
ON A CONJECTURE BY AUERBACH
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Abstract. In 1938 Herman Auerbach published a paper where he showed a deep connection

between the solutions of the Ulam problem of floating bodies and a class of sets studied by

Zindler, that are the planar sets whose bisecting chords have all the same length. In the same

paper he conjectured that among Zindler sets the one with minimal area, as well as with maximal

perimeter, is given by the so-called “Auerbach triangle”. We prove here that his conjecture was

true.
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1. Introduction

1.1. History of the problem. In the 1930’s, the polish mathematician S. Ulam proposed the
following problem. Let us consider a homogeneus right cylinder of density 1/2, whose section C
is a bidimensional convex set. Immerse the cylinder in the water in any position such that
a) the section C is perpendicular to the horizontal plan of the water;
b) the immersed part has half of the total volume.
It is clear that the cylinder is in an equilibrium position if and only if the segment joining the
baricenter I of the immersed part and the baricenter E of the external part is vertical (see
Figure 1).
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I

E

Figure 1. An equilibrium position (left) and a non-equilibrium position (right)

E

I

The question by Ulam was the following. Are there convex sets C, beside the disk, such
that any position of the cylinder satisfying a) and b) is an equilibrium? We shall say that such
a set has the Ulam floating property. For instance, the ellipse of Figure 1 has not such property,
since the right position is not an equilibrium.

Some years before, the german mathematician K. Zindler considered the following problem:
to find a planar set, beside the disk, with the property that all the bisecting chords, i.e. the
chords dividing the set in two parts of equal area, have the same length. Such a set is now called
a Zindler set. A well known example found by Zindler himself is shown in Figure 2.

Figure 2. The “Zindler flower”: the three curves are arcs of circle with the same
radius whose centers are the vertices of an equilater triangle

In 1938 the polish matematician H. Auerbach showed the following remarkable connection
between the two problems.

Theorem 1 (Auerbach, [1]). A convex planar set has the Ulam floating property if and only if it
is a Zindler set. Moreover, another equivalent property is the fact that the set of all baricenters
I and E introduced above is a circle.
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In his paper [1], Auerbach shows that the class of convex Zindler sets is large, and provides
an explicit analytic description of this class. Moreover, he presents a geometric construction of
the set of Figure 3, to which we shall refer to as the Auerbach triangle. This set is uniquely
characterized, in the class of Zindler sets, by the properties that
• PP ′ and QQ′ are bisecting chords of length 2;
• the curve PQ is a segment;
• PÔQ and P ′ÔQ′ are 60◦ angles, and the set is invariant by 120◦ rotations around O.
It is important to mention here that the curve P ′Q′ is not an arc of circle (we will give an
analytic definition of this set in Section 2).

Figure 3. The “Auerbach triangle”

P Q

Q′ P ′

O

In his paper, Auerbach rises the question to determine, among all Zindler sets with bisecting
chords of given constant length (say 2, so to compare with the unit disk), those minimizing the
area, or maximizing the perimeter. He was not able to answer the question, but he conjectured
that at least one of the two extremal sets is his rounded triangle. In his words ([1, p.138]):
“Il serait intéressant de déterminer les courbes de périmètre maximé et celles d’aire minimée.
Probablement, la courbe triangulaire (Fig. 3) fournit la solution d’au moins un de ces problèmes.”

In this paper we prove that the conjecture of Auerbach was correct.

Theorem 2. The Auerbach triangle is the unique set of minimal area in the class of convex
Zindler sets with length of bisecting chords equal to 2, up to rotation and translations.

Theorem 3. The Auerbach triangle is the unique set of maximal perimeter in the class of convex
Zindler sets with length of bisecting chords equal to 2, up to rotation and translations.

1.2. Connection with a problem by Santaló. In past years various properties of Zindler
sets have been studied (see for instance [10], [4] and [8]), while the relations between the minimal
and maximal length of the bisecting chords and other geometric quantities such as perimeter,
diameter, inradius and circumradius have been investigated in more recent times (some results
and references can be found in [9], [3], [5] and [7]). For a detailed account on these and on the
above mentioned papers on Zindler sets we refer also to Chap. 3 and 4 of [6].
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The result proved here is connected to an old question by L.A. Santaló ([2, Problem A26]),
who asked whether it is true that for any convex set C, with area A(C), there exists always a
bisecting chord of length at most 2

√
A(C)/π or, equivalently, whether it is true that the convex

set with minimal bisecting chord of length 2 and smallest area is the unit disk. It is known that
the answer to Santaló question is negative, since the area of the Auerbach triangle is less than
π, namely, as shown by Auerbach himself,

2
√

3
(

ln(9)−
(

ln(3)
2

)2

− 1
)
≈ 3.102 .

Indeed, as a consequence of formula (1.2) below, every Zindler set other than the disk gives
a negative answer to the Santalò problem. However, the question of determining which is the
set of minimal area among those with minimal bisecting chord equal to 2 is still open. At this
regard, we guess the following statement to be true.
Conjecture. The set minimizing the area in the class of convex sets with bisecting chords of
fixed minimal length is Zindler. Hence, thanks to Theorem 2, the solution of the Santaló problem
is the Auerbach triangle.

The reason why the above claim is quite reasonable is simple. Consider a convex set C which
is not Zindler, as in Figure 4, and a bisecting chord not of minimal length, as the horizontal
segment depicted in the figure. Then, define another set Cε, simply by cutting an area ε very
close to each end of the bisecting chord (the two shaded portions in the figure). Since the area
around both ends is the same, and since the chord was not minimal, it is immediate to realize
that the set Cε has the same minimal bisecting chords as C, so that C cannot be a solution
of Santaló problem. Unfortunately, this simple idea does not lead to a formal proof of the

Figure 4. A convex non-Zindler set C (big set) and a variation Cε (without the
shaded parts)

conjecture. Indeed, in general (unlike the set in the figure), it may be impossible to cut the two
pieces without strictly decreasing the minimal length of the bisecting chords. This is what may
happen if the boundary of C contains a segment and an endpoint of a minimal chord lies on
this segment.
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1.3. Plan of the paper. In Section 2 we present an analytic characterization of the convex
Zindler sets, quite close to the one given by Auerbach in [1], which shows in particular that those
sets are of class C1,1. More precisely, we will give a bijective correspondence between Zindler
sets and the class of functions c : S1 → R satisfying, for all θ ∈ S1,

c(θ + π) = −c(θ) ;∫ θ+π

θ
c(σ)

(
cosσ, sinσ

)
dσ = (0, 0) ;∣∣c′(θ)∣∣ ≤ 1 + c(θ)2 .

(1.1)

Having this characterization at hand, it is possible to express the area of a Zindler set C by
means of the associated function c, getting

Area(C) = π − 2
π

∑
n odd
n ≥ 3

A2
n +B2

n

n2 − 1
=: π − 2

π
F(c) , (1.2)

being An and Bn the Fourier coefficients of c. Hence, denoting by ĉ the function corresponding to
the Auerbach triangle, Theorem 2 is equivalent to show that ĉ maximizes F among all functions
c satisfying (1.1). Since the function c ≡ 0 corresponds to the disk, it is evident from (1.2) not
only that the disk is not the solution of Auerbach problem (hence neither, a fortiori, of Santaló
problem), but on the countrary that it maximizes the area among Zindler sets. On the other
hand, also the perimeter of the set C can be easily computed in terms of the corresponding
function c as

Perimeter(C) =
∫ 2π

0

√
1 + c(θ)2 dθ . (1.3)

Hence, it is again clear that the disk, corresponding to c ≡ 0, minimizes the perimeter among
the Zindler sets.

In Section 3 we give the proof of the conjecture about the area, namely Theorem 2. The
proof basically consists in two big steps. We start, in Section 3.1, by showing an L∞ estimate
for functions c satisfying (1.1), namely that for each such c one has

‖c‖L∞ ≤ tan(π/6) .

In Section 3.2 we will obtain Theorem 2 showing that indeed ĉ maximizes F in the larger class
of functions c : S1 → R such that

c(θ + π) = −c(θ) ;∣∣c(θ)∣∣ ≤ tan(π/6) ;∣∣c′(θ)∣∣ ≤ 1 + c(θ)2 .

The reason why we pass to this new class of functions (which are not necessarily associated to a
set) is that this allows more flexibility in defining suitable competitors. We underline that in the
proof of the result, and in particular in Section 3.2, we will need to perform extremely careful
estimates. This is due to the fact that the difference between the area of the biggest Zindler set
(i.e., the area π of the ball) and the area of the smallest Zindler set (i.e., the area ≈ 3.102 of the
Auerbach triangle) is just around 1%.
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In Section 4 we give the proof of the conjecture about the perimeter, namely Theorem 3.
The scheme of proof is completely different than the one of Theorem 2. Indeed, while the proof
in the former case hinged on the Fourier coefficients An and Bn of c, in this case they don’t
play any role, simply because there is no reasonable way to express the perimeter in terms of
An and Bn, as one can easily guess from (1.3). Instead, the proof is based on a careful analysis
of the intervals where an optimal function has a costant sign. Roughly speaking, if a function
changes sign too often it cannot become big, thus it has a small perimeter by (1.3); on the other
hand, having the same sign in a too large interval forces again the function to be small, due to
the second condition in (1.1). Our argument then consists in taking an optimal function c̄ and
distinguishing the different cases: all the intervals where c̄ has a constant sign are shorter than
π/3; one of them is longer; two of them are longer. While the first case will be trivial thanks to
our estimates of Section 2, the second one is harder, and the last one is the most involved.

2. Characterization of the Zindler sets

The purpose of this section is to show how to associate to any Zindler set a Lipschitz
function. Let us start with the relevant definitions.

Definition 2.1. Let C be a bounded, convex subset of R2. For any θ ∈ S1, we denote by M(θ),
R(θ) and L(θ) the centre, the right extreme and the left extreme, respectively, of the unique
bisecting chord of C with direction θ. We say that the set C is a Zindler set if all the bisecting
chords have the same length.

Throughout the paper we will always consider, with no loss of generality, Zindler sets

with bisecting chords of length 2 , so to compare them with the unit disk.
Fix a Zindler set C and notice that, since the bisecting chords of directions θ and θ+ π are

the same segment with opposite orientation, one has

M(θ) = M(θ + π) , R(θ) = L(θ + π) , L(θ) = R(θ + π) .

First, we show that the curve θ 7→M(θ) is differentiable almost everywhere.

Lemma 2.2. Let C be a Zindler set and θ ∈ S1 be such that ∂C has a unique tangent at both
R(θ) and L(θ). Then the curve M is differentiable at θ and

M ′(θ) = c(θ)
(

cos θ, sin θ
)
, (2.1)

for some c(θ) ∈ R.

Proof. Assuming θ = 0 just to get simpler notation and figure, we take a small angle ε and
define a = a(ε), b = b(ε), α = α(ε) and β = β(ε) as in Figure 5, that is, in such a way that

R(ε) =
(
1 + a, b

)
, L(ε) =

(
− 1 + α,−β

)
.

Notice that a, b, α and β tend to 0 as ε→ 0. Since C is Zindler, we know that

2 =
√(

2 + a− α
)2 +

(
b+ β

)2
,
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δ
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b

β

ϕL

ϕR

Figure 5. The situation considered in the proof of Lemma 2.2

from which we deduce

a = α+ o
(
|a|+ |b|+ |α|+ |β|

)
. (2.2)

Moreover, from the assumption that ∂C admits a tangent at L(0) and R(0) we know that

a = b tan(ϕR) + o(|b|) , α = β tan(ϕL) + o(|β|) , (2.3)

where ϕL and ϕR are defined as in Figure 5, and by the convexity of C and the fact that L(0)R(0)
bisecates the set C, we have also −π/2 < ϕL, ϕR < π/2. This allows us to rewrite (2.2) as

a = α+ o
(
|b|+ |β|

)
. (2.4)

Define now, again as in the figure, δ = δ(ε) in such a way that
(
δ, 0
)

is the intersection between
the chords L(0)R(0) and L(ε)R(ε). Then by elementary geometry, we have

1− δ + a

b
=

1 + δ − α
β

,

which gives

β = b+ δ(β + b) + o
(
|b|+ |β|

)
. (2.5)

Finally, recall that the two chords at the angles 0 and ε are both bisecting. Therefore, the area
of the left and right part of C enclosed by the two chords (the light and dark coloured regions
in the figure) is the same. Writing down this equality we obtain

1
2
(
1 + δ)β + o(|β|) =

1
2
(
1− δ)b+ o(|b|) ,

from which we deduce

β = b− δ
(
β + b

)
+ o
(
|b|+ |β|

)
. (2.6)

Putting together (2.5) and (2.6) one immediately finds

b = β + o(|b|+ |β|) . (2.7)

From (2.4) and (2.7) we get that

limε→0
a

b
= limε→0

α

β
,

which in view of (2.3) tells us that ϕR = ϕL =: ϕ (by the way, this “geometrical” property of
Zindler sets is interesting by itself).
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Since, by definition, the chord connecting L(ε) and R(ε) has direction ε, we can finally write
the values of a, b, α and β as

a = ε tanϕ+ o(ε) , b = ε+ o(ε) , α = ε tanϕ+ o(ε) , β = ε+ o(ε) . (2.8)

As a consequence, the centre M(ε) of the bisecting chord of direction ε has coordinates

M(ε) ≡
(
ε tanϕ+ o(ε) , o(ε)

)
.

This shows that the curve M is differentiable at the angle θ = 0, and that the velocity M ′(θ)
has direction θ. Setting c(θ) := tanϕ, the proof is concluded. �

Remark 2.3. The construction above, and in particular formula (2.8) for a, b, α and β, shows
another important property of Zindler sets, that is all the bisecting chords divide C in two parts
not just with the same area, but also with the same perimeter.

Lemma 2.4. The function c : S1 → R defined by (2.1) is Lipschitz, and for a.e. θ ∈ S1
c(θ + π) = −c(θ) ;∫ θ+π

θ
c(σ)

(
cosσ, sinσ

)
dσ = (0, 0) ;∣∣c′(θ)∣∣ ≤ 1 + c(θ)2 .

(2.9)

Proof. Consider the function ϕ introduced in the proof of Lemma 2.2, and recall the relation
between c and ϕ: c(θ) = tan

(
ϕ(θ)

)
. To establish the first equality in (2.9), observe that

c(θ + π) = −c(θ) , ϕ(θ + π) = −ϕ(θ) . (2.10)

The equality on the left follows from (2.1) since M(θ + π) = M(θ) for all θ. As a consequence,
since by construction −π/2 < ϕ(θ) < π/2, we obtain also the equality on the right. Notice that
one can also get the latter equality by a direct geometric argument based on the construction
above and then deduce the former by definition.

Recall now that, by (2.1), for any θ, θ̃ ∈ S1 one has

M(θ̃) = M(θ) +
∫ θ̃

θ
c(σ)

(
cosσ, sinσ

)
dσ .

Applying this formula with θ̃ = θ + π and recalling that M(θ + π) = M(θ), we get the second
equality in (2.9). Notice that the equality just proven implies the first one.

Finally, we observe that the tangent of ∂C at R(θ) has direction

τ(θ) = θ +
π

2
− ϕ(θ) ,

and by the convexity of C the function θ 7→ τ(θ) must be increasing. This implies that θ−ϕ(θ)
is an increasing function of θ, and then for any θ ∈ S1 and any ε > 0 one has

ϕ(θ + ε)− ϕ(θ) < ε .

Since this inequality holds also for θ + π, keeping in mind (2.10) we get

ϕ(θ + ε)− ϕ(θ) > −ε ,
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thus showing that ϕ is 1-Lipschitz. Since by definition c(θ) = tan
(
ϕ(θ)

)
, we obtain that c is

Lipschitz and that the last estimate in (2.9) holds, thus concluding the proof. �

Remark 2.5. It is interesting to underline a couple of geometric consequences of Lemma 2.2 and
Lemma 2.4: any Zindler set has a C1,1 boundary and has the property that any bysecting chord
makes the same angle with the tangents at the two endpoints. This second property was already
observed in proving Lemma 2.2, while the first one follows from the fact that ϕ is Lipschitz, as
established in the proof of Lemma 2.4, and from the fact that each point of the boundary of C
is the right endpoint of one and only one bisecting chord. It is worth observing that what really
prevents the boundary of a Zindler set from having a corner is the second of these two properties.
Indeed, if there were a “convex” corner at one endpoint of a bisecting chord, there should be also
an opposite “concave” corner at the other endpoint of the same chord, and this is against the
convexity of C.

We can now show the remarkable fact that the three equations in (2.9) characterize all the
convex Zindler sets, that is, given any function c satisfying (2.9), there is a convex Zindler set
C corresponding to the function c.

Proposition 2.6. The map associating to any convex Zindler set C the function c for
which (2.1) holds is a one-to-one correspondence between the convex Zindler sets C (up to
translations) and the functions c : S1 → R satisfying (2.9).

Proof. The fact that the functions c given by (2.1) satisfy (2.9) has been established by
Lemma 2.4, so we only need to show the opposite implication.

Let then c be any function for which (2.9) holds and define L, R : S1 → R2 by

L(θ) =
∫ θ

0
c(σ)

(
cosσ, sinσ

)
dσ −

(
cos θ, sin θ

)
,

R(θ) =
∫ θ

0
c(σ)

(
cosσ, sinσ

)
dσ +

(
cos θ, sin θ

)
.

(2.11)

By the second property of (2.9) one has that R(θ+π) = L(θ), and that θ 7→ R(θ) is a C1 closed
curve in R2 with

R′(θ) = c(θ)
(

cos θ, sin θ
)

+
(
− sin θ, cos θ

)
.

The fact that this curve is the boundary of a convex set C will follow at once by proving that

θ 7→ R′(θ)∣∣R′(θ)∣∣
is a one-to-one increasing map from S1 to itself, and this, in turn, can be derived, after some
straightforward calculations, from the third inequality in (2.9).

To show that C is a Zindler set, it is enough to check that for any θ the segment L(θ)R(θ)
is the bisecting chord of direction θ and length 2. The fact that L(θ)R(θ) has length 2 and
direction θ is obvious by (2.11). Moreover, the area of the portion of C which is above L(θ)R(θ)
is constant with respect to θ because its derivative is

1
2

(
R′(θ) + L′(θ)

)
·
(

sin θ, cos θ
)

= 0 ,
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as it can be checked by geometrical considerations as in Lemma 2.2. Since by (2.9) L(θ + π) =
R(θ) and R(θ + π) = L(θ), we deduce that the segments L(θ)R(θ) are bisecting.

To conclude the proof we observe that c is exactly the function associated to C by (2.1),
and this is in turn true since the center M(θ) of the bisecting chord of direction θ is given by

M(θ) =
L(θ) +R(θ)

2
=
∫ θ

0
c(σ)

(
cosσ, sinσ

)
dσ ,

so that M ′(θ) = c(θ)
(

cos θ, sin θ
)
, according to (2.1). �

Having reduced the problem to the study of a suitable class of Lipschitz functions, it is
important to get a useful formula for the perimeter and the area of the set C in terms of the
corresponding function c. This will be done in the following lemma.

Lemma 2.7. If C is a Zindler set corresponding to the function c, its area is given by

Area(C) = π +
∫ π

0

(∫ θ

0
c(θ)c(σ) sin(θ − σ) dσ

)
dθ , (2.12)

and its perimeter by

Perimeter(C) = 2
∫ π

0

√
1 + c2(θ) dθ . (2.13)

Proof. We start by recalling that the area of a convex set C in R2, with boundary Γ, is given by

Area(C) =
1
2

∫
Γ
x dy − y dx . (2.14)

Since C is a Zindler set, its boundary is the set of the points R(θ) for 0 ≤ θ ≤ 2π, and from (2.11)
we know that

R(θ) =
∫ θ

0
c(σ)

(
cosσ, sinσ

)
dσ +

(
cos θ, sin θ

)
,

so that on Γ

(dx, dy) ≡
(
c(θ)

(
cos θ, sin θ

)
+
(
− sin θ, cos θ

))
dθ .

Thanks to (2.14), we then have

Area(C) =
1
2

∫ 2π

0

((∫ θ

0
c(σ) cosσ dσ + cos θ

)(
c(θ) sin θ + cos θ

)
−

(∫ θ

0
c(σ) sinσ dσ + sin θ

)(
c(θ) cos θ − sin θ

))
dθ

= π +
1
2

∫ 2π

0

(∫ θ

0
c(σ)c(θ) sin(θ − σ) + c(σ) cos(θ − σ) dσ

)
dθ .

(2.15)

Using the properties of c listed in (2.9), we have that for any 0 ≤ θ ≤ π∫ π+θ

0
c(σ) cos

(
(π + θ)− σ

)
dσ =

∫ π+θ

π
c(σ) cos

(
(π + θ)− σ

)
dσ

= −
∫ θ

0
c(σ) cos(θ − σ) dσ ,
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hence the last term in (2.15) is 0, that is,∫ 2π

0

(∫ θ

0
c(σ) cos(θ − σ) dσ

)
dθ = 0 . (2.16)

Arguing in the very same way, we have∫ π+θ

0
c(σ)c(π + θ) sin

(
(π + θ)− σ

)
dσ =

∫ π+θ

π
c(σ)c(π + θ) sin

(
(π + θ)− σ

)
dσ

=
∫ θ

0
c(σ)c(θ) sin(θ − σ) dσ ,

which gives∫ 2π

0

(∫ θ

0
c(σ)c(θ) sin(θ − σ) dσ

)
dθ = 2

∫ π

0

(∫ θ

0
c(σ)c(θ) sin(θ − σ) dσ

)
dθ . (2.17)

Inserting (2.17) and (2.16) in (2.15), one gets (2.12).
Concerning formula (2.13), on the other hand, it is enough to notice that by (2.11) one has

R′(θ) = c(θ)
(

cos θ, sin θ
)

+
(
− sin θ, cos θ

)
, thus

∣∣R′(θ)∣∣ =
√

1 + c2(θ) ,

and to recall that c(θ + π) = −c(θ). �

Formula 2.12 suggests to consider the Fourier series of c to treat the area functional. This
makes sense because the functions satisfying (2.9) are in Lipschitz.

Definition 2.8. Let c : S1 → R satisfy (2.9). For any n ∈ N, define the Fourier coefficients as

An :=
1
2

∫ 2π

0
c(θ) sin(nθ) dθ , Bn :=

1
2

∫ 2π

0
c(θ) cos(nθ) dθ .

Notice that (2.9) implies that An = Bn = 0 for all even n and for n = 1. Hence, the Fourier
expansion of c becomes

c(θ) =
2
π

∑
n odd
n ≥ 3

An sin(nθ) +Bn cos(nθ) . (2.18)

Moreover, for all odd n ≥ 3,

An :=
∫ π

0
c(θ) sin(nθ) dθ , Bn :=

∫ π

0
c(θ) cos(nθ) dθ . (2.19)

The unusual definition of the Fourier coefficients given above, which explaines the constant
2/π in (2.18), has the advantage that the two integrals in (2.19) appear without any multiplica-
tive constant. This will simplify a lot the calculations in the next section.

Remark 2.9. From the well known properties of Fourier series, one has immediately that for
any odd n ≥ 3 there exists an angle ϕ̄ such that√

A2
n +B2

n = sup
ϕ∈S1

∫ π

0
c(θ) sin

(
nθ + ϕ

)
dθ =

∫ π

0
c(θ) sin

(
nθ + ϕ̄

)
dθ . (2.20)

Notice also that, by rotating c (that is, passing from c to c̃(θ) = c(θ + θ̄) for some θ̄), An and
Bn may change, but the quantity

√
A2
n +B2

n does not change, since the supremum in (2.20) is
attained at ϕ̄+ nθ̄ instead of ϕ̄, but its value remains the same.
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We can now give a more expressive formula for the area of C which makes use of the above
notation.

Lemma 2.10. Given a Zindler set C corresponding to the function c, one has

Area(C) = π − 2
π

∑
n odd
n ≥ 3

A2
n +B2

n

n2 − 1
. (2.21)

Proof. Fix 0 ≤ θ ≤ π, and calculate∫ θ

0
c(σ) sin(θ − σ) dσ =

2
π

∫ θ

0

∑
n odd
n ≥ 3

(
An sin(nσ) +Bn cos(nσ)

)
sin(θ − σ) dσ .

Since ∫ θ

0
sin(θ − σ) sin(nσ) dσ =

n sin θ − sin(nθ)
n2 − 1

,∫ θ

0
sin(θ − σ) cos(nσ) dσ =

cos θ − cos(nθ)
n2 − 1

,

for any θ ∈ [0, π] we have∫ θ

0
c(σ) sin(θ − σ) dσ =

2
π

∑
n odd
n ≥ 3

An
n sin θ − sin(nθ)

n2 − 1
+Bn

cos θ − cos(nθ)
n2 − 1

.

Inserting this equality in (2.12) we obtain

Area(C) = π +
2
π

∫ π

0
c(θ)

(∑
n odd
n ≥ 3

An
n sin θ − sin(nθ)

n2 − 1
+Bn

cos θ − cos(nθ)
n2 − 1

)
dθ

= π +
4
π2

∫ π

0

∑
n,m odd
n,m ≥ 3

(
Am sin(mθ) +Bm cos(mθ)

)
·

·
(
An
(
n sin θ − sin(nθ)

)
+Bn

(
cos θ − cos(nθ)

)
n2 − 1

)
dθ

= π − 2
π

∑
n odd
n ≥ 3

A2
n +B2

n

n2 − 1
,

hence the proof is completed. �

We can then reformulate our problem: minimizing the area among all Zindler sets is now
reduced to the problem of maximizing the sum

F(c) :=
∑
n odd
n ≥ 3

A2
n +B2

n

n2 − 1
(2.22)
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among all functions c : S1 → R satisfying (2.9).

Remark 2.11. Thanks to the new formulation of our problem, we have that the ball is certainly
not the area minimizer. On the contrary, since F(c) = 0 for the null function c (which corre-
sponds to the ball) and F(c) > 0 for any other function c, i.e., for any other Zindler set, we may
conclude that the ball is the Zindler set with the largest area.

0 π 2π

Figure 6. The optimal function ĉ

We conclude this section by introducing ĉ, which in the next section we will prove to be the
optimal function. In the arc [0, π/6] the function is defined by setting

ĉ(θ) := tan θ ∀ 0 ≤ θ ≤ π

6
,

then it is defined in all S1 by the simmetries shown in Figure 6. It is immediate to notice that
the function thus obtained satisfies (2.9), so it corresponds to a Zindler set. In particular, let us
observe that this set is exactly the Auerbach triangle drawn in Figure 7. Indeed, recall that, by

Figure 7. The optimal set, Auerbach triangle

the proof of Lemma 2.4, the local convexity of the boundary of C at the right extreme of the
bisecting chord of direction θ corresponds to the inequality c′(θ) ≤ 1 + c2. For the function ĉ,
one has exactly the equality ĉ′ = 1+ ĉ2 in

[
−π/6, π/6

]
, so the part of the boundary made by the

right extremes of the bisecting chords with direction θ ∈
[
−π/6, π/6

]
is a segment (the vertical

segment to the right of the figure). Moreover, the 120◦ simmetry of the set is immediately
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deduced from the corresponding simmetry of ĉ. Notice that the set associated to ĉ is rotated by
90◦ with respect to the one represented in Figure 3. This choice does not affect the minimization
problem, but gives a simpler analytic expression to ĉ.

3. Proof of Theorem 2

In this Section we present the proof of Theorem 2. The main steps of the proof are two.
First, we give an L∞ estimate for all functions c satisfying (2.9). Then, via comparison with
suitably constructed competitors, we find a general result on the structure of a function which
maximizes (2.22). At that point, the proof of the Theorem is almost immediate.

3.1. An L∞ estimate. In this section we will show a uniform bound for admissible functions
c and we will collect some other estimates to be used later on.

In the sequel, if c : S1 → R, by a rotation of c we mean any function c̃ : S1 → R such that
c̃(θ) = c(θ+ϕ̄) for some convenient ϕ̄ ∈ S1. Similarly, by the reflection of c we mean the function
c̃ : S1 → R such that c̃(θ) = c(π − θ) for all θ ∈ S1. Notice that in both cases c satisfies (2.9) if
and only c̃ satisfies (2.9).

Proposition 3.1 (The main L∞ estimate). If c : S1 → R satisfies (2.9), then c ∈ L∞(S1) and
the estimate

‖c‖L∞ ≤ tan(π/6) (3.1)

holds. Moreover, the above inequality is strict, unless c = ĉ up to a rotation.

Remark 3.2. Keeping in mind that
∣∣c′∣∣ ≤ 1 + c2, the L∞ estimate (3.1) implies that all the

admissible functions c are uniformly Lipschitz. Correspondingly, all convex Zindler sets, with
assigned length of the bisecting chords, are uniformly C1,1.

From this observation, it is immediate to deduce the existence of optimal Zindler sets.

Corollary 3.3 (Existence of extremals). There exist an admissible function minimizing (2.12)
and an admissible function maximizing (2.13). Equivalently, there exist a convex Zindler set of
minimal area and a convex Zindler set of maximal perimeter.

Proof. As observed in Remark 3.2, the admissible functions are uniformly Lipschitz, so their class
is compact under uniform convergence. This implies the thesis since both area and perimeter
are continuous. �

The proof of Proposition 3.1 above will be easily obtained by the following technical result.

Lemma 3.4. Let θ̄ ∈ (0, π/2) and τ ∈
[
0, tan θ̄

]
. Let cτ,θ̄ :

[
0, π
]
→ R be defined as

cτ,θ̄(θ) :=



− tan
(
θ + arctan τ

)
for 0 ≤ θ ≤ θ̄−arctan τ

2 ,

tan
(
θ − θ̄

)
for θ̄−arctan τ

2 ≤ θ ≤ π
2 ,

tan
(
π − θ̄ − θ

)
for π

2 ≤ θ ≤ π −
θ̄+arctan τ

2 ,

tan
(
θ − π + arctan τ

)
for π − θ̄+arctan τ

2 ≤ θ ≤ π .
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Then, the function [
0, tan θ̄

]
3 τ 7→

∫ π

0
cτ,θ̄(θ) sin θ dθ

is strictly increasing.

Proof. To obtain the thesis, it is enough to fix 0 < τ < tan θ̄ and to show that the difference

D :=
∫ π

0

(
cτ+ε,θ̄(θ)− cτ,θ̄(θ)

)
sin θ dθ

is strictly positive for any sufficiently small ε > 0.

Figure 8. The graph of cτ,θ̄ with θ̄ = π/3 and τ = 0.25

−τ
θ̄ π

2

π − θ̄

π

A first order approximation of D gives

D =
∫ θ̄−arctan τ

2

0

((
cτ+ε,θ̄ − cτ,θ̄

)
(θ)
)

sin θ dθ +
∫ π−arctan τ

π− θ̄+arctan τ
2

((
cτ+ε,θ̄ − cτ,θ̄

)
(θ)
)

sin θ dθ

+
∫ π

π−arctan τ

((
cτ+ε,θ̄ − cτ,θ̄

)
(θ)
)

sin θ dθ + o(ε) ,

where the first integral is strictly negative, while the second one and third one are strictly
positive. Thus, to prove that D is strictly positive, it is enough to show that the sum of the first
two integrals above is non negative and since they are both evaluated on intervals of the same
length, this will follow if we show that((

cτ+ε,θ̄ − cτ,θ̄
)
(θ)
)

sin θ +
((
cτ+ε,θ̄ − cτ,θ̄

)(
π − arctan τ − θ

))
sin
(
π − arctan τ − θ

)
> 0 ,

for all 0 ≤ θ ≤ (θ̄ − arctan τ)/2. An immediate calculation gives that the above inequality can
be rewritten, up to the first order, as

− ε

1 + τ2

(
1

cos2
(
θ + arctan τ

)) sin θ +
ε

1 + τ2

(
1

cos2 θ

)
sin
(
π − arctan τ − θ

)
> 0 ,

which is in turn equivalent to

cos2
(
θ + arctan τ

)
cos2 θ

>
sin θ

sin
(
θ + arctan τ

) ∀ 0 ≤ θ ≤ θ̄ − arctan τ
2

.
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Notice that when θ increases the left ratio decreases while the right one increases, so to prove
this last inequality it is enough to check that it holds when θ =

(
θ̄− arctan τ

)
/2 =: θ̄/2− α. In

conclusion, the thesis is reduced to the inequality

cos2

(
θ̄

2
+ α

)
cos2

(
θ̄

2
− α

) >

sin
(
θ̄

2
− α

)
sin
(
θ̄

2
+ α

) .

We omit the elementary verification of the inequality above. �

Proof of Proposition 3.1. Let c be a function satisfying (2.9) and such that ‖c‖L∞ ≥ tan(π/6).
Up to a rotation, we may assume that c(π/2) = tan(π/6). Moreover, up to a reflection, we can
also assume that τ := c(π) ≥ 0. Let us observe now that c ≥ cτ,π/3 pointwise in [0, π]. In fact,
from the third equation in (2.9) we have that

∣∣c′∣∣ ≤ 1 + c2, so that

c(π/2) = tan(π/6) =⇒ c(θ) ≥ tan
(2

3
π − θ

)
∀ θ ≥ π

2
,

c(π) = τ =⇒ c(θ) ≥ tan
(
θ − π + arctan τ

)
∀ θ ≤ π .

This proves that c ≥ cτ,π/3 in [π/2, π], and the proof in [0, π/2] is similar. Since sin θ ≥ 0 in
[0, π], from the inequality c ≥ cτ,π/3 we get that

0 =
∫ π

0
c(θ) sin θ dθ ≥

∫ π

0
cτ,π/3(θ) sin θ dθ ≥

∫ π

0
c0,π/3(θ) sin θ dθ = 0 . (3.2)

Notice that the first equality is due to (2.9) and the second inequality is given by Lemma 3.4.
Concerning the last equality, it is easy to obtain by observing that c0,π/3 (which, by the way,
coincides with the function ĉ) is anti-periodic with period π/3 and, therefore, one has∫ π

0
c0,π/3(θ) sin θ dθ =

∫ π/3

0
c0,π/3(θ)

(
sin θ − sin

(
θ +

π

3

)
+ sin

(
θ +

2
3
π
))

dθ = 0 .

Hence, the two inequalities in (3.2) are indeed equalities and, using again Lemma 3.4, this implies
that c = cτ,π/3 = c0,π/3 = ĉ. This concludes the proof. �

Remark 3.5. Notice that all the functions cτ,θ̄ defined in Lemma 3.4 coincide in
[
θ̄, π − θ̄

]
.

Hence, arguing as in Proposition 3.1, by Lemma 3.4 we deduce that, for any function c : [0, π]→
R with ∣∣c′∣∣ ≤ 1 + c2 , c(0) = −c(π) , c(θ̄) = c(π − θ̄) = 0 ,

it is ∫
[0,θ̄]∪[π−θ̄,π]

c(θ) sin θ dθ ≥
∫

[0,θ̄]∪[π−θ̄,π]
cτ,θ̄(θ) sin θ dθ ≥

∫
[0,θ̄]∪[π−θ̄,π]

c0,θ̄(θ) sin θ dθ ,

where τ =
∣∣c(π)

∣∣.
We show now another consequence of Lemma 3.4, which will be used in Section 4.
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Lemma 3.6 (An L∞ estimate in large intervals). Let 0 ≤ θ̄ < π/3, and let c : [0, π] → R be a
Lipschitz function such that∣∣c′∣∣ ≤ 1 + c2 ,

∫ π

0
c(θ) sin θ dθ ≤ 0 , c(0) = −c(π) ,

c(θ̄) = c(π − θ̄) = 0 , c ≥ 0 in I ,

(3.3)

where I =
[
θ̄, π − θ̄

]
. Then,

‖c‖L∞(I) < tan(θ̄/2) .

Proof. By contradiction, assume the existence of θ̂ ∈
(
θ̄, π − θ̄

)
such that c(θ̂) = tan(θ̄/2).

Observe that it must be θ̂ ∈
[
3θ̄/2, π − 3θ̄/2

]
, and that the pointwise inequality

c(θ) ≥ c̃(θ) := χ
J

(θ) tan
(

dist
(
θ, ∂J

))
holds, being J =

(
θ̂ − θ̄/2, θ̂ + θ̄/2

)
. We claim now that∫ π

0
c(θ) sin θ dθ ≥

∫ π

0
c∗(θ) sin θ dθ , (3.4)

where c∗ : [0, π]→ R is defined by

c∗(θ) :=


− tan θ for 0 ≤ θ ≤ θ̄

2 ,

tan(θ − θ̄) for θ̄
2 ≤ θ ≤

3
2 θ̄ ,

0 for 3
2 θ̄ ≤ θ ≤

π
2 ,

and by the relation c∗(θ) = c∗(π − θ). The functions c̃ and c∗ are shown in Figure 9. In fact,

θ̂− θ̄
2

θ̂− θ̄
2

π
θ̄

3
2
θ̄

π

Figure 9. The functions c̃ (left) and c∗ (right)

assuming for simplicity that θ̂ ≤ π/2 –which is true up to a reflection– one has∫ π−θ̄

θ̄
c(θ) sin θ dθ ≥

∫ π−θ̄

θ̄
c̃(θ) sin θ dθ ≥ 2

∫ θ̂

θ̂−θ̄/2
c̃(θ) sin θ dθ ≥ 2

∫ 3θ̄/2

θ̄
c∗(θ) sin θ dθ

=
∫ π−θ̄

θ̄
c∗(θ) sin θ dθ ,

where the first inequality is due to the pointwise estimate c ≥ c̃. Hence, (3.4) follows directly
by Remark 3.5. The proof will be then completed once we show that∫ π

0
c∗(θ) sin θ dθ > 0 . (3.5)
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To this aim we first notice that, for any 0 < λ < 1, the function

ϕ 7→ sin(λϕ)
sinϕ

is strictly increasing in [0, π/2]. Therefore, being θ̄ < π/3, one has

sin
(

3θ̄
π
ϕ

)
< α sinϕ ∀ϕ ∈

(
0,
π

3

)
, sin

(
3θ̄
π
ϕ

)
> α sinϕ ∀ϕ ∈

(π
3
,
π

2

)
,

where α = sin(θ̄)/ sin(π/3). We now obtain (3.5), thus concluding the proof, since∫ π

0
c∗(θ) sin θ dθ = 2

∫ 3
2
θ̄

0
c∗(θ) sin θ dθ =

6θ̄
π

∫ π/2

0
c∗
(3θ̄
π
ϕ
)

sin
(3θ̄
π
ϕ
)
dϕ

>
6θ̄
π
α

∫ π/2

0
c∗
(3θ̄
π
ϕ
)

sinϕdϕ =
3θ̄
π
α

∫ π

0
c∗
(3θ̄
π

min(ϕ, π − ϕ)
)

sinϕdϕ = 0 ,

where the last equality holds being

ϕ 7→ c∗
(

3θ̄
π

min(ϕ, π − ϕ)
)

anti-periodic with period π/3. �

Now, our task is to show that the optimal function for the area functional provided by
Corollary 3.3 coincides with our candidate ĉ. To this aim, the standard strategy would be to
argue by contradiction, assuming that the maximum of F is attained at some function c̄ 6= ĉ and
finding a suitable competitor of c̄ for which F is strictly larger. However, in our case this strategy
presents a serious difficulty due to the fact that condition (2.9) is not very flexible. Indeed, it is
quite hard to build a competitor to an admissible function by making a small variation in such
a way to keep the second constraint in (2.9). To overcome this difficulty, we will show that ĉ
maximizes (2.22) in a larger and less rigid class of functions. This will be done by using the full
strength of the L∞ estimate (3.1).

Definition 3.7. A function c : S1 → R such that c(θ + π) = −c(θ) for all θ ∈ R will be said
weakly admissible if∣∣c′(θ)∣∣ ≤ 1 + c2(θ) and

∣∣c(θ)∣∣ ≤ tan
(π

6

)
∀ 0 ≤ θ ≤ 2π .

For any weakly admissible function c, the Fourier coefficients are defined as in (2.19).

Thanks to Proposition 3.1, it is obvious that any admissible function, that is, any function
satisfying (2.9), is weakly admissible, but it is also clear that the class of weakly admissible
functions is wider and more stable. Notice also that to weakly admissible functions which are
not admissible do not correspond any Zindler set. Moreover, since also the weakly admissible
functions are uniformly Lipschitz by definition, as in Corollary 3.3 we have the existence of a
weakly admissible function maximizing F. As anticipated in the Introduction, Theorem 2 will
be obtained as a particular case of the following more general result.

Theorem 4. The problem of maximizing F among weakly admissible functions admits ĉ as
unique solution, up to a rotation.
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It is important to emphasize that if c is a weakly admissible function and An, Bn are its
Fourier coefficients, there is no reason why A1 and B1 should be 0 (while of course An and
Bn are 0 for all even n). Hence, the Fourier expansion (2.18) does not hold in general for a
weakly admissible function. Nevertheless, notice that in Theorem 4 we consider the problem
of maximing F as defined by the series (2.22), which adds up the terms with odd n ≥ 3. In
other words, a weakly admissible function may well have non null coefficients A1, B1, but these
coefficients do not affect the value of F.

We conclude this section by collecting a couple of simple but useful estimates to be used
later.

Lemma 3.8 (Some estimates). For any weakly admissible function c, and for any odd n ≥ 3,
one has √

A2
n +B2

n ≤
8

3n
. (3.6)

Moreover, if c realizes the maximum of (2.22), then it is also√
A2

3 +B2
3 ≥ α > 0.598 , (3.7)

where α is the constant defined in (3.8).

Proof. Let us start with (3.6). Keeping in mind that∣∣c′(θ)∣∣ ≤ 1 + c2(θ) ≤ 1 + tan2
(π

6

)
=

4
3
,

and denoting, as in (2.20), by ϕ̄ = ϕ̄(c, n) the angle such that√
A2
n +B2

n =
∫ π

0
c(θ) sin

(
nθ + ϕ̄

)
dθ ,

it is immediate to calculate√
A2
n +B2

n =
∫ π

0
c(θ) sin

(
nθ + ϕ̄

)
dθ =

∫ π

0
c′(θ)

cos(nθ + ϕ̄)
n

dθ

≤ 4
3n

∫ π

0

∣∣ cos(nθ + ϕ̄)
∣∣ dθ =

8
3n

.

Hence (3.6) is proved. To get the lower estimate (3.7), it is enough to compare an optimal
function c with our function ĉ, whose Fourier coefficients we denote by Ân, B̂n. Indeed, recall-
ing (3.6), one has

A2
3 +B2

3

8
=
∑
n odd
n ≥ 3

A2
n +B2

n

n2 − 1
−
∑
n odd
n ≥ 5

A2
n +B2

n

n2 − 1
≥
∑
n odd
n ≥ 3

Â2
n + B̂2

n

n2 − 1
−
∑
n odd
n ≥ 5

64
9n2
(
n2 − 1

)

≥ Â2
3

8
−
∑
n odd
n ≥ 5

64
9n2
(
n2 − 1

) .
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This inequality proves (3.7) with

α :=

Â2
3 −
∑
n odd
n ≥ 5

512
9n2
(
n2 − 1

)


1
2

. (3.8)

�

3.2. The existence of three “special” angles. This section is entirely devoted to show
Lemma 3.9 below, which will immediately imply Theorem 4 and then Theorem 2. Up to a
rotation we may assume that A3 > 0 and B3 = 0. We have then the following result.

Lemma 3.9 (Three “special” angles). Let c be a weakly admissible function maximizing F, and
assume that A3 > 0 and B3 = 0. Then there exist three angles θ1 ∈ [0, π/3], θ2 ∈ [π/3, 2π/3]
and θ3 ∈ [2π/3, π] such that

c′(θ) =



1 + c2(θ) in
[
0, θ1

]
,

−
(
1 + c2(θ)

)
in
[
θ1, θ2

]
,

1 + c2(θ) in
[
θ2, θ3

]
,

−
(
1 + c2(θ)

)
in
[
θ3, π

]
.

Proof. We will divide the proof in three steps.
Step I. Behavior of c near π/6.
Let us define 3θ̂ = arcsin(0.55) ≈ 33◦. In this first step we will show the existence of an angle
θ1 ∈

[
θ̂, π/3− θ̂

]
such that

c′(θ) = 1 + c2(θ) ∀ θ̂ < θ < θ1 ,

c′(θ) = −1− c2(θ) ∀ θ1 < θ <
π

3
− θ̂ .

(3.9)

Assume that this is not true. Then there exists θ̄ ∈
[
θ̂, π/3 − θ̂

]
such that the right derivative

of c at θ̄ is not −1 − c2(θ̄) (that is, the right derivative either does not exist or it is strictly
bigger than −1− c2(θ̄)), and the left derivative of c at θ̄ is not 1 + c2(θ̄) (that is, again, the left
derivative either does not exist or it is strictly smaller than 1 + c2(θ)). It is then possible, for
arbitrary small ε > 0, to find a function c̃ ≥ c on [0, π] such that the set {c̃ > c} is an arbitrary
small interval around θ̄ and∫ π

0
c̃(θ)− c(θ) dθ = ε ,

∣∣c̃′∣∣ ≤ 1 + c̃2 .

The function c̃ can be simply defined by fixing a very small positive δ = δ(ε) and then setting,
for θ ∈

[
θ̂, π/3− θ̂

]
,

γ(θ) :=

 tan
(
θ − θ̄ + arctan

(
c(θ̄) + δ

))
for θ ≤ θ̄ ,

tan
(
θ̄ − θ + arctan

(
c(θ̄) + δ

))
for θ ≥ θ̄ ,

c̃ := c ∨ γ .

We extend c̃ to
[
0, π
]
\
[
θ̂, π/3− θ̂

]
as c̃(θ) = c(θ), then to [π, 2π] by setting c̃(θ+π) = −c̃(θ) for

θ ∈ [0, π]. The functions c and c̃ are shown in Figure 10 (the smaller function is c, the bigger c̃,
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and the area of the dark region is ε). Notice that, for δ small, c̃ is a weakly admissible function.
To this aim, observe that the conditions c̃(θ+π) = −c̃(θ) and the inequality |c̃′(θ)| ≤ 1+c̃2(θ) are
satisfied by construction, so we have only to verify the L∞ estimate |c̃(θ)| ≤ tan(π/6). Since we
may assume c(θ̄) < tan(π/6) (otherwise by Proposition 3.1 we would have c = ĉ, thus concluding
the proof), to get the L∞ estimate for c̃ it is enough to take δ = ‖c̃− c‖L∞ sufficiently small.
We claim that

θ̂
π

6
θ̄

π

3
− θ̂

Figure 10. The functions c and c̃ in Step I: the area of the dark region is ε

F
(
c̃
)
> F(c) , (3.10)

thus getting a contradiction to the optimality of c.
To show (3.10) we start by noticing that, denoting Ãn, B̃n the Fourier coefficients of c̃

defined as in (2.19), one has

Ã3 = A3 + ε sin(3θ̄) + o(ε) , B̃3 = O(ε) . (3.11)

Since A3 > 0 and B3 = 0 by assumption, from (3.11) we deduce that the first term in the sum
(2.22) defining F(c̃) is bigger than the first one in F(c). Let us now show that the remaining
terms are not much smaller than the corresponding ones in F(c). Indeed, recalling (2.20) and
choosing ϕn ∈ S1 such that √

A2
n +B2

n =
∫ π

0
c(θ) sin

(
nθ + ϕn

)
dθ , (3.12)

we can estimate
√
Ã2
n + B̃2

n from below as follows√
Ã2
n + B̃2

n = sup
ϕ∈S1

∫ π

0
c̃(θ) sin

(
nθ + ϕ

)
dθ ≥

∫ π

0
c̃(θ) sin

(
nθ + ϕn

)
dθ

=
∫ π

0
c(θ) sin

(
nθ + ϕn

)
dθ +

∫ π

0

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ

=
√
A2
n +B2

n +
∫ π

0

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ

≥
√
A2
n +B2

n −
∫ π

0
c̃(θ)− c(θ) dθ =

√
A2
n +B2

n − ε .

(3.13)
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Thus, putting together (3.11) and (3.13), and recalling the estimates (3.6) and (3.7) proved in
Lemma 3.8, we get

F
(
c̃
)
− F(c) =

∑
n odd
n ≥ 3

Ã2
n + B̃2

n −A2
n −B2

n

n2 − 1
≥ A3 sin(3θ̄)

4
ε+
∑
n odd
n ≥ 5

Ã2
n + B̃2

n −A2
n −B2

n

n2 − 1
+ o(ε)

≥ A3 sin(3θ̄)
4

ε− 2ε
∑
n odd
n ≥ 5

√
A2
n +B2

n

n2 − 1
+ o(ε)

≥
(
α sin(3θ̄)

4
− 16

3

∑
n odd
n ≥ 5

1
n
(
n2 − 1

)) ε+ o(ε) ,

where α is the constant defined in (3.8). An easy calculation shows that the quantity in brackets
is positive whenever sin(3θ̄) > 0.542, and this is in turn true since by construction sin(3θ̄) ≥
sin(3θ̂) = 0.55. Therefore, provided we choose ε � 1, (3.10) holds and thus (3.9) follows by
contradiction.
Step II. Behavior of c near 0.
Assume now that c′ = 1 + c2 on

[
θ̂, π/6

]
. We claim that in this case one has

c′(θ) = 1 + c2(θ) ∀ − θ̂ ≤ θ ≤ θ̂ . (3.14)

Indeed, if this is not true, let θ− be the biggest angle in
[
− θ̂, θ̂

]
where the derivative is not

1 + c2, that is,

θ− = sup
{
η < θ̂ : c′(θ) = 1 + c2(θ) ∀ η ≤ θ ≤ θ̂

}
.

We are going again to find a competitor, namely a weakly admissible function c̃ such that
F(c̃) > F(c). To this aim, fix a small ε > 0 and define c̃ :

[
− π/2, π/2

]
→ R as

c̃(θ) =



c(θ) for −π
2 ≤ x ≤ −θ̂ ,

c(θ) ∨ tan
(
θ − θ− + arctan

(
c(θ−)

)
+ ε
)

for −θ̂ ≤ x ≤ π
6 −

ε
2 ,

tan
(
− θ − θ− + arctan

(
c(θ−)

)
+ π

3

)
for π

6 −
ε
2 ≤ x ≤

π
6 ,

c(θ) for π
6 ≤ x ≤

π
2 .

Notice that

c̃(θ) = c(θ + ε) , ∀ θ− ≤ θ ≤
π

6
− ε . (3.15)

Thus, recalling that c′ = 1 + c2 and using the L∞ estimate (3.1), we immediately deduce

ε ≤ c̃(θ)− c(θ) ≤ 4
3
ε , ∀ θ− ≤ θ ≤

π

6
− ε . (3.16)

By construction, c̃(θ) = c(θ) for θ ≥ π/6 and, by the definition of θ−, c̃(θ) = c(θ) in
[
−π/2, θ∗

]
,

for some θ∗ < θ− such that θ− − θ∗ → 0 for ε → 0. Moreover, as in (3.16) we have 0 ≤
c̃(θ) − c(θ) ≤ 4ε/3 for θ ∈

(
θ∗, θ−

)
. As in Step I, we extend c̃ to the whole S1 by defining

c(θ + π) = −c(θ), and exactly as in Step I we have that c̃ is a weakly admissible function if
ε� 1. Figure 11 shows the functions c and c̃ in the interval

[
− θ̂, π/6

]
.
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−θ̂ θ∗ θ− θ̂ π

6

Figure 11. The functions c (continuous) and c̃ (dashed) in Step II

In order to show that F(c̃) > F(c), thus proving (3.14) by contradiction, we need again to
estimate the difference between A2

n +B2
n and Ã2

n + B̃2
n.

Let us start with n = 3. From (3.16) we get

Ã3 −A3 =
∫ π

6

θ∗
sin(3θ)

(
c̃(θ)− c(θ)

)
dθ ≥ ε

∫ π
6

0∨θ−
sin(3θ) dθ +

4
3
ε

∫ 0

0∧θ−
sin(3θ) dθ + o(ε)

≥ ε
∫ π

6

0
sin(3θ) dθ +

4
3
ε

∫ 0

−θ̂
sin(3θ) dθ +O(ε2) =

ε

9

(
4 cos(3θ̂)− 1

)
+ o(ε) ,

so that

Ã2
3 + B̃2

3 ≥ Ã2
3 ≥ A2

3 +
2
9
A3

(
4 cos(3θ̂)− 1

)
ε+ o(ε)

= A2
3 +B2

3 +
2
9
A3

(
4 cos(3θ̂)− 1

)
ε+ o(ε) .

(3.17)

Let us now consider the coefficients with n ≥ 5. Defining ϕn as in (3.12) and arguing as before,
we have √

Ã2
n + B̃2

n ≥
∫ π

2

−π
2

c̃(θ) sin
(
nθ + ϕn

)
dθ

=
√
A2
n +B2

n +
∫ π

6

θ−

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ + o(ε) .

(3.18)

Divide the interval
[
θ−, π/6

]
in subintervals where the sign of sin

(
nθ+ϕn

)
is constant. Clearly,

all these subintervals have length equal to π/n except possibly the first and the last one. Recall
also that ∫ π

n

0
sin(nθ) dθ =

2
n
. (3.19)
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Using (3.16), a rough estimate from below of
√
Ã2
n + B̃2

n−
√
A2
n +B2

n could be found by estimat-
ing c̃(θ)−c(θ) with ε (resp. 4ε/3) where sin

(
nθ+ϕn

)
is positive (resp. negative). Unfortunately,

this estimate is not be sharp enough to conclude that F(c̃) > F(c). Therefore, we need to perform
more careful estimates.

We start with n = 5, 7. In this case one has n
(
θ̂ + π/6

)
≤ 2π, so that inside

[
θ−, π/6

]
the set where sin

(
nθ + ϕn

)
is negative can be either a single interval of length up π/n, or two

intervals with sum of the lengths less than π/n. Thus, an estimate from below for Ã2
n + B̃2

n can
be obtained by assuming that the worst possible case occurs, i.e., that inside

[
θ−, π/6

]
there is

an interval I of length π/n where sin
(
nθ+ϕn

)
is negative and that in this interval c̃− c attains

the maximum possible value 4ε/3. Therefore, recalling (3.18) and (3.19), we get the estimate√
Ã2
n + B̃2

n −
√
A2
n +B2

n ≥
∫
I

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ + o(ε2) ≥ − 8

3n
ε+ o(ε2) , (3.20)

where we have neglected the positive integral over
[
θ−, π/6

]
\ I.

Finally, let us consider the case n ≥ 9. The interval J =
[
θ−, π/6

]
is divided in N subinter-

vals Ji, 1 ≤ i ≤ N , and to get an estimate of
√
Ã2
n + B̃2

n we consider again the worst possible
case that occurs when N is odd and the sign of sin

(
nθ + ϕn

)
is negative in Ji for odd i. As we

said before, it would be too rough to estimate c̃ − c from below by ε in all Ji with even i and
from above by 4ε/3 in all Ji with odd i, since this would not be enough to establish inequality
(3.10). To get a better estimate, recall that by (3.15) and by definition of θ− it is c̃(θ) = c(θ+ε)
and c′(θ) = 1 + c2(θ) in J . Thus, for all θ ∈ J we have∣∣∣c̃(θ)− c(θ)− ε(1 + c2(θ)

)∣∣∣ ≤ 4
√

3
9

ε2 . (3.21)

Let us now observe that c is increasing in J . Therefore, 1 + c2 cannot freely oscillate between
1 and 4/3. Indeed, either 1 + c2 is monotone in the whole interval J (which happens if c has
constant sign in J), or there exists η̄ ∈ J such that c(η̄) = 0, hence 1 + c2 is decreasing in
J ∩ {θ ≤ η̄} and increasing in J ∩ {θ ≥ η̄}. As a consequence, if i is an even number such that
1 + c2 is decreasing in Ji ∪ Ji+1, from (3.21) we have∫

Ji∪Ji+1

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ ≥ −4

√
3

9
ε2|Ji ∪ Ji+1| ;

similarly, if i is even and 1 + c2 is increasing in Ji−1 ∪ Ji, we have again∫
Ji−1∪Ji

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ ≥ −4

√
3

9
ε2|Ji−1 ∪ Ji| .

Notice that the union of all the sets of the type Ji ∪ Ji+1 or of the type Ji−1 ∪ Ji considered
above does not cover the whole interval J and so we still have to estimate the integral in the
complement of this union with respect to J . Denote this remaining set by H. Notice that three
possible cases may occur, namely that 1 + c2 is monotone in J , or 1 + c2 is not monotone in J

and sin(nη̄ + ϕn) ≥ 0, or 1 + c2 is not monotone in J and sin(nη̄ + ϕn) ≤ 0. Correspondingly,
the worst possible situations are:

• H is a single interval Ji, containing one endpoint of J , with i odd;
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• H is the union of two intervals Ji with i odd, each of them containing one endpoint of
J , and one interval Jj with j even, containing η̄;
• H is the union of two intervals Ji with i odd, each of them containing one endpoint of J ,

a third interval Ji with i odd, containing η̄, and two intervals Jj adjacent to the latter,
with j even.

Estimating c̃(θ)− c(θ) by ε in the intervals Ji with i even and by 4ε/3 in the intervals Jj with
j odd (which is of course admissible), we get in all the three cases above that∫

J

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ ≥

∫
H

(
c̃(θ)− c(θ)

)
sin
(
nθ + ϕn

)
dθ − 4

√
3

9
ε2|J |

≥ − 4
n
ε− 4

√
3

9
ε2|J | .

By this estimate and (3.18) we then obtain that for all n ≥ 9 one has√
Ã2
n + B̃2

n −
√
A2
n +B2

n ≥ −
4
n
ε− 4

√
3

9
ε2|J | . (3.22)

This estimate is worse than (3.20), valid for n = 5, 7, but still enough to get the inequality
F(c̃) > F(c) and thus to achieve the proof of (3.14) by contradiction. Indeed, from (3.20)
and (3.22), recalling the estimate (3.6), we get∑

n odd
n ≥ 5

Ã2
n + B̃2

n −A2
n −B2

n

n2 − 1
≥ −

∑
n = 5, 7

16ε
3n

√
A2
n +B2

n

n2 − 1
−
∑
n odd
n ≥ 9

8ε
n

√
A2
n +B2

n

n2 − 1
+O(ε2)

≥ −32ε
9


∑
n = 5, 7

4
n2
(
n2 − 1

) +
∑
n odd
n ≥ 9

6
n2
(
n2 − 1

)
+O(ε2) .

On the other hand, using (3.17) and the estimate (3.7),

Ã2
3 + B̃2

3 −A2
3 −B2

3

8
≥ α

36

(
4 cos(3θ̂)− 1

)
ε+O(ε2) ,

where α is as in (3.8). Finally, we can conclude that F(c̃) > F(c), at least for ε small enough,
provided

α

36

(
4 cos(3θ̂)− 1

)
>

32
9


∑
n = 5, 7

4
n2
(
n2 − 1

) +
∑
n odd
n ≥ 9

6
n2
(
n2 − 1

)
 ,

which in turn is true since a simple calculation reduces it to the weaker inequality

38.9 · 10−3 > 36.6 · 10−3 .

Step III. Conclusion.
Arguing as in Step I we may conclude that there exist three angles θ1 ∈

[
θ̂, π/3 − θ̂

]
, θ2 ∈
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π/3 + θ̂, 2π/3− θ̂

]
and θ3 ∈

[
2π/3 + θ̂, π − θ̂

]
, such that

c′(θ) =



1 + c2(θ) in
[
θ̂, θ1

]
,

−
(
1 + c2(θ)

)
in
[
θ1, π/3− θ̂

]
∪
[
π/3 + θ̂, θ2

]
,

1 + c2(θ) in
[
θ2, 2π/3− θ̂

]
∪
[
2π/3 + θ̂, θ3

]
,

−
(
1 + c2(θ)

)
in
[
θ3, π − θ̂

]
.

(3.23)

If we define c̃ to be the reflection of c with respect to π/6, i.e. c̃(θ) = c
(
π/3 − θ

)
, it is clear

that c̃ is still a weakly admissible, optimal function, whose Fourier coefficients Ã3 and B̃3 satisfy
Ã3 = A3 > 0, B̃3 = −B3 = 0. With this observation in mind, it is clear that we may assume with
no loss of generality that θ1 ≥ π/6. Hence, by Step II we have c′(θ) = 1 + c2(θ) in

[
θ3 − π, θ1

]
(see (3.23) and recall that c(π + θ) = −c(θ)).

Consider now θ2. There are two possible cases.
If θ2 ≥ π/2, the obvious variant of Step II in the interval

[
π/3, 2π/3

]
yields that c′(θ) =

−
(
1 + c2(θ)

)
in
[
θ1, θ2]. Since c(θ) in this interval coincides with a suitable translation of tan θ,

by the L∞ estimate (3.1) we have θ2 − θ1 ≤ π/3, and for the same reason θ1 −
(
θ3 − π

)
≤ π/3.

Therefore, θ3 − θ2 ≥ π/3 and then, since θ2 ≥ π/2, we have θ3 ≥ 5π/6. Then, Step II again
gives c′(θ) = 1 + c2(θ) in

[
θ2, θ3

]
, thus concluding the proof.

Otherwise, if θ2 < π/2, arguing exactly as before we have c′(θ) = 1+c2(θ) in
[
θ2, θ3

]
. Then,

the L∞ estimate will now give θ1−
(
θ3−π

)
≤ π/3 and θ3− θ2 ≤ π/3. Therefore, θ2− θ1 ≥ π/3,

which contradicts the assumption θ1 ≥ π/6 and θ2 < π/2. �

Proof of Theorem 4. Let c be a weakly admissible, optimal function. Up to a rotation, we may
assume that A3 > 0 and B3 = 0. Let then θ1, θ2 and θ3 be as in Lemma 3.9. Using the L∞

estimate(3.1) as in Step III of the Lemma above we have that

θ2 − θ1 ≤
π

3
, θ3 − θ2 ≤

π

3
,

(
π + θ1

)
− θ3 ≤

π

3
,

so that the three inequalities must necessarily be equalities. This concludes the proof of the
Theorem. �

4. Proof of Theorem 3

In this section we prove Theorem 3. To do so, we will take an optimal function c̄, that
is now a function maximizing the perimeter (such a function exists by Corollary 3.3), and we
consider the different intervals in which it has constant sign. In particular, the essential point is
to show that there are exactly three of such intervals, each of them of length π/3. In fact, it is
quite reasonable that short intervals are not convenient to maximize the perimeter, which is the
integral of

√
1 + c2, due to the constraint

∣∣c′∣∣ ≤ 1+c2. The argument to exclude large intervals is
much more delicate, and ultimately relies on the L∞ estimate Lemma 3.6. In Section 4.1 below
we collect some preliminary results and tools, then in Sections 4.2, 4.3 and 4.4 we consider the
cases where there are no intervals strictly larger than π/3, just one interval, or two intervals,
respectively. The proof of the result will be then an immediate consequence.
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4.1. Preliminary results. Let us start with some notation. Given any function c : [0, π]→ R
and any Borel subset I ⊆ [0, π], we denote by

P (c) :=
∫ π

0

√
1 + c2(θ) dθ , P (c; I) =

∫
I

√
1 + c2(θ) dθ . (4.1)

In particular notice that, if c : S1 → R is an admissible function, and C is the corresponding
Zindler set, then by formula (2.13) we have

Perimeter(C) = 2P (c) ,

so that the problem of maximizing the perimeter in the class of convex Zindler sets with bisecting
chords of length 2 is equivalent to maximizing P (c) among all admissible functions c –i.e.,
satisfying (2.9).

We give now a useful definition, namely we set M : [0, π/3]→ R as

M(x) := 2 ln
(

1 + sin(x/2)
cos(x/2)

)
. (4.2)

First of all, one may easily observe that M is convex and

M′(x) =
1

cos(x/2)
. (4.3)

The interest of this function is due to the observation that M(x) is the maximum possible
perimeter that an admissible function may have in an interval of length x as shown below.

Lemma 4.1 (Characterization of M). Let c : [0, π] → R be a function such that
∣∣c′∣∣ ≤ 1 + c2,

and let I = (a, b) ⊆ [0, π] be an interval of length at most π/3 for which c(a) = c(b) = 0. Then

P (c; I) ≤M
(
|I|
)
, (4.4)

and the equality holds if and only if

c(θ) = ± tan
(
dist(θ, ∂I)

)
∀ θ ∈ I . (4.5)

Proof. Keeping in mind formula (4.1) and the constraint
∣∣c′∣∣ ≤ 1 + c2, it is clear that P (c; I) is

maximal if and only if c coincides with (4.5) inside I. The fact that the perimeter in that case
is exactly M(|I|) is then an elementary calculation. �

We present now a technical result whose claim may appear obscure, but which in fact gives
a very strong information on the possible structure of maximizing functions, as it will be clear
in the proof of Lemma 4.3 below (see Step II).

Lemma 4.2. Let π/6 ≤ a < b < π, and let c : [0, π]→ R be a function with ‖c‖L∞ ≤ tan(π/6),
c > 0 in [a, b], c′ = −

(
1 + c2

)
in (a, b) and c′ = 1 + c2 in a left neighborhood of a and in a

right neighborhood of b. Then, for any ε such that |ε| is small enough, there exist a continuous
function cε : [0, π]→ R and an interval

(
aε, bε

)
, such that aε → a and bε → b when ε→ 0, and

the following holds. The function cε coincides with c in
[
0, π
]
\
(
(aε, bε) ∪ (a, b)

)
, and

c′ε = −
(
1 + c2

ε

)
in
(
aε, bε

)
, c′ε = 1 + c2

ε in
(
a, b
)
\
(
aε, bε

)
;
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0
cε(θ) sin θ dθ =

∫ π

0
c(θ) sin θ dθ + ε ; (4.6)

the Taylor expansion

P (cε) = P (c) +Aε+Bε2 + o(ε2) (4.7)

holds with two constants A and B not depending on ε, and with B > 0.

Proof. Given a small ε, we take a constant δ = δ(ε), to be specified later, and we define the
function cε as the “translation” by δ of the function c, as in Figure 12. To be more precise, if
ε > 0 as in the figure, then δ > 0 and cε equals c outside

(
a, b + δ/2

)
and it is c′ε = 1 + c2

ε in
(a, a+δ/2) and c′ε = −(1+c2

ε) in (a+δ/2, b+δ/2). On the other hand, if ε < 0 then the situation
is completely symmetric, namely δ < 0, cε equals c outside

(
a+ δ/2, b

)
and it is c′ε = −(1 + c2

ε)
in (a+ δ/2, b+ δ/2) and c′ε = 1 + c2

ε in (b+ δ/2, b). Notice that

a a+ δ b

Figure 12. The functions c (continuous) and cε (dashed) in Lemma 4.2

cε(θ) = c(θ − δ) ∀ θ ∈
(
a+ δ, b+

δ

2

)
(4.8)

if ε > 0, while

cε(θ) = c(θ − δ) ∀ θ ∈
(
a+

δ

2
, b+ δ

)
if ε < 0. To get the thesis, we have thus to select δ in such a way that (4.6) holds, and then
check that (4.7) is true with a strictly positive constant B.
Step I. The relation between δ and ε.
By the definition of cε, it is clear that∫ π

0
cε(θ) sin θ dθ −

∫ π

0
c(θ) sin θ dθ

is positive if and only if so is δ, and moreover it is a strictly increasing function of δ. Provided
|ε| � 1, there is a unique δ = δ(ε) which makes (4.6) true. We give now the expression of δ in
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terms of ε up to second order. Let us start by considering the case ε > 0, depicted in Figure 12:
we start by rewriting (4.6) as

ε =
∫ b+δ/2

a

(
cε(θ)− c(θ)

)
sin θ dθ

=
∫ a+δ

a
cε(θ) sin θ dθ +

∫ b−δ/2

a
c(θ)

(
sin(θ + δ)− sin θ

)
dθ −

∫ b+δ/2

b−δ/2
c(θ) sin θ dθ

=
∫ a+δ

a
cε(θ) sin θ dθ −

∫ b+δ/2

b−δ/2
c(θ) sin θ dθ +

∫ b−δ/2

a
c(θ)

(
δ cos θ − 1

2
δ2 sin θ

)
dθ + o(δ2) .

(4.9)

Let us now calculate more precisely the terms of the last line in (4.9). With regard to the first
one, notice that for all 0 ≤ t ≤ δ/2 one has

cε(a+ t) = cε(a+ δ − t) = c(a) + t
(
1 + c(a)2

)
+ o(δ) ,

so that∫ a+δ

a
cε(θ) sin θ dθ =

∫ δ/2

t=0

(
c(a) + t

(
1 + c2(a)

)
+ o(δ)

)(
sin(a+ t) + sin(a+ δ − t)

)
dt

= δc(a) sin a+
δ2

4
(
1 + c2(a)

)
sin a+

δ2

2
c(a) cos a+ o(δ2) .

(4.10)

The second integral of last line in (4.9) can be estimated, as before and minding that c(b+ t) =
c(b− t) for 0 ≤ t ≤ δ/2, as∫ b+δ/2

b−δ/2
c(θ) sin θ dθ =

∫ δ/2

t=0

(
c(b) + t

(
1 + c2(b)

)
+ o(δ)

)(
sin(b+ t) + sin(b− t)

)
dt

= δc(b) sin b+
δ2

4
(
1 + c2(b)

)
sin b+ o(δ2) .

(4.11)

Finally, the third integral of last line in (4.9) is∫ b−δ/2

a
c(θ)

(
δ cos θ − 1

2
δ2 sin θ

)
dθ

= δ

∫ b

a
c(θ) cos θ dθ − δ2

2
c(b) cos b− δ2

2

∫ b

a
c(θ) sin θ dθ + o(δ2) .

(4.12)

Putting then (4.10), (4.11) and (4.12) into (4.9), and recalling that c′ = −
(
1 + c2

)
in (a, b), one

finds

ε = δ

(
c(a) sin a− c(b) sin b+

∫ b

a
c(θ) cos θ dθ

)
+
δ2

4

((
1 + c(a)2

)
sin a

−
(
1 + c2(b)

)
sin b+ 2c(a) cos a− 2c(b) cos b− 2

∫ b

a
c(θ) sin θ dθ

)
+ o(δ2)

= δ

∫ b

a

(
1 + c2(θ)

)
sin θ dθ +

δ2

4

∫ b

a

(
1 + c2(θ)

)(
cos θ + 2c(θ) sin θ

)
dθ + o(δ2) .

(4.13)

We have then a second-order relation between ε and δ as desired. If ε < 0, one has to perform
almost identical calculations, eventually leading again to the expression (4.13). Notice that the
first coefficient is strictly positive since so is the integrand. Hence, δ and ε are of the same order.
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Step II. Taylor expansion of P (cε)− P (c).
To finish the proof, we should find the Taylor expansion of P (cε)−P (c) up to the second order in
ε, and check that the coefficient of the second term is strictly positive. However, cε is defined in a
very simple way in terms of δ, not of ε: therefore, we will now find the expansion of P (cε)−P (c)
up to the second order in δ, and then we will recover the expansion in terms of ε by (4.13). Also
in this case we show here the calculations when ε > 0. The case ε < 0 is similar and leads to
the same formula.

Since the integral defining the perimeter is non-local, by (4.8) we have

P
(
cε;
(
a+ δ, b+ δ/2

))
= P

(
c;
(
a, b− δ/2

))
.

Therefore, by (4.1) and the properties of c and cε we can evaluate

P (cε)− P (c) = P
(
cε;
(
a, a+ δ

))
− P

(
c;
(
b− δ/2, b+ δ/2

))
= 2

∫ δ/2

t=0

√
1 + c2

ε(a+ t) dt− 2
∫ δ/2

t=0

√
1 + c2(b+ t) dt

= 2
∫ δ/2

t=0

√
1 + c2(a)−

√
1 + c2(b) + tc(a)

√
1 + c2(a)−tc(b)

√
1 + c2(b) dt+ o(δ2)

= δ
(√

1 + c2(a)−
√

1 + c2(b)
)

+
δ2

4

(
c(a)

√
1 + c2(a)− c(b)

√
1 + c2(b)

)
+ o(δ2)

= δ

∫ b

a
c(θ)

√
1 + c2(θ) dθ +

δ2

4

∫ b

a

√
1 + c2(θ)

(
1 + 2c2(θ)

)
dθ + o(δ2) .

(4.14)

Step III. Conclusion.
Putting together (4.13) and (4.14), we can now find the expansion of D = P (cε)−P (c) in terms
of ε. Indeed, keep in mind that, when

ε = αδ + α̃δ2 + o(δ2) , D = βδ + β̃δ2 + o(δ2)

and α > 0, then

D =
β

α
ε+

1
α3

(
αβ̃ − α̃β

)
ε2 + o(ε2) .

In our case, then, we have the validity of the Taylor expansion (4.7) with

A =
∫
c(θ)

√
1 + c2(θ)∫ (

1 + c2(θ)
)

sin θ
,

B =

∫ (
1 + c2

)
sin θ

∫ √
1 + c2

(
1 + 2c2

)
−
∫ (

1 + c2
)(

cos θ + 2c sin θ
) ∫

c
√

1 + c2

4
( ∫ (

1 + c2
)

sin θ
)3 ,

where all the integrals are in (a, b). Thus, we have concluded once we will show that∫ b

a

(
1 + c2

)
sin θ

∫ b

a

√
1 + c2

(
1 + 2c2

)
>

∫ b

a

(
1 + c2

)(
cos θ + 2c sin θ

) ∫ b

a
c
√

1 + c2 .

Recall now that, given four functions f, g, f̃ , g̃ on the same interval, to ensure the validity of∫
f
∫
g >

∫
f̃
∫
g̃ it is not enough to check that for all x one has f(x)g(x) > f̃(x)g̃(x), but of
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course it is enough to check that for all x and y one has f(x)g(y) > f̃(x)g̃(y). We aim then to
prove that for all θ, ϕ ∈ (a, b) one has(

1 + c2(θ)
)

sin θ
√

1 + c2(ϕ)
(
1 + 2c2(ϕ)

)
>
(
1 + c2(θ)

)(
cos θ + 2c(θ) sin θ

)
c(ϕ)

√
1 + c2(ϕ)

which is equivalent to

sin θ
(

1 + 2c(ϕ)
(
c(ϕ)− c(θ)

))
> c(ϕ) cos θ . (4.15)

Since ‖c‖L∞ ≤ tan(π/6) =
√

3/3 and c is positive in (a, b) ⊆ (π/6, π), the left term is always
positive, so the inequality (4.15) is trivially true if θ ≥ π/2. Hence, we have to show that

tan θ >
c(ϕ)

1 + 2c(ϕ)
(
c(ϕ)− c(θ)

)
for all ϕ, θ ∈ (a, b) with θ < π/2. Being θ > a ≥ π/6, to get the full validity of (4.15) and then
to conclude it is enough to verify that for all θ, ϕ ∈ (a, b)

√
3

3
>

c(ϕ)
1 + 2c(ϕ)

(
c(ϕ)− c(θ)

) ,
which in turn is implied by the fact that

max
x,y∈[0,

√
3/3]

y

1 + 2y(y − x)
=
√

3
3

and the sup is not reached in the interior of the square
[
0,
√

3/3
]2. �

In Lemma 4.1 we have given the estimate (4.4), which gives a bound on the perimeter
inside an interval of length at most π/3. Next lemma, instead, gives the bound (4.16) for larger
intervals.

Lemma 4.3. Let I =
[
θ̄, π − θ̄

]
with π/6 < θ̄ < π/3, and let c̃ : [0, π] → R be a function

satisfying the assumptions (3.3) of Lemma 3.6. Then one has

P
(
c̃; I
)
< 2M

(
π

3

)
−M

(
2
3
π −

∣∣I∣∣) . (4.16)

Proof. Step I. The auxilary problems.
We will argue by an approximation with a sequence of auxiliary problems. To this aim, we say
that a function c satisfying (3.3) is a n−steps function if I ∩ {c > 0} is the union of at most n
subintervals where c′ = 1 + c2 and at most n subintervals where c′ = −(1 + c2). For instance,

θ̄ π − θ̄

Figure 13. Example of a 6−steps function
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the function in Figure 13 is a 6−steps function, but also an n−steps function for all n ≥ 6.
The auxiliary problems are then defined as follows: for any n ∈ N, we aim to find

max
{
P
(
c; I
)

: c : [0, π]→ R, c satisfies (3.3), c is an n−steps function,

c = c̃ in [0, π] \ I,
∫
I
c(θ) sin θ dθ ≤

∫
I
c̃(θ) sin θ dθ

}
,

(4.17)

By trivial compactness, each of the problems (4.17) admits a solution cn. Moreover, since the
function c̃ itself can be approximated with a sequence of n−steps functions admissible for the
problems (4.17), it is P

(
c̃; I
)
≤ lim inf P

(
cn; I

)
. Therefore, the thesis will be achieved if we

prove that for a generic n ∈ N one has

P
(
cn; I

)
≤ 2M

(
π

3

)
−M

(
2
3
π −

∣∣I∣∣)− ω(∣∣I∣∣− π

3

)
, (4.18)

where ω :
(
0, π/3

]
→ R is a strictly positive function, not depending on n.

Let us then fix a number n and prove the estimate. First of all, we call Ij , with j ≥ 1, all the
maximal subintervals of I where cn is strictly positive: for instance, the function in Figure 13
has three such intervals. Moreover, we set I0 = I \ ∪j≥1Ij : in the sequel, we will refer to all the
Ij ’s as “subintervals” of I, though of course I0 may be not an interval. The restriction of cn on
each subinterval Ij with j ≥ 1 is clearly still an n−steps function, but we see now that much
more is true.
Step II. On each Ij with j ≥ 1, the function cn is either a 1−step function or a 2−steps function.
Suppose by contradiction that for some Ij there exist three (or more) disjoint, maximal subin-
tervales of Ij where cn is decreasing with maximal slope. We can thus select ε with |ε| � 1 and
apply Lemma 4.2 to the first and to the second subinterval with ε and −ε respectively (notice
that the L∞ bound required by Lemma 4.2 is fulfilled thanks to Lemma 3.6). We have then now
a function cn,ε, which equals cn out of a small neighborhood of the two subintervals, and which
is still admissible for problem (4.17). Indeed, by construction cn,ε is still an n−steps function,
and moreover ∫

I
cn,ε(θ) sin θ dθ =

∫
I
cn(θ) sin θ dθ

thanks to (4.6), since the integral increases of ε in the first subinterval and decreases of ε in the
second one. Being cn optimal for problem (4.17), we deduce that

P
(
cn; I

)
≥ P

(
cn,ε; I

)
. (4.19)

Let us now use the Taylor expansion (4.7): there are constants A1, A2, B1 and B2 such that

P
(
cn,ε; I

)
= P

(
cn; I

)
+
(
A1 −A2

)
ε+

(
B1 +B2

)
ε2 + o(ε2) .

But this is easily seen to be against (4.19): indeed, if A1 > A2 it is enough to take 0 < ε � 1,
and if A1 < A2 to take −1 � ε < 0, to find a first-order contradiction to (4.19). If A1 = A2,
instead, regardless of the sign of ε we find a second-order contradiction since B1 and B2 are
both strictly positive. The contradiction concludes this step.
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Step III. A bound on the perimeter in the subintervals Ij, j ≥ 0.
We can now give a bound on P (cn; Ij) for each of the subintervals Ij , j ≥ 0, namely

P
(
cn; Ij

)
≤


M
(∣∣Ij∣∣) if

∣∣Ij∣∣ ≤ π

3
,

2M

(
π

3

)
−M

(
2
3
π −

∣∣Ij∣∣)− ω( ∣∣I∣∣− π

3

)
if
∣∣Ij∣∣ > π

3
.

(4.20)

Let us start by assuming j ≥ 1. The first case is already proved by Lemma 4.1. Concerning
the second case, notice that by Step II we already know that cn in Ij is a 1−step function or a
2−steps function. We can exclude the first possibility, because in that case one would have

‖cn‖L∞(Ij)
= tan

(∣∣Ij∣∣
2

)
> tan

(
π

6

)
≥ tan

(
θ̄

2

)
,

against the L∞ bound given by Lemma 3.6. We know then that in Ij the function cn is made by
four parts with maximal slope, the first and the third increasing, and the second and the fourth
decreasing. Again keeping in mind Lemma 3.6, we know that all these four parts are shorter
than θ̄/2 (by the way, this ensures that necessarily

∣∣Ij∣∣ ≤ 2θ̄), and then inside Ij =: (a, b) the
function cn is pointwise smaller (hence, it has a smaller perimeter) than

tan(θ − a) for a ≤ θ ≤ a+ θ̄/2 ,
tan(a− θ + θ̄) for a+ θ̄/2 ≤ θ ≤ (a+ b)/2 ,
tan(θ − b+ θ̄) for (a+ b)/2 ≤ θ ≤ b− θ̄/2 ,
tan(b− θ) for b− θ̄/2 ≤ θ ≤ b .

Finally, the perimeter inside Ij = (a, b) of this latter function is exactly

P
(
cn; Ij

)
= 2M

(
θ̄
)
−M

(
2θ̄ −

∣∣Ij∣∣) ,
as one can check with the same elementary calculation as in Lemma 4.1 or directly by an
immediate geometric argument. Now, since θ̄ > 2θ̄ −

∣∣Ij∣∣, by the strict convexity of M (which
ensures also the strict subadditivity, being M(0) = 0), one finds

2M
(
θ̄
)
−M

(
2θ̄ −

∣∣Ij∣∣) ≤ 2M

(
π

3

)
−M

(
2
3
π −

∣∣Ij∣∣)− ω̃(π3 − θ̄
)

= 2M

(
π

3

)
−M

(
2
3
π −

∣∣Ij∣∣)− ω(∣∣I∣∣− π

3

)
,

so that we have proved both cases of (4.20) for j ≥ 1.
Consider now I0. If

∣∣I0

∣∣ ≤ π/3, then

P
(
cn; I0

)
=
∣∣I0

∣∣ ≤M
(∣∣I0

∣∣) .
Conversely, if

∣∣I0

∣∣ > π/3, then

P
(
cn; I0

)
=
∣∣I0

∣∣ =
π

3
+
(∣∣I0

∣∣− π

3

)
= M

(
π

3

)
− κ+

(∣∣I0

∣∣− π

3

)
≤M

(
π

3

)
− κ+ M

(∣∣I0

∣∣− π

3

)
≤ 2M

(
π

3

)
− κ−M

(
2
3
π −

∣∣I0

∣∣) ,
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where κ = M
(
π/3

)
− π/3 is a strictly positive constant. Hence, (4.20) is proved also in the case

j = 0 so this step is concluded.
Step IV. The case when all subintervals Ij, j ≥ 0, are shorter than π/3.
Suppose that all the intervals Ij are shorter or equal than π/3: then, we immediately get (4.18)
using the first bound of (4.20) and keeping in mind the strict convexity of M, since

P (cn; I) =
∑
j

P
(
cn; Ij

)
≤
∑
j

M
(∣∣Ij∣∣) ≤M

(
π

3

)
+ M

(∣∣I∣∣− π

3

)

≤ 2M

(
π

3

)
−M

(
2
3
π −

∣∣I∣∣)− ω(∣∣I∣∣− π

3

)
.

Step V. The case when a subinterval is strictly larger than π/3.
Since the length of I is between π/3 and 2π/3, there can be at most a single subinterval strictly
larger than π/3, say Il. We use then the second and the first bound of (4.20) respectively for Il
and for all the other subintervals, and again the strict convexity and strict subadditivity of M,
to find

P (cn; I) =
∑
j

P
(
cn; Ij

)
= P

(
cn; Il

)
+
∑
j 6=l

P
(
cn; Ij

)
≤ 2M

(
π

3

)
−M

(
2
3
π −

∣∣Il∣∣)+
∑
j 6=l

M
(∣∣Ij∣∣)− ω(∣∣I∣∣− π

3

)

≤ 2M

(
π

3

)
−M

(
2
3
π −

∣∣Il∣∣)+ M

(∑
j 6=l

∣∣Ij∣∣)− ω(∣∣I∣∣− π

3

)

≤ 2M

(
π

3

)
−M

(
2
3
π −

∑
j

∣∣Ij∣∣)− ω(∣∣I∣∣− π

3

)
= 2M

(
π

3

)
−M

(
2
3
π −

∣∣I∣∣)− ω(∣∣I∣∣− π

3

)
.

Therefore, we have proved (4.18) also in this last case and then the proof is completed. �

4.2. Step 0 of the proof: no “large” intervals. In this Section we prove a bound on the
perimeter of a function c̄ which has all the intervals of constant sign shorter than π/3.

Proposition 4.4. Let c̄ : S1 → R be an admissible function, i.e., satisfying (2.9) and such that
all the intervals where c̄ has a constant sign are shorter or equal than π/3. Then, P (c̄) ≤ P (ĉ)
and the equality holds if and only if c̄ = ĉ up to a rotation.

Proof. Up to a rotation, we may assume that c(0) = c(π) = 0. Let then Ij be the maximal
subintervals of (0, π) where c̄ has a constant sign. By additivity of the perimeter, one has

P
(
c̄
)

=
∑

P
(
c̄; Ij

)
+ P

(
c̄; [0, π] \ ∪Ij

)
.

By Lemma 4.1, by the fact that M(x) ≥ x, and by the convexity and subadditivity of the
functional M, we directly get

P
(
c̄
)
≤
∑

M
(∣∣Ij∣∣)+

(
π −

∑
|Ij |
)
≤ 3M

(
π

3

)
= P (ĉ) .
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Moreover, by the stricty convexity of M (and the fact that M(x) > x when x > 0) the second
inequality holds as an equality if and only if there are exactly three intervals Ij , all of length
π/3. If this is the case, Lemma 4.1 again implies that the first inequality is an equality if and
only if c̄ = ĉ up to a rotation. �

4.3. Step 1 of the proof: one “large” interval. In this Section we prove a bound on the
perimeter of a function c̄ for which there exists exactly one interval strictly larger than π/3
where c̄ > 0 (then, also exactly one large interval where c̄ < 0).

Proposition 4.5. Let c̄ : S1 → R be an admissible function such that there exists only a single
maximal interval I where c̄ > 0 such that |I| > π/3. Then P (c̄) < P (ĉ).

Proof. As before, we start assuming that c̄(0) = c̄(π) = 0. We distinguish two cases.
Case I. π/3 < |I| < 2π/3.
Let us denote by Ij the maximal subintervals of (0, π) where c̄ has a constant sign and which
are different from I. Arguing exactly as in the proof Proposition 4.4, we have then

P (c̄) = P
(
c̄; I
)

+
∑
j

P
(
c̄; Ij

)
+
(
π−|I|−

∑
j

|Ij |
)
≤ P

(
c̄; I
)

+M

(
π

3

)
+M

(
2
3
π−|I|

)
. (4.21)

We need now to estimate P
(
c̄; I
)
. Set now c̃ : S1 → R as c̃(θ) = c̄(θ − ϕ) where ϕ is chosen in

such a way that I + ϕ =
(
θ̄, π − θ̄

)
where

θ̄ =
π −

∣∣I∣∣
2

∈
(
π

6
,
π

3

)
.

We are then in position to use Lemma 4.3, hence (4.16) gives

P
(
c̄; I
)

= P
(
c̃;
(
θ̄, π − θ̄

))
< 2M

(
π

3

)
−M

(
2
3
π −

∣∣I∣∣) . (4.22)

Inserting this inequality in (4.21), we directly get

P (c̄) < 3M

(
π

3

)
= P

(
ĉ
)
.

Case II. |I| ≥ 2π/3.
In this case, applying Lemma 3.6 to a suitable rotation c̃ of c̄ made as in Case I, we get that

‖c̄‖L∞(I) ≤ tan
(
π −

∣∣I∣∣
4

)
.

Thus, calling again Ij the other intervals of constant sign of c̄ in (0, π) and arguing as before,
we find

P
(
c̄
)
≤M

(
π −

∣∣I∣∣)+ P
(
c̄; I
)
≤M

(
π −

∣∣I∣∣)+
∣∣I∣∣
√

1 + tan2

(
π −

∣∣I∣∣
4

)

≤M

(
π

3

)
+

2
3
π

√
1 + tan2

(
π

12

)
,
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where the last inequality follows from the fact that the function(
2
3
π, π

)
3 x 7→M

(
π − x

)
+ x

√
1 + tan2

(
π − x

4

)
is strictly decreasing –which is elementary to check starting from the definition of M. To
conclude, it is enough to check that

π

3

√
1 + tan2

(
π

12

)
< M

(
π

3

)
,

which is again an elementary calculation. �

4.4. Step 2 of the proof: two “large” intervals. In this last section we prove the bound
on the perimeter for a function c̄ which has two intervals strictly larger than π/3 where c̄ > 0
(then, also two large intervals where it is c̄ < 0).

Proposition 4.6. Let c̄ : S1 → R be an admissible function such that there are two maximal
intervals strictly larger than π/3 where c̄ > 0. Then, P (c̄) < P (ĉ).

Proof. Part I. Preliminary observations and setting of the auxiliary problem.
We start by assuming that the two large intervals, call it I1 and I2, are both contained in (0, π)
and that I1 =

(
0,
∣∣I1

∣∣), which is admissible up to a rotation. Recall that, as seen in the proof of
Case II of Proposition 4.5 above, if an admissible function c contains an interval of constant sign
larger than 2π/3 then P (c) ≤ P (ĉ)− δ0 for a strictly positive constant δ0. Hence, by continuity,
there exists a strictly positive constant ε0 � 1 such that, if the distance between the intervals I1

and I2 of c̄ is smaller than ε0, then P (c̄) < P (ĉ). Thus we may assume without loss of generality
that dist

(
I1, I2

)
≥ ε0.

We introduce now the auxiliary problem that we will use through the proof. We denote by
Z the set of the functions c : [0, π]→ R which will be considered for the auxiliary problem, that
is, the functions such that:

• c(0) = c(π) = 0 ,
∣∣c′∣∣ ≤ 1 + c2 ,

∫ π

0
c(θ) sin θ dθ ≤ 0;

• there exist two open intervals I1 =
(

0,
∣∣I1

∣∣) and I2 such that c ≥ 0 on both Ij , c = 0 on

∂Ij , and
∣∣Ij∣∣ =

π

3
+ `j with `1, `2 ≥ 0;

• dist
(
I1, I2

)
≥ ε0, and c ≤ tan

(
π

6
− `j

4

)
in Ij .

Notice that, due to the last condition, the closed intervals I1 and I2 might not be maximal inter-
vals where c ≥ 0. Moreover, c̄ clearly belongs to Z, due to the L∞ estimate given by Lemma 3.6.
It is straightforward to notice that Z is compact with respect to uniform convergence, hence the
problem

max
{
P (c) : c ∈ Z

}
(4.23)

has a solution. We state the following
Claim: Problem (4.23) admits ĉ as the unique solution.
The proposition will immediately follow once this Claim is established.
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Let us now take a solution c̃ of problem (4.23) and divide the proof of the claim in three
distinct cases, namely whether the intervals Ĩ1 and Ĩ2 are both of width π/3, or if just one is
larger, or if both are larger.
Part II. If

∣∣Ĩ1

∣∣ =
∣∣Ĩ2

∣∣ =
π

3
, then c̃ = ĉ.

In this case, the intervals of constant sign of c̃ are all shorter or equal than π/3, so arguing exactly
as in Proposition 4.4 (where we did not really use the assumption (2.9)) we get P (c̃) ≤ P (ĉ).
On the other hand, since ĉ ∈ Z the reverse inequality is trivial, and thus Proposition 4.4 tells
us also that c̃ = ĉ up to a rotation. Since c̃(0) = 0 and c̃ is positive in (0, π/3), we conclude that
c̃ = ĉ.
Part III. It is not possible that

∣∣Ĩ1

∣∣ > ∣∣Ĩ2

∣∣ =
π

3
or
∣∣Ĩ2

∣∣ > ∣∣Ĩ1

∣∣ =
π

3
.

Assume that
∣∣Ĩ1

∣∣ > ∣∣Ĩ2

∣∣ =
π

3
(the other case being identical), and denote by J̃1 the interval

between Ĩ1 and Ĩ2, and J̃2 the interval between Ĩ2 and π. Notice that J̃1 has length at least ε0,
while J̃2 is possibly empty. We will obtain this part by showing that P (c̃) < P (ĉ), a contradiction
with the optimality of c̃. To do so, we split

P
(
c̃
)

= P
(
c̃; Ĩ1

)
+ P

(
c̃; J̃1

)
+ P

(
c̃; Ĩ2

)
+ P

(
c̃; J̃2

)
≤ P

(
c̃; Ĩ1

)
+ M

(∣∣J̃1

∣∣)+ M
(∣∣Ĩ2

∣∣)+ M
(∣∣J̃2

∣∣) ≤ P (c̃; Ĩ1

)
+ M

(
π

3

)
+ M

(∣∣J̃1

∣∣+
∣∣J̃2

∣∣)
= P

(
c̃; Ĩ1

)
+ M

(
π

3

)
+ M

(
π

3
− ˜̀

1

)
,

so that the searched contradiction will follow once we show that

P
(
c̃; Ĩ1

)
+ M

(
π

3
− ˜̀

1

)
< 2M

(
π

3

)
. (4.24)

Recalling that c̃ ≤ tan
(
π/6− ˜̀

1/4
)

on Ĩ1 and c̃ = 0 on ∂Ĩ1, we get that, inside Ĩ1,

c̃(θ) ≤



tan θ for 0 ≤ θ ≤ π

6
−

˜̀
1

4
,

tan
(
π

6
−

˜̀
1

4

)
for π

6
−

˜̀
1

4
≤ θ ≤ π

6
+

5
4

˜̀
1 ,

tan
(
π

3
+ ˜̀

1 − θ
)

for π

6
+

5
4

˜̀
1 ≤ θ ≤

π

3
+ ˜̀

1 ,

and thus

P
(
c̃; Ĩ1

)
≤M

(
π

3
−

˜̀
1

2

)
+

3
2

˜̀
1

1

cos
(
π
6 −

˜̀
1
4

) .
Keeping in mind formula (4.2) for M, (4.24) can be reduced to check that

2 ln

1 + sin
(
π
6 −

˜̀
1
4

)
cos
(
π
6 −

˜̀
1
4

)
+

3
2

˜̀
1

1

cos
(
π
6 −

˜̀
1
4

) + 2 ln

1 + sin
(
π
6 −

˜̀
1
2

)
cos
(
π
6 −

˜̀
1
2

)
 < 4 ln

(
1 + sin π

6

cos π6

)
,

and since 0 < ˜̀
1 ≤ π/3− ε0 < π/3, we will be done if we show that

φ(x) < 0 in
(

0,
π

12

)
, (4.25)
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where

φ(x) := 2 ln

1 + sin
(
π
6 − x

)
cos
(
π
6 − x

)
+

6x

cos
(
π
6 − x

) + 2 ln

1 + sin
(
π
6 − 2x

)
cos
(
π
6 − 2x

)


− 4 ln
(

1 + sin π
6

cos π6

)
.

Since φ(0) = 0, it is enough to check that φ′(x) < 0 in (0, π/12), that is, recalling also (4.3),

4− 6x tan
(
π
6 − x

)
cos
(
π
6 − x

) − 4

cos
(
π
6 − 2x

) < 0 in
(

0,
π

12

)
.

Being tan(π/6− x) > π/6− x, the previous inequality is certainly true if we show that

4− 6x
(
π
6 − x

)
cos
(
π
6 − x

) − 4

cos
(
π
6 − 2x

) < 0 in
(

0,
π

12

)
,

which is in turn equivalent to show

6x2 − πx+ 4 <
4 cos

(
π
6 − x

)
cos
(
π
6 − 2x

) in
(

0,
π

12

)
. (4.26)

Summarizing, to conclude this part we have reduced (4.25) to (4.26). Notice that the two
functions on the left and on the right side of this inequality coincide at x = 0, therefore to
prove (4.26) it is enough to show that the corresponding inequality for the derivatives, i.e.,

12x− π < 4
sinx− cos

(
π
6 − x

)
sin
(
π
6 − 2x

)
cos2

(
π
6 − 2x

) in
(

0,
π

12

)
.

Since sinx > 0 and cos(π/6− x) < cos(π/6− 2x), we further reduce to

4 tan
(
π

6
− 2x

)
< π − 12x in

(
0,
π

12

)
.

We finally conclude observing that the function in the left is strictly convex and the function in
the right is affine, and noticing that the inequality holds for x = 0 while the equality holds for
x = π/12.
Part IV. It is not possible that

∣∣Ĩ1

∣∣, ∣∣Ĩ2

∣∣ > π

3
.

Let J̃1 and J̃2 be the intervals as in Step III. This last step will be the more involved one, so we
further divide it into three substeps.
Part IV.1. c̃ is “minimal” in J̃1 and J̃2.
Since c̃ = 0 on ∂J̃j , then by the constraint on c̃′ one has the pointwise inequality∣∣c̃(θ)∣∣ ≤ tan

(
dist

(
θ, ∂J̃j

))
in J̃j .
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Since by replacing c̃ with − tan
(
dist(θ, ∂J̃j)

)
the perimeter would increase and the resulting

function would still belong to Z, we may assume without loss of generality that

c̃(θ) = − tan
(

dist
(
θ, ∂J̃j

))
in J̃j .

Part IV.2. Shape of c̃ in Ĩ1 and Ĩ2.
We aim to prove that c̃ decreases with the maximal possible slope in a left neighborhood of the
right endpoint of Ĩ1, more precisely

c̃(θ) = tan
(∣∣Ĩ1

∣∣− θ) in
[∣∣Ĩ1

∣∣− ∣∣J̃1

∣∣
2
,
∣∣Ĩ1

∣∣] . (4.27)

Indeed, let us define

θ− := min
{
θ ≥ 0 : c̃(ϕ) = tan

(∣∣Ĩ1

∣∣− ϕ) in
[
θ,
∣∣Ĩ1

∣∣]} ,
so that (4.27) amounts to show that θ− ≤

∣∣Ĩ1

∣∣− ∣∣J̃1

∣∣/2. To prove this inequality, fix 0 < ε� 1
and set

θ̂ := max
{
θ ∈ Ĩ1 : c̃(θ) = tan

(∣∣Ĩ1

∣∣− ε− θ)} .
Clearly, θ̂ < θ− and θ̂ = θ−+ o(1) when ε→ 0. We set now the function c∗, shown in Figure 14,

0

Figure 14. The functions c̃ (continuous) c∗ (dashed) in Step IV.2

∣∣Ĩ1∣∣
θ−

θ̂ ∣∣Ĩ1∣∣−ε
∣∣Ĩ1∣∣+∣∣J̃1

∣∣

as follows:

c∗(θ) :=



c̃(θ) if 0 ≤ θ ≤ θ̂ ,
tan

(∣∣Ĩ1

∣∣− ε− θ) if θ̂ ≤ θ ≤
∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣/2− ε/2 ,
tan

(
θ −

∣∣Ĩ1

∣∣− ∣∣J̃1

∣∣) if
∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣/2− ε/2 ≤ θ ≤ ∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣/2 ,
c̃(θ) if

∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣/2 ≤ θ ≤ π .
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We claim that c∗ belongs to Z if ε is small enough. Indeed, c∗ ≥ 0 in I∗1 =
[
0,
∣∣Ĩ1

∣∣ − ε] and∣∣I1

∣∣∗ ≥ π/3 as soon as ε ≤
∣∣Ĩ1

∣∣ − π/3, and moreover, concerning the L∞ bound in I∗1 , it holds
since

‖c∗‖L∞(I∗1 ) ≤ ‖c̃‖L∞(eI1)
≤ tan

(
π

6
−

˜̀
1

4

)
< tan

(
π

6
− `∗1

4

)
.

It is easily checked that

P
(
c∗
)
− P

(
c̃
)

= ε

(
1

cos
(∣∣J̃1

∣∣/2) − 1

cos
(∣∣Ĩ1

∣∣− θ−)
)

+ o(ε) ,

hence by the maximality of c̃ the inequality (4.27) follows.
In a perfectly analogous way, one can prove the same property in a right neighborhood of the

left endpoint and in a (possibly empty, in case J̃2 = ∅) left neighborhood of the right endpoint
of Ĩ2, that is,

c̃(θ) = tan
(
θ −

(∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣)) in
[∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣, ∣∣Ĩ1

∣∣+
3
2

∣∣J̃1

∣∣] , (4.28)

c̃(θ) = tan
(∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣+
∣∣Ĩ2

∣∣− θ) in
[∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣+
∣∣Ĩ2

∣∣− ∣∣J̃2

∣∣
2
,
∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣+
∣∣Ĩ2

∣∣] . (4.29)

Part IV.3. Conclusion.
Let us consider the function c∗ drawn in Figure 15, where

(
c∗
)′ = ±(1 +

(
c∗
)2) in

{
c∗ 6= 0

}
, so

that c∗ is built by suitable translations of ± tan θ, and the constants a, . . . , f are given by

a =
∣∣Ĩ1

∣∣− ∣∣J̃1

∣∣ , b =
∣∣Ĩ1

∣∣ , c =
∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣ , d =
∣∣Ĩ1

∣∣+ 2
∣∣J̃1

∣∣ , e = π − 2
∣∣J̃2

∣∣ , f = π −
∣∣J̃2

∣∣ .
Notice that, as in the figure, e > d: indeed,

Figure 15. The function c∗ in Step IV.3

0 a b c d e f π

e = π − 2
∣∣J̃2

∣∣ =
∣∣Ĩ1

∣∣+
∣∣J̃1

∣∣+
∣∣Ĩ2

∣∣− ∣∣J̃2

∣∣ = d+
∣∣Ĩ2

∣∣− (∣∣J̃1

∣∣+
∣∣J̃2

∣∣) > d .

Putting together Steps IV.1 and IV.2, we know that c∗ ≤ c̃ pointwise in [0, π], so that∫ π

0
c∗(θ) sin θ dθ ≤

∫ π

0
c̃(θ) sin θ dθ ≤ 0 . (4.30)

However, it is clear that ∫ π

e
c∗(θ) sin θ dθ ≥ 0 , (4.31)
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while ∫ d

a
c∗(θ) sin θ dθ =

∫ b

a
c∗(θ)

(
sin θ − sin

(
θ +

∣∣J̃1

∣∣)+ sin
(
θ + 2

∣∣J̃1

∣∣)) dθ
=
∫ b

a
c∗(θ) sin

(
θ +

∣∣J̃1

∣∣)(2 cos
(∣∣J̃1

∣∣)− 1
)
dθ > 0

(4.32)

since
∣∣J̃1

∣∣ < π/3. Putting together (4.31) and (4.32), we get a contradiction to (4.30), thus
finally concluding Step IV. �

We can now proceed to the proof of Theorem 3.

Proof of Theorem 3. Let c̄ be a function maximizing the perimeter, and consider the maximal
open intervals in S1 where c̄ has a constant sign. Since P (c̄) ≥ P (ĉ) by optimality, Proposi-
tions 4.5 and 4.6 below ensure that all these intervals are shorter than π/3. Then, the result
follows from Proposition 4.4 below. �
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