij(x)∇jf(x).
Notice that Pij(x) = ∇Mi xj for any x ∈M .

We also define the tangential derivative of a vector field Y = Y iei in Rn+m along M , in the
direction of a tangent vector X ∈ TxM as

∇MX Y (x) =
n+m∑
i=1

〈X | ∇MY i〉ei
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where e1, . . . , en+m is the standard basis of Rn+m.
In a similar way we can define the tangential divergence of a vector field X and the tan-

gential Laplacian of a function,

divM X =

n+m∑
i=1

∇Mi Xi , ∆Mf = divM ∇Mf

(here again the indices refer to the coordinates of Rn+m).
By a straightforward computation one can check that all these tangential operators (if

the fieldX is tangent toM ) coincide with the intrinsic ones considering (M, g) as an abstract
Riemannian manifold.

In several occasions we will consider the second fundamental form and the shape oper-
ator acting on vector fields in Rn+m as defined in formulas (1.3), that is, if e1, . . . , en+m is the
standard basis of Rn+m we have

Bk
ij = 〈B(ei, ej) | ek〉 = 〈B(eMi , e

M
j ) | e⊥k 〉 .

It is then easy to see that

Hi =

n+m∑
j=1

Bi
jj

and, by means of the above tangential derivative operator, we can compute the second fun-
damental form as

B(X,Y ) = −
m∑
α=1

〈X|∇MY να〉να ∀X Y ∈ TxM ,

where {να} is any local smooth orthonormal basis of the normal space to M .
For a general smooth map Φ : M → Rk we can consider the tangential Jacobian,

JMΦ(x) =
[
det
(
dMΦ∗x ◦ dMΦx

)]1/2
where dMΦx : TxM → Rk is the linear map induced by the the tangential gradient and(
dMΦx

)∗
: Rk → TxM is the adjoint map.

THEOREM 2.1 (Area Formula). If Φ is a smooth injective map from M to Rk, then we have∫
Φ(M)

f(y) dHn(y) =

∫
M
f(Φ(x)) JMΦ(x) dHn(x)

for every f ∈ C0
c (Rk).

If {ei} is an orthonormal basis of Rn+m such that e1, . . . , en is a basis of TxM , we can
express the divergence of a tangent vector field X at the point x ∈M as

divX(x) =
n∑
i=1

g(ei,∇eiX(x)) =

n∑
i=1

〈ei | ∇Rn+m
ei X(x)〉 =

n∑
i=1

∂

∂xi
〈ei |X〉(x)

=
n+m∑
i=1

∇Mi 〈ei |X〉(x) .
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It is not difficult to see that the last term is actually independent of the orthonormal ba-
sis {ei}, even if e1, . . . , en is not a basis of TxM . Then, we use this last expression (for any
arbitrary orthonormal basis {ei} of Rn+m) to define the tangential divergence divM X of a
general, not necessarily tangent, vector field X along M .
Such definition is useful in view of the following tangential divergence formula (see [36, Chap. 2,
Sect. 7]), ∫

M
divM X dµ = −

∫
M
〈X |H〉 dµ

holding for every vector field X along M .
If X is a tangent vector field we recover the usual divergence theorem,∫

M
divX dµ = 0 .

For detailed discussions and proofs of these results we address the reader to the books of Fed-
erer [21] and of Simon [36].

3. Distance Functions

In all this section, e1, . . . , en+m is the canonical basis of Rn+m, M is a smooth, complete,
n–dimensional manifold without boundary, embedded in Rn+m and TxM , NxM are respec-
tively the tangent space and the normal space to M at x ∈M ⊂ Rn+m.

The distance function dM : Rn+m → R and the squared distance function ηM : Rn+m → R
are respectively defined by

dM (x) = dist(x,M) = min
y∈M
|x− y|, ηM (x) =

1

2
[dM (x)]2

for any x ∈ Rn+m (we will often drop the superscript M ). In this and the next sections we
analyse the differentiability properties of d and η and the connection between the derivatives
of these functions and the geometric properties of M .

Immediately by its definition, being the minimum of a family of Lipschitz functions with
Lipschitz constant 1, the same property holds also for d (the function η is instead only locally
Lipschitz). In particular, both functions are differentiable almost everywhere in Rn+m, by
Rademacher’s theorem, moreover, at any differentiability point x ∈ Rn+m of d there exists a
unique minimizing point y ∈M such that d(x) = |x− y| and

∇d(x) =
x− y
|x− y|

for such y ∈M .
Viceversa, if the point in M of minimum distance from x ∈ Rn+m \M is unique, the function
d is differentiable at x, see Section 5.
We have also easily

|∇d(x)| = 1 and |∇η(x)|2 = 2η(x)

at any differentiability point of d.
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These properties are true even if M is merely a closed set (the relation between the regu-
larity properties of dM and M is analysed in [20, 22], see also [33]) but on the second deriva-
tives of dM and ηM only one side estimates are available, in general. These are actually based
on the convexity of the function AM (x) = |x|2/2− η(x) which can be expressed as

AM (x) = max
y∈M

〈x|y〉 − 1

2
|y|2 .

However, as it is natural to expect, higher regularity of M leads to higher regularity of dM

and ηM as we will see in Section 5 (see also [4], for instance).

PROPOSITION 3.1. For every point x ∈M , there exists an open neighborhood of x in Rn+m and
a constant σ > 0 such that η is smooth in the region

Ω =
{
y ∈ U | d(y) < σ

}
.

REMARK 3.2. If M is compact we can actually choose U = Rn+m and a uniform constant
σ > 0. Moreover, since we will be mainly interested in local geometric properties of M and
since every immersion is locally an embedding, all the differential relations that we are going
to discuss hold also for submanifolds with self–intersections. We simply have to consider
such local embedding in a open set of Rn+m and the distance function only from this piece
of M , in a neighborhood, instead than from the whole M .

By the above discussion, in such set Ω it is defined the projection map πM : Ω → M
associating to any point x ∈ Ω the unique minimizer in M of the distance from x (again we
will often drop the superscript M ). This minimizer point is characterized by

πM (x) = x− dM (x)∇dM (x) = x−∇ηM (x) .

It should be remarked that d(x) =
√

2η(x) is smooth on Ω \M but it is not smooth up
to M . In the codimension one case this difficulty can be amended by considering the signed
distance function

d∗(x) =

{
d(x) if x /∈ E
−d(x) if x ∈ E

as M is the boundary of a bounded subset E of Rn+m.
In higher codimension, the function η is a good substitute of d∗(x) in many situations,

see [4] for an example of application to the motion by mean curvature.
The following result is concerned with the Hessian matrix of η.

PROPOSITION 3.3. For any x ∈ M the Hessian matrix ∇2η(x) is the (matrix of) orthogonal
projection onto the normal space NxM .
Moreover, for any x ∈M , letting p to be a unit vector orthogonal to M at x and defining

Λ(s) = ∇2η(x+ sp)

for any s ∈ [0, σ] such that the segment [x, x + σp] is contained in Ω, the matrices Λ(s) are all
diagonal in a common orthonormal basis {e1, . . . , en+m} such that 〈en+1, . . . , en+m〉 = NxM and,
denoting by λ1(s), . . . , λn+m(s) their eigenvalues in increasing order, we have

λn+1(s) = λn+2(s) = · · · = λn+m(s) = 1 ∀s ∈ [0, d(x)] .

The remaining eigenvalues are strictly less than 1 and satisfy the ODE

λ′i(s) =
λi(s)(1− λi(s))

s
∀s ∈ (0, d(x)]
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for i = 1, . . . , n. Finally, the quotients λi(s)/s are bounded in (0, d(x)].

PROOF. We follow [4, Thm. 3.2]. Fixing x ∈ M and representing locally M as a graph
of a smooth function on the tangent space at x, it is easy to see, by an elementary geometric
argument, that

η(x+ y) =
|Ny|2

2
+ o(|y|2) =

1

2
〈Ny | y〉+ o(|y|2),

where N is the orthogonal projection on the normal space to M at the point x and o(t) is a
real function satisfying |o(t)|/t → 0 as t → 0. By differentiating twice with respect to y and
evaluating at y = 0, we find ηij(x) = Nij .

Since the distance function d is smooth in Ω \M , differentiating the equality |∇d|2 = 1,
we get

dijdj = 0 , dijkdj + dijdjk = 0 ,

in Ω \M and

(3.1) ηjηj = 2η , ηijηj = ηi , ηijkηj + ηijηjk = ηik ,

in the whole Ω.
Using the fact that∇η(x+ sp) = ps and the third identity in (3.1) we obtain,

d

ds
Λij(s) =

∂ηij
∂xk

(x+ sp)pk(3.2)

= ηijk(x+ sp)ηk(x)/s

=
Λij(s)− Λik(s)Λkj(s)

s

for every s ∈ [0, σ].
Let e1, . . . , en+m be any basis such that Λ(σ) is diagonal with associated eigenvalues λi(σ),
we consider the unique solution µi(t) of the ODE

d

ds
µi(s) =

µi(s)(1− µi(s))
s

, ∀s ∈ (0, σ]

satisfying µi(σ) = λi(σ), for i = 1, . . . , n+m.
Then the matrices

Λ̂(s) =
n+m∑
i=1

µi(s)ei ⊗ ei ,

solve the differential equation (3.2) and satisfy Λ̂(σ) = Λ(σ). Hence, by the uniqueness of
solutions to system (3.2), we conclude Λ = Λ̂. Consequently the eigenvectors of Λ(s) are
equal to ei for every s ∈ (0, σ] and the eigenvalues λi(s) solve,

(3.3)
d

ds
λi(s) =

λi(s)(1− λi(s))
s

.

In view of the fact that Λ(s) must converge, as s→ 0+, to the matrix of orthogonal projection
on the normal space to M at the point x, the conclusion of the proposition follows.

Finally, we show that the quotients λi(s)/s are bounded as s→ 0+, when i = 1, . . . , n.
Solving the differential equation (3.3), we find

λi(s)

s
=

λi(σ)

σ + (s− σ)λi(σ)
, ∀s ∈ (0, σ] .



14 CARLO MANTEGAZZA

Therefore, if λi(σ) < 0, then λi(s) < 0 for all s and∣∣∣∣λi(s)s

∣∣∣∣ ≤ ∣∣∣∣λi(σ)

σ

∣∣∣∣ , ∀s ∈ (0, σ] .

If, λi(σ) > 0 and i = 1, . . . , n, then λi(s) ∈ [0, 1) for all s and∣∣∣∣λi(s)s

∣∣∣∣ ≤ λi(σ)

σ(1− λi(σ))
, ∀s ∈ (0, σ] .

So finally, for all s ∈ (0, σ] and i = 1, . . . , n, we have,∣∣∣∣λi(s)s

∣∣∣∣ ≤ max
{ |λ|
σ[1 ∧ (1− λ)]

∣∣∣λ < 1 eigenvalue of∇2η(x) with d(x) = σ
}

and we are done. �

As for every x ∈ Ω the gradient∇d(x) is a unit vector belonging to Nπ(x)M and constant
along the segment π(x) + s(x− π(x)), by using the identity

∇2η = d∇2d+∇d⊗∇d,

it follows that also∇2d(π(x)+s(x−π(x))) is diagonal in the same basis above, diagonalizing
∇2η(π(x)). Moreover, the eigenvalue associated to the eigenvector ∇d(x) is zero, (m − 1)
eigenvalues are equal to 1/s and the n remaining ones β1(s), . . . , βn(s) are bounded and
satisfy

(3.4) β′i(s) = −β2
i (s) ∀s ∈ (0, d(x)]

as βi(s) = λi(s)/s, for i = 1, . . . , n.
A straightforward consequence of Proposition 3.3 is the following result.

COROLLARY 3.4. Let x ∈ Ω and let Kx : Rn+m × Rn+m × Rn+m → R be the symmetric
3–linear form induced by∇3η(x). Then,

Kx(u, v, w) = 0

if at least two of the vectors u, v and w belong to Nπ(x)M .

We discuss now a while the geometric meaning of the eigenvalues λi(s) in Proposi-
tion 3.3. We let xs = x + sp (p is a unit vector orthogonal to TxM ) and we consider the
eigenvalues λ1(s), . . . , λn(s) of ∇2η(xs) strictly less than 1 with e1, . . . , en the corresponding
eigenvectors (independent of s) spanning TxM .

PROPOSITION 3.5. For any i = 1, . . . , n we have

lim
s→0+

λi(s)

s
= λi

and the values λi are the eigenvalues of the symmetric bilinear form

−
〈
B(x)(u, v)| p

〉
u, v ∈ TxM

with associated eigenvectors {ei}.
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PROOF. By the remark following the proof of Proposition 3.3, λi(s)/s are the eigenvalues
βi(s) of∇2d(xs), then the existence of the limits is immediate as the quotients λi(s)/s = βi(s)
are bounded and monotone, by (3.4), as s→ 0+.
Let L be the affine (n + 1)–dimensional space generated by TxM and p, passing through x.
Moreover, let Σ ⊂ L be the smooth n–dimensional manifold obtained projecting U ∩M on
L, for a suitable neighborhood U of x, and let B(x) be the second fundamental form of Σ at
x, viewing Σ as a surface of codimension one in L. We denote (see Section 1.1) by λ1, . . . , λn
the principal curvatures at x of Σ (with the orientation induced near x by p), defined as the
eigenvalues of the symmetric bilinear form

〈B(x)(u, v)| p〉 u, v ∈ TxΣ = TxM .

Under the assumption m = 1, we clearly have Σ = M and the property is a straightforward
consequence of the well known formula (see for instance [25, Lemma 14.17])

βi(s) =
−λi

1− sλi
∀s ∈ (0, d(x)]

for the eigenvalues βi(s) of∇2dΣ(xs) corresponding to eigenvectors in L (see also [19]).
In the general case, we notice that, by Proposition 3.1, the function ηΣ is smooth near x and

(3.5) lim sup
y→x, y∈L

|ηM (y)− ηΣ(y)|
|y − x|4

< +∞

since Σ is obtained projecting M on the space L, containing x+ TxM . By this limit we infer

lim
s→0+

∇2ηM (xs)−∇2ηΣ(xs)

s
= 0 .

As all the matrices are diagonal in the same basis, denoting by λi(s) the eigenvalues of
∇2ηΣ(xs) corresponding to the directions {ei}, the quotients λi(s)/s converge to the same
limit of λi(s)/s, that is, λi.

Finally, by (3.5) we have

∇3ηM (x)(u, v, p) = ∇3ηΣ(x)(u, v, p) ∀u, v ∈ TxM = TxΣ ,

hence, the relations in Proposition 3.9, that we will discuss in a while, yield〈
B(x)(u, v)| p〉 =

〈
B(x)(u, v)| p〉 ∀u, v ∈ TxM

as p ∈ NxM ∩NxΣ.
This shows that λi are the eigenvalues of −〈B(x)| p〉 and that {ei} are the corresponding
eigenvectors. �

REMARK 3.6. In particular, the sum of the eigenvalues βi(s) = λi(s)/s of ∇2d(xs) con-
verges as s → 0+ to the quantity −〈H(x)| p〉. This property has been used in [4] to extend
the level set approach (see [11, 18, 34]) to the evolution by mean curvature of surfaces of any
codimension.

For x ∈ M , we defined Pij(x) as the matrix of orthogonal projection P : Rn+m → Rn+m

on the tangent space and we saw that Pij(x) = ∇Mi xj . Actually, by Proposition 3.3, we have

Pij(x) = (δij − ηij(x)) ,
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since ηij(x) is the matrix of orthogonal projection onNxM . Notice that such formula defining
Pij(x) makes sense in the whole Ω, in this case, Proposition 3.3 implies

P (x)(Tπ(x)M) = Tπ(x)M, and KerP (x) = Nπ(x)M .

However, we advise the reader that in general P (x) is not the identity on Tπ(x)M (∇2eta is
the identity on Nπ(x)M ).

We now define the 3–tensor C with components (in the canonical basis)

Cijk(x) = ∇Mi Pjk(x) = ∇Mi ∇Mj xk ,
which is clearly symmetric in the last two indices.
Since for any x ∈M the matrix P (x) is the orthogonal projection on TxM , we can expect that
the tensor C(x) (encoding the “change” in the tangent plane) contains all information on the
curvature of M (see [26, 32]). In the following three proposition we will see that ∇3η(x), the
tensor C(x) and the second fundamental form B(x) are mutually connected by simple linear
relations.

PROPOSITION 3.7. The second fundamental form tensors B(x) and the tensor C(x) are related
for any x ∈M by the identities

(3.6) Bk
ij(x) = Pis(x)Cjsk(x) = Pjs(x)Cisk(x) , Cijk(x) = Bk

ij(x) + Bj
ik(x) .

Moreover, the mean curvature vector H(x) of M is given by

(3.7) Hk(x) =
n+m∑
s=1

Csks(x) .

PROOF. We follow [26]. Let x ∈M , u = ei, v = ej and let u′ = P (x)ei, v′ = P (x)ej be the
projections of u and v on TxM . We have then, at the point x ∈M ,

Bk
ij =

∂[Pei]
s

∂v′
(δsk − Psk) =

∂Pis
∂v′

(δsk − Psk) = ∇lPisPlj(δsk − Psk)

=∇Mj Pis(δsk − Psk) = ∇Mj Pik −∇Mj (PisPsk) + Pis∇Mj Psk
=∇Mj Pik −∇Mj Pik + +Pis∇Mj Psk
=Pis∇Mj Psk = PisCjsk

where we used the fact that P 2 = P on M . The other relation follows by the symmetry of B.
Now we prove the second identity in (3.6). Using the first identity and the symmetry of

P we get

Bk
ij + Bj

ik = PjsCisk + PksCisj

= Pjs∇Mi Psk + Pks∇Mi Psj
= ∇Mi (PjsPsk)

= ∇Mi Pjk
= Cijk .

Finally, we prove (3.7),

Hk = Bk
ii = PisCisk = Pis∇Mi Psk = ∇Ms Psk =

n+m∑
s=1

Csks .
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�

PROPOSITION 3.8. The tensor C(x) and ∇3η(x) are related for any x ∈M by the identities

(3.8) Cijk(x) = −Pil(x)ηljk(x) , ηijk(x) = −1

2

{
Cijk(x) + Cjki(x) + Ckij(x)

}
.

PROOF. The first identity is an easy consequence of the fact that∇2η(x) is the orthogonal
projection on NxM . To prove the second one, we write (omitting the dependence on x)

ηijk = − Cijk + (δis − Pis)ηsjk
= − Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)ηstk)
= − Cijk + (δis − Pis)(−Cjsk + (δjt − Pjt)(−Ckst + (δkl − Pkl)ηstl))
= − Cijk − Cjsk(δis − Pis)− Ckst(δis − Pis)(δjt − Pjt)

+ (δis − Pis)(δjt − Pjt)(δkl − Pkl)ηstl .

By Corollary 3.4, the last term is zero, so that (3.6) yields

ηijk = − Cijk − Cjki + CjskPis − Ckij + CkitPjt + CksjPsi − CkstPisPjt
= − Cijk − Cjki − Ckij + Bk

ij + Bj
ki + Bi

jk − PjtBt
ik .

Since B(ei, ek) ∈ NxM we have PjtBt
ik = 0, then exchanging the indices i and j in the above

formula, averaging and using the second identity in (3.6) we eventually get

ηijk = − Cijk − Cjki − Ckij +
1

2

{
Bk
ij + Bj

ki + Bi
jk + Bk

ji + Bi
kj + Bj

ik

}
= − 1

2

{
Cijk + Cjki + Ckij

}
.

�

PROPOSITION 3.9. The second fundamental form B(x) and ∇3η(x) are related for any x ∈ M
by the identities

(3.9) Bk
ij(x) = ∇k(ηisηsj − ηij)(x) , ηijk(x) = −Bk

ij(x)− Bi
jk(x)− Bj

ki(x) .

Moreover, the mean curvature vector H(x) of M is given by

H(x) = −∆(∇η)(x) .

PROOF. By Using relations (3.6) and (3.8) we can write each component Bk
ij of the second

fundamental form as a function of∇3η as follows,

Bk
ij = PjsCiks(3.10)

= −PjsPilηlks
= −(δjs − ηjs)(δil − ηil)ηlks
= −ηijk + ηsjηkis + ηliηkjl − ηjsηilηlks
= −ηijk + ηsjηkis + ηsiηkjs

= ∇k(ηisηsj − ηij) .
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Conversely, by the second identities in (3.8) and (3.6) we get

ηijk = − 1

2

{
Cijk + Cjki + Ckij

}
= − 1

2

{
Bk
ij + Bj

ik + Bi
jk + Bk

ji + Bj
ki + Bi

kj

}
= − Bk

ij + Bi
jk + Bj

ki .

By the first formula, we have

Hk = −ηkii +∇k
(n+m∑
i,s=1

η2
is

)
for every index k = 1, . . . , n+m. Since∇2η(x) is symmetric,

∑n+m
i,s=1 η

2
is(x) coincides with the

sum of the squares of the eigenvalues of∇2η(x). By Proposition 3.3, this quantity is equal to
n+ o(|x− x0|) near every point x0 ∈ M , hence ∇k

(∑n+m
i,s=1 η

2
is

)
(x) vanishes on M . It follows

that

(3.11) H(x) = −∆(∇η)(x) ∀x ∈M .

�

COROLLARY 3.10. Let x ∈ M and let Kx : Rn+m × Rn+m × Rn+m → R be the symmetric
3–linear form induced by∇3η(x). Then,

Kx(u, v, w) = 0

if all the three vectors u, v and w belong to Tπ(x)M .

PROOF. It follows by the second relation in (3.9), as the second fundamental form takes
values in the normal space to M at x. �

From now on, instead of dealing with the squared distance function we will consider the
function

AM (x) =
|x|2 − [dM (x)]2

2
,

clearly smooth as ηM in the neighborhood Ω of M . We set

AMi1...ik(x) =
∂kAM (x)

∂xi1 . . . ∂xik

for the derivatives of AM in Ω.
We define the k–derivative symmetric tensor Ak(x) working on the k–uple of vectors vi ∈
Rn+m, where vi = vji ej , as follows

Ak(x)(v1, . . . , vk) = AMi1...ik(x)vi11 . . . vikk .

By sake of simplicity, we dropped the superscript M on Ak, by the same reason, we will also
often avoid to indicate the point x ∈M in the sequel.

The greater convenience ofAM can be explained noticing that∇2AM (x), for x ∈M , is the
projection matrix on TxM and this quantity often appears in the computation of tangential
gradients.

We reformulate now the previous formulas in terms of AM .
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PROPOSITION 3.11. The following properties of AM hold,

(a) for any x ∈ Ω, the vector∇AM (x) coincide with the projection point πM (x) of x on M .
Moreover,∇2AM (x) is zero on Nπ(x)M and maps Tπ(x)M onto Tπ(x)M .
If x ∈M , then∇2AM (x) is the matrix P of orthogonal projection on TxM ;

(b) for any x ∈ Ω, the 3–linear form Kx : Rk × Rk × Rk → R given by

Kx(u, v, w) =

n+m∑
i,j,k=1

AMijk(x)uivjwk

is equal to zero if at least two of the 3 vectors u, v, w, are normal to M at π(x) = ∇AM (x)
or if x ∈M and the three vectors are all tangent;

(c) for x ∈ M , the second fundamental form B(x) and the mean curvature vector H(x) are
related to the derivatives of AM (x) by

(3.12) Bk
ij(x) = AMjs (x)AMil (x)AMslk(x) =

(
δkl −AMkl (x)

)
AMijl(x),

(3.13) Hk(x) =

n+m∑
j=1

AMjkj(x),

(3.14) ∇Mi AMjk(x) = Bk
ij(x) + Bj

ik(x).

PROOF. The first statement follows by Proposition 3.3 and the second one by Corol-
lary 3.4. The first equality in (3.12) and (3.13) follow by relations (3.11) and (3.10). The sec-
ond equality in (3.12) can be obtained multiplying both sides of the second relation in (3.9)
by the normal projection (I − ∇2AM ). Finally (3.14) is a restatement of the second equality
in (3.6). �

By means of the relations in Propositions 3.7, 3.8, 3.9 we have the following estimates.

COROLLARY 3.12. At every point of M we have,

|C|2 ≤ |∇3AM |2 = 3|B|2 ≤ 3|C|2 .

PROOF. We have only to show the identity |∇3AM |2 = 3|B|2, the other inequalities are
immediate as the projection P is a 1–Lipschitz map.
We compute in a orthonormal basis {ei} such that 〈e1, . . . , en〉 = TxM , by means of the
second relation in (3.9), and keeping in mind that the second fundamental form B takes
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values in the normal space NxM ,

|∇3AM |2 =

n∑
i,j,k=1

|ηijk|2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|ηijk|2 +
∑

n+1≤j≤n+m
1≤i,k≤n

|ηijk|2 +
∑

n+1≤k≤n+m
1≤i,j≤n

|ηijk|2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|Bk
ij + Bi

jk + Bj
ki|

2 +
∑

n+1≤j≤n+m
1≤i,k≤n

|Bk
ij + Bi

jk + Bj
ki|

2

+
∑

n+1≤k≤n+m
1≤i,j≤n

|Bk
ij + Bi

jk + Bj
ki|

2

=
∑

n+1≤i≤n+m
1≤j,k≤n

|Bi
jk|2 +

∑
n+1≤j≤n+m

1≤i,k≤n

|Bj
ki|

2 +
∑

n+1≤k≤n+m
1≤i,j≤n

|Bk
ij |2

= 3
∑

n+1≤i≤n+m
1≤j,k≤n

|Bi
jk|2

= 3|B|2 .

�

4. Higher Order Relations

In this section we work out some properties, about the higher derivatives of the square
of the distance function from a submanifold, in particular the relations with the covariant
derivatives of the second fundamental form. The main result here is a recurrence formula
for Ak (Proposition 4.1), that is, the tensor of k–derivatives of the squared distance function
from M , once its action is split on tangent and normal vectors. Such formula is crucial to get
“structure information” and estimates on the tensors Ak (Corollary 4.3 and Proposition 4.6).

PROPOSITION 4.1. For every k ≥ 2 and for every s ∈ {0, . . . k} there exists a family pk,sj1...jk−s of
symmetric polynomial tensors of type (s, 0) on M , where j1, . . . , jk−s ∈ {1, . . . , n+m}, which are
contractions of the second fundamental form B and its covariant derivatives with the metric tensor g,
such that

Ak(X1, . . . , Xs, N1, . . . , Nk−s) = pk,sj1...jk−s(X1, . . . , Xs)N
j1
1 . . . N

jk−s
k−s

for every s–uple of tangent vectors Xh and (k − s)–uple of normal vectors Nh in Rn+m (with the
obvious interpretation if s = 0 or s = k, that is, for instance in this latter case the symbols indexed
by 1, . . . , k − s are not present in the formulas).
Moreover, the tensors pk,sj1...jk−s are invariant by exchange of the j–indices and the maximum order

of differentiation of B which appears in every pk,sj1...jk−s is at most k − 3, when k ≥ 3. Considering

the tangent plane at any point x ∈ M also as a subset of Rn+m, the polynomial tensors pk,sj1...jk−s are
expressed in the coordinate basis of the Euclidean space as follows

pk,sj1...jk−s(X1, . . . , Xs)N
j1
1 . . . N

jk−s
k−s = pk,sj1...jk−s,i1...isX

i1
1 . . . Xis

s N
j1
1 . . . N

jk−s
k−s .
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Then, a family of tensors satisfying the above properties can be defined recursively according to the
following formulas

p2,0
j1j2

= p2,1
j1,i1

= 0 , p2,2
i1i2

= δi1i2(4.1)

pk,0j1...jk = pk,1j1...jk−1,i1
= 0 for every k ≥ 2(4.2)

pk+1,s
j1...jk−s+1,i0i1...is−1

= (∇pk,s−1
j1...jk−s+1

)i0i1...is−1 if 2 ≤ s < k + 1(4.3)

−
k−s+1∑
h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1,i1...is−1

Bjh
ri0

−
s−1∑
h=1

pk,s−2
rj1...jk−s+1,i1...ih−1ih+1...is−1

Br
i0ih

+
k−s+1∑
h=1

pk,sj1...jh−1jh+1...jk−s+1,i1...is−1r
Bjh
ri0

pk+1,k+1
i0i1...ik+1

=∇pk,ki0i1...ik −
k∑

h=1

pk,k−1
r,i1...ih−1ih+1...ik

Br
i0ih

.(4.4)

PROOF. If k = 2 we have immediately

A2(N1, N2) = 0, A2(X1, N1) = 0, A2(X1, X2) = Xi
1X

i
2 = δi1i2X

i1
1 X

i2
2

since X1 and X2 are tangent and A2 is the projection on the tangent space. Hence, for-
mula (4.1) follows.
We argue now by induction on k ≥ 2. When s = 0 the valueAk(N1, . . . , Nk)(x) depends only
on the function AM on the m–dimensional normal subspace to M at x, and on this subspace
AM is identically zero, hence the first equality in (4.2) is proved.
Suppose now that s ∈ {1, . . . , k + 1}, we extend the vectors Xh ∈ TxM and Nh ∈ NxM to a
family of local vector fields, respectively tangent and normal to M , then

Ak+1(X0, X1, . . . , Xs−1, N1, . . . , Nk−s+1) =
∂

∂X0

(
Ak(X1, . . . , Xs−1, N1, . . . , Nk−s+1)

)
−

s−1∑
h=1

Ak
(
X1, . . . Xh−1,

∂Xh

∂X0
, Xh+1, . . . , Xs−1, N1, . . . , Nk−s+1

)

−
k−s+1∑
h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

∂Nh

∂X0
, . . . , Nk−s+1

)
where the last line is not present in the special case s = k + 1 and the second line is not
present if s = 1. In this last case, we have

Ak+1(X0, N1, . . . , Nk) =
∂

∂X0

(
Ak(N1, . . . , Nk)

)
−

k∑
h=1

Ak
(
N1, . . . ,

∂Nh

∂X0
, . . . , Nk

)
= 0

since the first term of the right member is zero by the first equality in (4.2) and, after decom-
posing ∂Nh

∂X0
in tangent and normal part, the tangent term is zero by induction and the normal
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term is zero for (4.2) again. This shows the second equality in (4.2).
So we suppose 1 < s < k + 1, by the inductive hypothesis,

Ak(X1, . . . , Xs−1, N1, . . . , Nk−s+1) = pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N j1
1 . . . N

jk−s+1

k−s+1

thus, differentiating along X0, which is a tangent field, we obtain

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=
∂

∂X0

(
pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N j1
1 . . . N

jk−s+1

k−s+1

)
−

s−1∑
h=1

Ak
(
X1, . . . ,

(∂Xh

∂X0

)M
, . . . , Xs−1, N1, . . . , Nk−s+1

)
−

s−1∑
h=1

Ak
(
X1, . . . ,

(∂Xh

∂X0

)⊥
, . . . , Xs−1, N1, . . . , Nk−s+1

)

−
k−s+1∑
h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

(∂Nh

∂X0

)M
, . . . , Nk−s+1

)

−
k−s+1∑
h=1

Ak
(
X1, . . . , Xs−1, N1, . . . ,

(∂Nh

∂X0

)⊥
, . . . , Nk−s+1

)
.

We use now the symmetry of Ak and we substitute recursively pk,s, pk,s−1 and pk,s−2 to Ak,
according to the number of tangent vectors inside Ak,

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=
∂

∂X0

(
pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)
)
N j1

1 . . . N
jk−s+1

k−s+1

+

k−s+1∑
h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N j1
1 . . .

∂N jh
h

∂X0
. . . N

jk−s+1

k−s+1

−
s−1∑
h=1

pk,s−1
j1...jk−s+1

(X1, . . . ,∇X0Xh, . . . , Xs−1)N j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑
h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)
[(∂Xh

∂X0

)⊥]r
N j1

1 . . . N
jk−s+1

k−s+1

−
k−s+1∑
h=1

pk,sj1...jh−1jh+1...jk−s+1

(
X1, . . . , Xs−1,

(∂Nh

∂X0

)M)
N j1

1 . . . N
jh−1

h−1 N
jh+1

h+1 . . . N
jk−s+1

k−s+1

−
k−s+1∑
h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N j1
1 . . .

[(∂Nh

∂X0

)⊥]jh
. . . N

jk−s+1

k−s+1 .
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Adding the first and the third line on the right hand side we get the covariant derivative of
the tensor pk,s−1

j1...jk−s+1
times N j1

1 . . . N
jk−s+1

k−s+1 , adding the second and the last line we get

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=∇pk,s−1
j1...jk−s+1

(X0, X1, . . . , Xs−1)N j1
1 . . . N

jk−s+1

k−s+1

+

k−s+1∑
h=1

pk,s−1
j1...jk−s+1

(X1, . . . , Xs−1)N j1
1 . . .

[(∂Nh

∂X0

)M]jh
. . . N

jk−s+1

k−s+1

−
s−1∑
h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)
[(∂Xh

∂X0

)⊥]r
N j1

1 . . . N
jk−s+1

k−s+1

−
k−s+1∑
h=1

pk,sj1...jh−1jh+1...jk−s+1

(
X1, . . . , Xs−1,

(∂Nh

∂X0

)M)
N j1

1 . . . N
jh−1

h−1 N
jh+1

h+1 . . . N
jk−s+1

k−s+1 .

Taking now into account that

[(∂Nh

∂X0

)M]r
=
[〈∂Nh

∂X0
,
∂

∂xi

〉 ∂

∂xi

]r
= −

〈
Nh,

∂

∂X0

∂

∂xi

〉〈 ∂

∂xi
, er

〉
= −Bjh

ri0
Xi0

0 N
jh
h ,

where
{

∂
∂xi

}
i=1,...,n

is a basis of the tangent space of M , and

[(∂Xh

∂X0

)⊥]r
= Br

i0ih
Xi0

0 X
ih
h ,

substituting, we get

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

=∇pk,s−1
j1...jk−s+1

(X0, X1, . . . , Xs−1)N j1
1 . . . N

jk−s+1

k−s+1

−
k−s+1∑
h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1

(X1, . . . , Xs−1)Bjh
ri0
Xi0

0 N
j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑
h=1

pk,s−2
rj1...jk−s+1

(X1, . . . , Xh−1, Xh+1, . . . , Xs−1)Br
i0ih

Xi0
0 X

ih
h N

j1
1 . . . N

jk−s+1

k−s+1

+
k−s+1∑
h=1

pk,sj1...jh−1jh+1...jk−s+1
(X1, . . . , Xs−1,B

jh
ri0
Xi0

0 er)N
j1
1 . . . N

jk−s+1

k−s+1 .
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Then, expressing the tensors in coordinates, we have

Ak+1(X0,X1, . . . , Xs−1, N1, . . . , Nk−s+1)

= (∇pk,s−1
j1...jk−s+1

)i0i1...is−1X
i0
0 X

i1
1 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

−
k−s+1∑
h=1

pk,s−1
j1...jh−1rjh+1...jk−s+1,i1...is−1

Bjh
ri0
Xi0

0 . . . X
is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

−
s−1∑
h=1

pk,s−2
rj1...jk−s+1,i1...ih−1ih+1...is−1

Br
i0ih

Xi0
0 . . . X

is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1

+
k−s+1∑
h=1

pk,sj1...jh−1jh+1...jk−s+1,i1...is−1r
Bjh
ri0
Xi0

0 . . . X
is−1

s−1 N
j1
1 . . . N

jk−s+1

k−s+1 ,

which is formula (4.3).
In the special case s = k + 1, to get formula (4.4), we just have to repeat the computations
dropping all the lines containing sums like

∑k−s+1
h=1 ..., which are not present.

Finally, assuming inductively that the polynomial tensors pk,s, pk,s−1 and pk,s−2 are symmet-
ric in the j–indices and contain covariant derivatives of B only up to the order k − 3 (when
k ≥ 3), also the claims about the symmetry and the order of the derivatives of B follow.

�

EXAMPLE 4.2. We compute some pk,s as a consequence of this proposition.
(1) When k = 2 we saw that

p2,0
j1j2

= 0, p2,1
j1

= 0, p2,2 = g .

(2) When k = 3 we have, by means of formulas (4.2) and (4.3),

p3,0
j1j2j3

= 0, p3,1
j1j2

= 0

p3,2
j1,i1i2

= p2,2
i2r

Bj1
ri1

= Bj1
i1i2

p3,3
i1i2i3

= (∇p2,2)i1i2i3 + p2,1
r,i2

Br
i1i3 + p2,1

r,i3
Br
i1i2 = 0

that is,
p3,2
j1

= Bj1 and p3,3 = 0 .

(3) When k = 4 we have,

p4,0
j1j2j3j4

= 0, p4,1
j1j2j3

= 0

p4,2
j1j2,i1i2

= p3,2
j1,i1r

Bj2
ri2

+ p3,2
j2,i1r

Bj1
ri1

= Bj1
i1r

Bj2
ri2

+ Bj2
i2r

Bj1
ri1

p4,3
j1,i1i2i3

= (∇p3,2
j1

)i1i2i3 + p3,2
r,i2i3

Bj1
ri1

= (∇p3,2
j1

)i1i2i3 + Br
i2i3Bj1

ri1
= (∇Bj1)i1i2i3

since we contracted a normal vector with a tangent one,

p4,4
i1i2i3i4

= − p3,2
r i3i4Br

i1i2 − p
3,2
r i2i4Br

i1i3 − p
3,2
r i2i3Br

i1i4

= − Br
i3i4Br

i1i2 − Br
i2i4Br

i1i3 − Br
i2i3Br

i1i4 .

Proposition 4.1 allows us to write Ak in terms of the tensors pk,s and the projections on
the tangent and normal spaces (hence contracting with the scalar product of Rn+m), so we
get the following corollary.
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COROLLARY 4.3. For every k ≥ 3 the symmetric tensor Ak can be expressed as a polynomial
tensor in B and its covariant derivatives, contracted with the scalar product of Rn+m.
The maximum order of differentiation of B which appears in Ak is k − 3. More precisely, the only
tensors among the pk,s containing such highest derivative are pk,k−1

j1
, given by

pk,k−1
j1

= ∇k−3Bj1 + LOT .

where we denoted with LOT (lower order terms) a polynomial term containing only derivatives of
B up to the order k-4.

PROOF. Looking at the tensors with the derivative of B of maximum order among the
pk,sj1...jk−s , by formula (4.3) and the fact that the only non zero polynomials p3,s

j1...j3−s,i1...is
are

p3,2
j1,i1i2

= Bj1
i1i2

(see Example 4.2), it is clear that they come from the derivative ∇pk−1,k−2
j1

.
Iterating the argument, the leading term in pk,k−1

j1
is given by∇k−3p3,2

j1
= ∇k−3Bj1 . �

REMARK 4.4. We can see in Example 4.2 that when k = 3 and 4, the lower order term
which appears above is zero. Actually, by a tedious computation, one can see that for k ≥ 5
this is no more true.

COROLLARY 4.5. For every k ≥ 3 we have the following estimates at every point x ∈M ,

C1|∇k−3B|2 + LOT1 ≤ |Ak|2 ≤ C2|∇k−3B|2 + LOT2

where the two constantsC1 andC2 depends only on k, n andm, and LOT1 and LOT2 are polynomial
terms containing only derivatives of B up to the order k-4.
Moreover, for a couple of “universal” functions F1 and F2 depending only on k, n and m, we have

k∑
i=3

|Ai|2 ≤F1

(k−3∑
i=0

|∇iB|2
)

k−3∑
i=0

|∇iB|2 ≤F2

( k∑
i=3

|Ai|2
)
.

PROOF. The first estimates follow by Corollary 4.3 and the structure of Ak obtained in
Proposition 4.1. The second statement is obtained by such estimates, by iteration. �

The decomposition of Ak in its tangent and normal components is very useful in study-
ing in even more detail the norm of Ak.

Fixing at a point x ∈M an orthonormal basis {e1, . . . , en+m} of Rn+m such that {e1, . . . , en}
is a basis of TxM , we have obviously

|Ak|2 =
∑

1≤i1,...,ik≤n+m

[Ak(ei1 , . . . , eik)]2

≥
∑

1≤i1,i2≤n
n<i3,...,ik≤n+m

[Ak(ei1 , ei2 , ei3 , . . . , eik)]2

≥
∑

n<j≤n+m

∑
1≤i1,i2≤n

[Ak(ei1 , ei2 , ej , . . . , ej)]
2

=
∑

n<j≤n+m

∑
1≤i1,i2≤n

[pk,2j...j,i1i2 ]2 ,
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that is,
|Ak|2 ≥

∑
n<j≤n+m

|pk,2j...j |
2 .

We analyse this last term by means of formula (4.3). We have p2,2 = g and for every k ≥ 2,

pk+1,2
j...j,i0i1

=
k−1∑
h=1

pk,2j...j,i1rB
j
ri0

= (k − 1) pk,2j...j,i1rB
j
ri0
.

Then, by induction, it is easy to see that

pk,2j...j,i0i1 = (k − 2)! Bj
i0r1

Bj
r1r2 . . .B

j
rk−3i1

hence, as the bilinear form Bj is symmetric, denoting with λjs its eigenvalues at the point
x ∈M , we conclude

|pk,2j...j |
2 = [(k − 2)!]2

n∑
s=1

(λjs)
2(k−2) ≥ C̃|Bj |2k−4 .

Coming back to our estimate,

|Ak|2 ≥ C̃
∑

n<j≤n+m

|Bj |2k−4 ≥ C
( ∑
n<j≤n+m

|Bj |2
)k−2

= C|B|2k−4 .

PROPOSITION 4.6. The following estimate holds,

|Ak|2 ≥ C|B|2k−4

where C is a universal constant depending only on k, n and m.

5. The Distance Function on Riemannian Manifolds

In this section we discuss more in detail some analytic properties of the distance function
that we state without proof in Section 3.
We consider in full generality the distance function dK from a closed set K of a Riemann-
ian manifold (M, g) and we analyse the connection with the theory of viscosity solutions of
Hamilton–Jacobi equations. Indeed, we will see that the distance function is a viscosity so-
lution of the following Hamilton–Jacobi problem{

|∇u| = 1 in M \K ,

u = 0 on ∂K

and we will use the property of semiconcavity shared by such solutions to analyse the prop-
erties of dK (for more details see [33]).

5.1. Stationary Hamilton–Jacobi Equations on Manifolds. LetM be a smooth and con-
nected, n–dimensional, differentiable manifold.

We consider the following Hamilton–Jacobi problem in Ω ⊂M ,{
H(x, du(x), u(x)) = 0 in Ω ,

u = u0 on ∂Ω

where H : T ∗Ω× R→ R and T ∗ denotes the cotangent bundle.



NOTES ON THE DISTANCE FUNCTION – V4 27

DEFINITION 5.1. Given a continuous function u : Ω→ R and a point x ∈M , the superdif-
ferential of u at x is the subset of T ∗xM defined by

∂+u(x) =

{
dϕ(x) |ϕ ∈ C1(M), ϕ(x)− u(x) = min

M
ϕ− u

}
.

Similarly, the set

∂−u(x) =

{
dψ(x) |ψ ∈ C1(M), ψ(x)− u(x) = max

M
ψ − u

}
is called the subdifferential of u at x.
Notice that it is equivalent to replace the max (min) on all M with the maximum (minimum)
in an open neighborhood of x in M .

It is easy to see that ∂+u(x) and ∂−u(x) are both nonempty if and only if u is differen-
tiable at x ∈M . In this case we have

∂+u(x) = ∂−u(x) = {du(x)} .
We list here without proof some of the standard properties of the sub and superdifferentials
which will be needed later.

PROPOSITION 5.2. If ψ : N → M is a map between the smooth manifolds N and M which is
C1 around x ∈ N , then

∂+(u ◦ ψ)(x) ⊃ ∂+u(ψ(x)) ◦ dψ(x) = {v ◦ dψ(x) | v ∈ ∂+u(ψ(x))} .
If ψ is a local diffeomorphism near x, the inclusion becomes an equality. An analogous statement
holds for ∂−.

PROPOSITION 5.3. If θ : R→ R is a C1 function such that θ′(u(x)) ≥ 0, then

∂+(θ ◦ u)(x) ⊃ dθ(u(x)) ◦ ∂+u(x) = {dθ(u(x)) ◦ v | v ∈ ∂+u(x)} ,
similarly for ∂−. If θ′(u(x)) > 0 then the inclusion is an equality.

For a locally Lipschitz function u on a Riemannian manifold (M, g), ∂+u(x) and ∂−u(x)
are compact convex sets, almost everywhere coinciding with the differential of the function
u, by Rademacher’s theorem.
For a generic continuous function uwe prove in the next proposition that ∂+u(x) and ∂−u(x)
are not empty in a dense subset.

PROPOSITION 5.4. Let u : Ω → R be a continuous function on an open subset Ω of M . Then
the subdifferential ∂−u(x) (the superdifferential ∂+u(x)) is not empty for every x in a dense subset
of Ω.

PROOF. It is always possible to endow M with a Riemannian structure giving a metric
d(· , ·) on M which generates the same topology.
Consider a generic point y ∈ Ω and a geodesic ball B contained in Ω with center y. If the
ball B is small enough, the function x 7→ d2(x, y) is smooth in B. Taking a large positive
constant A, the function FA(x) = u(x) + Ad2(x, y) has a local minimum at a point xA in the
interior of B. At xA the subdifferential of the function FA must contain the origin of T ∗xAM ,
hence, being d2(x, y) differentiable in the ball B, the differential of−d2(x, y) at xA belongs to
∂−u(xA). As the point y and the ball B were arbitrarily chosen, the set of points where the
subdifferential of u is not empty is dense in Ω.
The same argument holds for the superdifferential of u, considering the function −u. �
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Now we introduce the notion of semiconcavity which will play a central role.

DEFINITION 5.5. Given an open set Ω ⊂ Rn, a continuous function u : Ω → R is called
locally semiconcave if, for any open convex set Ω′ ⊂ Ω with compact closure in Ω, there exists
a constant C such that one of the following three equivalent conditions is satisfied,

(1) ∀x, h with x, x+ h, x− h ∈ Ω′,

u(x+ h) + u(x− h)− 2u(x) ≤ 2C|h|2 ,
(2) u(x)− C|x|2 is a concave function in Ω′,
(3) D2u ≤ 2C Id in Ω′, as distributions (Id is the n× n identity matrix).

In order to give a meaning to the concept of semiconcavity when the ambient space is a
differentiable manifold M , we analyse the stability of this property under composition with
C2 maps.

PROPOSITION 5.6. Let Ω and Ω′ two open subsets of Rn. If u : Ω → R is a Lipschitz function
such that u(x) − C |x|2 is concave and ψ : Ω′ → Ω is a C2 function with bounded first and second
derivatives, then u ◦ ψ : Ω′ → R is a Lipschitz function and u ◦ ψ(y) − C ′|y|2 is concave, for a
suitable constant C ′.

The proof is straightforward. Then, the following definition is well–posed.

DEFINITION 5.7. A continuous function u : M → R is called locally semiconcave if, for any
local chart ψ : Rn → Ω ⊂M , the function u ◦ ψ is locally semiconcave in Rn.

The importance of semiconcave functions in connection with the generalized differen-
tials is expressed by the following proposition (see [10]).

PROPOSITION 5.8. Let the function u : M → R be locally semiconcave, then the superdifferen-
tial ∂+u is not empty at each point, moreover, ∂+v is upper semicontinuous, namely

xk → x, vk → v, vk ∈ ∂+u(xk) =⇒ v ∈ ∂+u(x) .

In particular, if the differential du exists at every point of Ω ∈M , then u ∈ C1(Ω).

Now we introduce the definition of viscosity solution.
Let Ω be an open subset of M and H, called Hamiltonian function, a continuous real function
on T ∗Ω× R. We are interested in the following Hamilton–Jacobi problem

(5.1) H(x, du(x), u(x)) = 0 in Ω .

DEFINITION 5.9. We say that a continuous function u is a viscosity solution of equa-
tion (5.1) if for every x ∈ Ω,

(5.2)

{
H(x, v, u(x)) ≤ 0 ∀v ∈ ∂+u(x) ,

H(x, v, u(x)) ≥ 0 ∀v ∈ ∂−u(x) .

If only the first condition is satisfied (respectively, the second) u is called a viscosity subsolu-
tion (respectively, a viscosity supersolution).

If Ω′ is an open subset of another smooth differentiable manifold N and ψ : Ω′ → Ω
is a C1 local diffeomorphism, we define the pull–back of the Hamiltonian function ψ∗H :
T ∗Ω′ × R→ R by

ψ∗H(y, v, r) = H(ψ(y), v ◦ dψ(y)−1, r) .

Taking into account Proposition 5.2, the following statement is obvious.
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PROPOSITION 5.10. If u is a viscosity solution of H = 0 in Ω ⊂ M and ψ : Ω′ → Ω is a C1

local diffeomorphism, then u ◦ ψ is a viscosity solution of ψ∗H = 0 in Ω′ ⊂ N .

5.2. The Distance Function from a Closed Subset of a Manifold. From now on, (M, g)
will be a smooth, connected and complete, Riemannian manifold without boundary, of di-
mension n.

We consider a closed and not empty subset K and the distance function dK : M → R
from K, which is defined as the infimum of the lengths of the C1 curves starting at x and
ending at K. As M is complete, by the Theorem of Hopf–Rinow, such infimum is reached
by at least one curve which will be a smooth geodesic. We will also consider the function
ηK = [dK ]2/2 as in the previous sections.

In the following we will denote the distance between two points x, y ∈ M with d(x, y)
and the exponential map of (M, g) with Exp : TM × R → M . For simplicity, we will write |v|
for the modulus of a vector v ∈ TM , defined as

√
g(v, v).

PROPOSITION 5.11. The distance function dK is the unique viscosity solution of the following
Hamilton–Jacobi problem

(5.3)

{
|∇u|2 − 1 = 0 in M \K ,

u = 0 on K

in the class of continuous functions bounded from below.
The function ηK is the unique viscosity solution of

(5.4)

{
|∇u|2 − 2u = 0 in M ,

u = 0 on K

in the class of continuous functions on M such that their zero set is K.

REMARK 5.12. The restriction to lower bounded functions is necessary, ‖x‖ and −‖x‖
are both viscosity solutions of Problem (5.3) with M = Rn and K = {0}. Moreover, the
completeness of M plays an important role here, if M is the open unit ball of Rn the same
example shows that the uniqueness does not hold.
Notice also that every function [dH ]2/2 where H is a closed subset of M with H ⊃ K, is a
viscosity solution of Problem (5.4), equal to zero on K.

PROOF. The quantity dK(x) is the minimum time t ≥ 0 for any curve γ to reach a point
γ(t) ∈ K, subject to the conditions γ(0) = 0 and |γ′| ≤ 1; the function dK is then the value
function of a “minimum time problem”; this proves that dK is also a viscosity solution of
Problem (5.3), by well known results (see for example [5, Chap. 4, Prop. 2.3]). Then we show
that the function ηK is a solution of Problem (5.4).
First of all, notice that the distance function from K is a 1–Lipschitz function, hence ηK is
locally Lipschitz.
As dK is 1–Lipschitz, at every point of K the function ηK is differentiable and its differential
is zero. Hence, the definition of viscosity solution holds also for points belonging to K.
In order to prove the thesis, it is then sufficient to test conditions (5.2) on the generalized
differentials at the points of the open set M \K.
Since ηK is positive in M \K, applying Proposition 5.3 with the function θ(t) =

√
2t, we see
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that the function ηK is a viscosity solution of

g

(
∇u√

2u
,
∇u√

2u

)
− 1 = 0

in M \K. Being there positive, it also solves

g(∇u,∇u)− 2u = 0

in M \K. This fact together with the previous remark about the behavior of ηK at the points
of K gives the claim.

Suppose now that u is a viscosity solution of Problem (5.3) then, u is also a solution of{
|∇u| − 1 = 0 in M \K ,

u = 0 on K .

As in the work of Kružhkov [29], we consider the function v = −e−u which, by Proposi-
tion 5.3, turns out to be a viscosity solution of

(5.5)

{
|∇v|+ v = 0 in M \K ,

v = −1 on K

moreover, |v| ≤ e− inf u.
We establish an uniqueness result for this last problem in the class of bounded functions
v, which clearly implies the first uniqueness result. We remark that the proof is based on
similar ones in [13, 14, 24].
We argue by contradiction, suppose that u and v are two bounded solutions of (5.5), |u|,
|v| ≤ C, and that at a point x we have u(x) ≥ 2ε+ v(x) with ε > 0.
Let b(x, y) : M ×M → R be a smooth function satisfying

• b ≥ 0
• |∇xb(x, y)|, |∇yb(x, y)| ≤ 2
• supM×M |d(x, y)− b(x, y)| <∞

such a function can be obtained smoothing the distance function in M ×M .
We fix a point x0 inK and we define the smooth functionB(x) = b(x, x0)2. By the properties
of b and the boundedness of u and v, the following function Ψ : M ×M → R

Ψ(x, y) = u(x)− v(y)− λd(x, y)2 − δ B(x)− δ B(y)

has a maximum at a point x̂, ŷ (dependent on the positive parameters δ and λ) and such
maximum Ψ(x̂, ŷ) is less than 2C. Hence, the function

(5.6) x 7→ [v(ŷ) + λd(x, ŷ)2 + δ B(x) + δ B(ŷ)]− u(x)

has a minimum at x̂ while

(5.7) y 7→ [u(x̂)− λd(x̂, y)2 − δ B(x̂)− δ B(y)]− v(y)

has a maximum at ŷ.
If 2δ ≤ ε/B(x) then

Ψ(x̂, ŷ) ≥ Ψ(x, x) ≥ 2ε− 2δB(x) ≥ ε
hence, we get

(5.8) δB(x̂) + δB(ŷ) + λd(x̂, ŷ)2 + ε ≤ u(x̂)− v(ŷ) ≤ 2C .
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This shows that, for a fixed δ, the pair x̂, ŷ is contained in a bounded set and, if λ goes to +∞
the distance between x̂ and ŷ goes to zero. Possibly passing to a subsequence for λ going to
infinity, x̂ and ŷ converge to a common limit point z which cannot belong to K, otherwise
we would get ε ≤ u(z)− v(z) = 0, thus, for some λ large enough also x̂ and ŷ do not belong
to K.
As the function d2(x, y) is smooth in Bz × Bz ⊂ M ×M , where Bz is a small geodesic ball
around z, choosing a suitable λ large enough we can differentiate the functions inside the
square brackets in equations (5.6) and (5.7) obtaining

v̂ = δ∇B(x̂) + λ∇xd2(x̂, ŷ) ∈ ∂+u(x̂) ,

ŵ = −δ∇B(ŷ)− λ∇yd2(x̂, ŷ) ∈ ∂−v(ŷ) .

By Definition 5.9 we have that |v̂|+ u(x̂) ≤ 0 and |ŵ|+ v(ŷ) ≥ 0, hence

u(x̂)− v(ŷ) + |v̂| − |ŵ| ≤ 0 .

Moreover,

|v̂| − |ŵ| =
∣∣δ∇B(v̂) + λ∇xd2(x̂, ŷ)

∣∣− ∣∣δ∇B(ŷ) + λ∇yd2(x̂, ŷ)
∣∣

≥
∣∣λ∇xd2(x̂, ŷ)

∣∣− ∣∣λ∇yd2(x̂, ŷ)
∣∣− |δ∇B(ŷ)| − |δ∇B(x̂)|

= 2λd(x̂, ŷ) |∇xd(x̂, ŷ)| − 2λd(x̂, ŷ) |∇yd(x̂, ŷ)| − |δ∇B(ŷ)| − |δ∇B(x̂)|
= 2λd(x̂, ŷ)− 2λd(x̂, ŷ)− |δ∇B(ŷ)| − |δ∇B(x̂)|
=− |δ∇B(ŷ)| − |δ∇B(x̂)|

which implies,
u(x̂)− v(ŷ)− δ|∇B(ŷ)| − δ|∇B(x̂)| ≤ 0 .

Finally, we have that

δ|∇B(x̂)| = 2δ|b(x̂, x0)∇b(x̂, x0)| ≤ 4δ
√
B(x̂)

and using the estimate δB(x̂) ≤ 2C which follows from equation (5.8),

δ|∇B(x̂)| ≤ 8
√

2δC ≤ ε/4
if δ was chosen small enough. Holding the same for ŷ, we conclude that

u(x̂)− v(ŷ)− ε/2 ≤ 0

which is in contradiction with the fact that u(x̂)− v(ŷ) ≥ ε.
About the second uniqueness claim, if u is a continuous viscosity solution of Prob-

lem (5.4) then, by Proposition 5.4 the superdifferential of u is not empty in a dense subset of
M \K, hence, directly by the equation and by continuity, u is non negative. By the hypothe-
sis on its zero set we conclude that u is positive in all M \K. Composing u with the function
t 7→

√
2t, we see that

√
2u is a positive, continuous viscosity solution of Problem (5.3), then

it must coincide with dK , by the previous result. It follows that u = ηK . �

We now study the singular set of dK ,

Sing =
{
x ∈M | ηK is not differentiable at x

}
.

REMARK 5.13. In this definition we used the squared distance function instead of the
distance in order to avoid to consider also the points of the boundary of K, which are singu-
lar for dK but not for ηK . It is trivial to see that outside K the distance and its square have
the same regularity.



32 CARLO MANTEGAZZA

PROPOSITION 5.14. The function dK is locally semiconcave in M \K.

PROOF. The distance function dK is a viscosity solution of H = 0 in M \ K, where the
Hamiltonian function is given by H(x, v, t) = |v|2 − 1. We choose a smooth local chart ψ :
Rn → Ω ⊂ M and we define v = dK ◦ ψ, which is a locally Lipschitz function and, by
Proposition 5.10, it is a viscosity solution of ψ∗H = 0.
The pull–back of the Hamiltonian function on Rn takes the form

ψ∗H(y, w, s) = gψ(y)(dψ(w), dψ(w))− 1 = gij(y)wiwj − 1

for (y, w, s) ∈ Rn×Rn×R and where gij(y) are the components of the metric tensor of M in
local coordinates.
Since the matrix gij(y) is positive definite ψ∗H(y, w, s) is locally uniformly convex in w,
hence, by Theorem 5.3 of [30], it follows that v = dK ◦ψ is locally semiconcave in Rn. Recall-
ing Definition 5.7, this means that dK is locally semiconcave in M \K. �

The semiconcavity of dK allows us to work with the superdifferentials when the gradi-
ent does not exist. Indeed, it follows that the points of Sing are precisely those where the
superdifferential is not a singleton and the following result is a straightforward consequence
of Proposition 5.8.

PROPOSITION 5.15. The function ηK is of class C1 in the open set M \ Sing and dK is C1 in
M \

(
K ∪ Sing

)
.

The semiconcavity property also gives information about the relations between the struc-
ture of the superdifferential at a point x and the set of minimal geodesics from x to K
(see [1, 2, 33]).
The set Ext(∂+ηK(x)) of extremal points of the (convex) superdifferential set of ηK at x is
in one–to–one correspondence with the family G(x) of minimal geodesics from x to K. Pre-
cisely G(x) is described by

(5.9) G(x) =
{

Exp(x,−v, ·) | [0, 1]→M | for v ∈ Ext(∂+ηK(x))
}
.

Hence, the set of points of K at minimum distance from x are given by Exp(x,−v, 1) for v
in the set of extremal points of the superdifferential set of ηK at x. As a particular case we
have that if the function ηK is differentiable at x if and only if the point of K closest to x is
uniquely determined and given by Exp(x,−∇ηK(x), 1).

We consider now a set K which is a k–dimensional, embedded Cr submanifold of M
without boundary, with 0 ≤ k ≤ n− 1 (the case k = n is trivial) and r ≥ 2.

For every p ∈ K we consider the following three subsets of TpM ,
• TpK, the vector subspace of tangent vectors to K at p,
• NpK = {w ∈ TpM | gp(w, TpK) = 0}, the vector subspace of normal vectors to K at
p,
• UpK = {w ∈ NpK | gp(w,w) = 1}, the subset of unit normal vectors to K at p,

then the bundles NK = {(p, v) | v ∈ NpK} and UK = {(p, v) | v ∈ UpK} inherit the structure
of TM . Being K a Cr submanifold of M , the bundles NK and UK are respectively n–
dimensional and (n− 1)–dimensional Cr−1 submanifolds of TM .
Notice that in the special case K = {p}, we have that NK = TpM and UK = Sn−1 ⊂ TpM .

We define the map F : UK × R+ →M as the restriction of the exponential map of M to
UK,

F (p, v, t) = Exp(p, v, t) ∀(p, v) ∈ UK and t ∈ R+.
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Since UK is a Cr−1 manifold and the exponential map of M is smooth, F and all its deriva-
tives with respect to the variable t are of class Cr−1.

REMARK 5.16. If a minimal geodesic, parametrized by arc length, starts at a point p ∈M
and arrives at a point q ∈ K, its velocity vector v at q has to belong to UqK, otherwise the
condition of minimality is easily contradicted.
Since the geodesics, parametrized by arc length, ending onK are given by the family of maps
t 7→ F (q, v, t) with (q, v) ∈ UK, the distance from K of a point p is given by the formula

(5.10) dK(p) = inf{t ∈ R+ | (q, v, t) ∈ F−1(p)},
which obviously becomes dK(p) = πR+

(
F−1(p)

)
when the counterimage is a singleton (the

map πR+ is the projection on the second factor of the product UK × R+).
The study of the singularities of the squared distance function then reduces to the analysis
of the (possibly set valued) map F−1.
This problem, from the topological point of view, is naturally connected with the study of
the singularities of continuous maps between Euclidean spaces. For instance, when K co-
incides with a single point of M the singular sets were shown to be related to the classes of
singularities considered by the Theory of Catastrophes, see [9].

Let us define the Cr−1 map exp : NK →M by

exp(p, v) = Exp(p, v, 1) ∀(p, v) ∈ NK.
At the points (p, 0) ∈ NK the map exp is differentiable and d exp(p, 0) is invertible between
T(p,0)NK and TpM , indeed T(p,0)NK can be identified with TpM and under such identifica-
tion d exp(p, 0) is the identity. Since, by hypothesis, the map exp is at least C1, it follows that
in a neighborhood of (p, 0) in NK the differential of exp is invertible, hence the map exp is
a Cr−1 local diffeomorphism. Holding the relation F (p, v, t) = exp(p, vt), we conclude that
for small t > 0, the map F is a local diffeomorphism.
BeingK at least C2, by a standard result in differential geometry, there exists an open tubular
neighborhood Ω′ of K in M formed by non intersecting, minimal geodesics starting normally
from K. Hence, by the previous discussion and possibly choosing a smaller tubular neigh-
borhood Ω of K, the map F−1 is well defined and Cr−1 in Ω \K (see for instance, [4]).
Then, the gradient of ηK exists in Ω and we have, by relations (5.9) and (5.10),

∇ηK(p) = dK(p)
∂F

∂t
(F−1(p)).

Since dK = πR+

(
F−1(p)

)
∈ Cr−1 in Ω and the functions F , ∂F∂t are of class Cr−1, it follows

that∇ηK isCr−1 and ηK isCr in Ω\K. The sameCr regularity in Ω\K follows immediately
also for the distance function dK .
Moreover, the function ηK is Cr regular also on the set K, hence in the whole neighborhood
Ω, as the square regularizes the jump of the gradient in the direction normal to K, see [3, 4].

We summarize these results in the following proposition which has as a particular case
Proposition 3.1.

PROPOSITION 5.17. If K is a regular submanifold of class Cr, with r ≥ 2, then there exists an
open subset Λ of UK × R+ with the property that if (q, v, t) ∈ Λ then also (q, v, s) ∈ Λ for every
0 < s < t, and an open neighborhood Ω of K in M , such that the map F |Λ : Λ → Ω \ K is a
diffeomorphism.
Moreover,
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• for every point in Ω there is an unique point of minimum distance inK (unique projection
property in Ω),
• the distance function dK is Cr in Ω \K,
• the squared distance function ηK is Cr in Ω.

REMARK 5.18. It can be proved that C1,1 is the minimal regularity of K to have the
unique projection property in a neighborhood, in this case also the squared distance function
turns out to be of class C1,1 (see [20, 22] and also [15, 16] for a detailed discussion of the
relation between the regularity of K and of dK .
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