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Abstract. A negative answer to the Bernstein problem for entire H-perimeter
minimizing intrinsic graphs is given in the setting of the first Heisenberg group H1

endowed with its Carnot-Carathéodory metric structure. Moreover, in all Heisen-
berg groups Hn an area formula for intrinsic graphs with Sobolev regularity is
provided, together with the associated first and second variation formulae.

1. Introduction

The subgraph of a function φ : ω → R defined in an open set ω ⊂ Rn−1 is the
set

(1.1) E = {(x′, xn) = (x1, . . . , xn−1, xn) ∈ ω × R : xn < φ(x′)} .
If φ is of class C1, the perimeter of E in Ω = ω×R, i.e. the area of the graph of φ,
is given by

(1.2) ‖∂E‖(Ω) =

∫

ω

√

1 + |∇φ|2dLn−1.

If E locally minimizes perimeter in ω × R (i.e. E minimizes perimeter under com-
pact perturbations) and φ ∈ C2(ω), then φ satisfies the classical minimal surface
equation

(1.3) div

(

∇φ
√

1 + |∇φ2|

)

= 0 in ω.

G. Stampacchia and E. De Giorgi studied in [18] the problem of removable singular-
ities: they proved that any classical analytic solution φ of (1.3) in a set ω = A \K
with A ⊂ Rn−1 open and K ⊂ A compact set such that Hn−2(K) = 0, can be
extended to an analytic solution in A. This result was improved in [32] assuming
K to be a closed subset of A with Hn−2(K) = 0.

The classical Bernstein problem asks to find functions φ ∈ C2(Rn−1) solving (1.3)
which are not affine functions. The same question can be asked assuming that the
subgraph E locally minimizes perimeter in Rn. Both problems were completely
solved thanks to many contributions (see [26], chapter 17, for an interesting account
on this problem). In particular, S. Bernstein solved the problem for entire minimal
graphs in Rn with n = 3.

Theorem 1.1. (i) If n 6 8 every C2 solution φ of (1.3) in ω = Rn−1 is an affine
function. If n > 9 there are analytic functions φ : Rn−1 → R solving (1.3) which
are not affine.
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(ii) Suppose the set E in (1.1) with ω = Rn−1 locally minimizes perimeter in
Rn. Then either n ≥ 9 or ∂E is a hyperplane.

In this paper we study the Bernstein problem in the Heisenberg group H
n. We

investigate whether a local minimizer in Hn of the Heisenberg perimeter whose
boundary is an entire “graph” is necessarily a “half-space”. In particular, we give
a negative answer to the Bernstein problem for entire intrinsic minimal graphs in
H1. The notions of graph and half-space are defined in a suitable way by means of
the algebraic structure of Hn. They have been introduced in [21] and [23] in the
setting of Carnot groups and studied in [2] in the case of hypersurfaces.

The Bernstein problem in H1 was attacked in [25], [9], [16], [43], [3] and [17]. In
[39], [25] and [9] the problem was studied for C2 regular sets which are t-subgraphs,
i.e. sets of the form

(1.4) Etu = {(x, y, t) ∈ R
3 : t < u(x, y)}

with u ∈ C2(R2). A suitable minimal surface equation for u has been obtained and
its solutions have been called H-minimal. In particular, it turned out that there
exist H-minimal functions u : R2 → R whose t-graph is not an affine plane. On the
other hand, C2 regular entire H-minimal solutions u for which Etu is a minimizer
have been characterized in [43]. In [40], [10] and [42], t-subgraphs of functions
which are less than C2 regular have been considered, too. For instance, in [10] and
[42] there are interesting examples of minimizers Etu with u ∈ Lip(R2) (see also
Remark 2.2). Very recently J.H. Cheng, M. Ritoré and P. Yang informed us about
the possibility to construct minimizers with less than Lipschitz regularity.

The Bernstein problem has been recently studied also in higher dimensional
Heisenberg groups Hn under suitable assumptions (see [3], [17]).

Many other classical problems of Geometric Measure Theory have been consid-
ered in Heisenberg groups and in related Carnot-Carathédory structures (see, for
instance, [6], [20], [24], [21], [1], [22] and [31] where an interesting survey on this
argument can be found). In particular, isoperimetric type inequalities have been
studied in [36], [19], [6], [20], [24], [14], [13], [30], [43], [34], [41] and [35], and regu-
larity properties of minimal surfaces in Hn have been investigated in [39], [9], [8],
[40], [11], [4] and [5]. Finally, a counterpart of De Giorgi’s result on the structure
of finite perimeter sets has been obtained in [22] in the setting of step two Carnot
groups (see also [1], [38], [31]).

In this paper, we consider the Bernstein problem for intrinsic graphs in Hn.
Before stating the problem, we need to recall some preliminary facts (see [7] for a
more complete introduction to the Heisenberg group).

We denote the points of Hn ≡ Cn × R ≡ R2n+1 by

P = [z, t] = [x+ iy, t] = (x, y, t), z ∈ C
n, x, y ∈ R

n, t ∈ R.

If P = [z, t], Q = [ζ, τ ] ∈ Hn and r > 0, the group operation reads as

(1.5) P ·Q := [z + ζ, t+ τ + 2ℑm(〈z, ζ̄〉)].

The group identity is the origin 0 and one has [z, t]−1 = [−z,−t]. In Hn there is a
natural one parameter group of non isotropic dilations δr(P ) := [rz, r2t] , r > 0.

The group Hn can be endowed with the homogeneous norm

(1.6) ‖P‖∞ := max{|z|, |t|1/2}

and with the left-invariant and homogeneous distance

(1.7) d∞(P,Q) := ‖P−1 ·Q‖∞.
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The metric d∞ is equivalent to the standard Carnot-Carathéodory distance. It
follows that the Hausdorff dimension of (Hn, d∞) is 2n+ 2, whereas its topological
dimension is 2n+ 1.

The Lie algebra hn of left invariant vector fields is (linearly) generated by

(1.8) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n, T =

∂

∂t

and the only nonvanishing commutators are

(1.9) [Xj , Yj ] = −4T, j = 1, . . . n.

We also use the notation Xj := Yj−n for j = n+ 1, . . . , 2n.
Let Ω ⊂ Hn be an open set and ϕ = (ϕ1, . . . , ϕ2n) ∈ C1

c(Ω; R2n). The Heisenberg
divergence of ϕ is

(1.10) divHϕ :=
m
∑

j=1

Xjϕj .

Following De Giorgi, the H-perimeter in Ω of a measurable set E ⊂ Hn was intro-
duced in [6] as

(1.11) ‖∂E‖H(Ω) := sup

{
∫

E

divHϕdL2n+1 : ϕ ∈ C1
c(Ω,R

2n), |ϕ| 6 1

}

.

Alternatively, ‖∂E‖H(Ω) is the total variation in Ω of the vector valued measure
XχE.

By the Riesz’ representation Theorem, ‖∂E‖H is a Radon measure on Ω for which
there exists a unique ‖∂E‖H-measurable function νE : Ω → R2n such that

(1.12)

|νE | = 1 ‖∂E‖H-a.e. in Ω
∫

E

divHϕdL2n+1 = −
∫

Ω

〈ϕ, νE〉 d‖∂E‖H for all ϕ ∈ C1
c(Ω,R

2n).

We call νE the horizontal inward normal to E (see [20]).
A real measurable function f defined on an open set Ω ⊂ Hn is said to be of

class C1
H
(Ω) if f ∈ C0(Ω) and the distribution

∇Hf := (X1f, . . . , X2nf)

is represented by a continuous function. We say that S ⊂ Hn is an H-regular surface
if for every P ∈ S there exist a neighbourhood U of P and a function f ∈ C1

H
(U)

such that ∇Hf 6= 0 and S ∩ U = {Q ∈ U : f(Q) = 0}, see [23] and [2]. The
horizontal normal to S at P is

νS(P ) := − ∇Hf(P )

|∇Hf(P )| .

The importance of H-regular surfaces is clear in the theory of rectifiability in Hn

[21]. An H-regular surface can be highly irregular from the Euclidean viewpoint,
in fact it can be a fractal set [29]. This not being restrictive, we deal only with
surfaces S which are level sets of functions f ∈ C1

H
with X1f 6= 0.

If n > 2, we identify the maximal subgroup W = {(x, y, t) ∈ Hn : x1 = 0}
with R2n by writing (x2, . . . , xn, y1, . . . , yn, t) instead of (0, x2, . . . , xn, y1, . . . , yn, t);
similarly W ≡ R2

y,t if n = 1. Moreover, for s ∈ R we denote by se1 the point
exp(sX1) = (s, 0, . . . , 0) ∈ Hn.

Now we come to the definition of “intrinsic graph”. As in [3], a set S ⊂ Hn is
called X1-graph of a function φ : ω ⊂ W → R if

(1.13) S = {A · φ(A) e1 : A ∈ ω} .
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The notion of X1-graph is not a pointless generalization: for a more complete
introduction see [23]. Analogously, a set E ⊂ Hn is called X1-subgraph of φ if

(1.14) E = Eφ := {A · se1 : A ∈ ω, s < φ(A)} .
Given φ, we denote by Φ : ω → Hn the corresponding parametric map which is
defined as

(1.15) Φ(A) = A · φ(A) e1 = exp(φ(A)X1)(A), A ∈ ω.

Figure 1 shows the construction of Φ for n = 1.

x

X1

yt

ω ⊂ W

A

Φ(A)

Figure 1. Intrinsic graphs.

We are now in a position to state the Implicit Function Theorem (see [21] and
[12] for a generalization).

Theorem 1.2 (Implicit Function Theorem). Let Ω be an open set in Hn with 0 ∈ Ω
and let f ∈ C1

H
(Ω) be such that f(0) = 0 and X1f(0) > 0. Let

E := {P ∈ Ω : f(P ) < 0} and S := {P ∈ Ω : f(P ) = 0}.
Then:
A) There exist open sets I ⊂ W with 0 ∈ I and J ⊂ R with 0 ∈ J such that:

(i) E has finite H-perimeter in U := I · Je1 = {A · se1 : A ∈ I, s ∈ J};
(ii) ∂E ∩ U = S ∩ U ;
(iii) νE(P ) = νS(P ) for all P ∈ S ∩ U . Here, νE is the measure theoretic

horizontal inward normal to E defined in (1.12).

B) There exists a unique continuous function φ : I → R such that S ∩ U = Φ(I).
Moreover, H-perimeter has the integral representation

(1.16) ‖∂E‖H(U) =

∫

I

|∇Hf |
X1f

(Φ(A)) dL2n(A).

C) There exists a geometric constant c(n) > 0 such that ‖∂E‖H = c(n)S2n+1
∞ S,

where S2n+1
∞ is the 2n+1 dimensional spherical Hausdorff measure associated with

d∞.
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A characterization of the functions φ such that Φ(ω) is an H-regular surface is
given in [2] (see also [12]). Since W = exp(span{X2, . . . , Xn, Y1, . . . , Yn, T }) it is
possible to define the differential operators given in distributional sense by

(1.17)
Wφφ := Y1φ− 2T (φ2),

∇φφ :=

{

(X2φ, . . . , Xnφ,W
φφ, Y2φ, . . . , Ynφ) if n > 2

Wφφ if n = 1.

Theorem 1.3. Let ω ⊂ R2n be an open set and let φ : ω → R be a continuous
function. The following conditions are equivalent:

(i) The set S := Φ(ω) is an H-regular surface and ν1
S(P ) < 0 for all P ∈ S,

where νS(P ) = (ν1
S(P ), . . . , ν2n

S (P )) is the horizontal normal to S at P .
(ii) The distribution ∇φφ is represented by a continuous function and there

exists a family (φǫ)ǫ>0 ⊂ C1(ω) such that as ǫ→ 0+

(1.18) φǫ → φ and ∇φǫφǫ → ∇φφ in L∞
loc(ω).

Moreover, for all P ∈ S we have

(1.19) νS(P ) =

(

− 1
√

1 + |∇φφ|2
,

∇φφ
√

1 + |∇φφ|2

)

(Φ−1(P )),

and, with Ω = ω · Re1, we have the area formula

(1.20) ‖∂Eφ‖H(Ω) = c(n)S2n+1
∞ (S) =

∫

ω

√

1 + |∇φφ|2 dL2n,

where c(n) is as in Theorem 1.2.

The area formula (1.20) for intrinsic graphs is the exact counterpart of (1.2) for
Euclidean graphs. In Section 3, we extend this formula from H-regular X1-graphs
to a class of Sobolev X1-graphs that we denote by W 1,1

W
(ω) (see Definition 3.1 and

Theorem 3.4). Then we prove a first and second variation formula for this functional

on a suitable subset of W 1,1
W

(ω) (see Theorem 3.5).
The notion of intrinsic plane in Hn arises in a natural way on taking into account

Pansu’s differentiability theorem in Carnot groups [37]. A function f : Hn → R

which is Lipschitz w.r.t. the metric d∞ can be approximated a.e. by an intrinsic
differential, i.e. by a homogeneous linear function L : Hn → R. This function is of
the form

L(x, y, t) = 〈a, x〉 + 〈b, y〉
for some a, b ∈ Rn. It is then natural to define a vertical plane V in Hn as a level
set of L, V = {(x, y, t) ∈ Hn : 〈a, x〉 + 〈b, y〉 = c} for some c ∈ R. It is V = P0 · V0

for some P0 ∈ V , where V0 := {(x, y, t) ∈ Hn : 〈a, x〉 + 〈b, y〉 = 0} is a maximal
subgroup of H

n. In [21] it is proved that H-regular surfaces can be approximated
at a given point by vertical planes.

We can now give the intrinsic formulation of the Bernstein problem. In [16] and
[3] the problem in Hn has been rephrased replacing the notion of Euclidean t-graph
with the notion of intrinsic graph, and the notion of plane with the one of vertical
plane. If φ is of class C2, by performing a simple first variation of the functional in
(1.20) we can get the following minimal surface equation for X1-graphs (see Section
3)

(1.21) ∇φ ·
(

∇φφ
√

1 + |∇φφ|2

)

= 0 in ω,

where, consistently with the distributional definition (1.17), ∇φ is the family of
operators

∇φ = (X2, . . . , Xn, Y1 − 4φT, Y2, . . . , Yn) if n > 2, ∇φ = Y1 − 4φT if n = 1 .
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Vertical planes are parameterized by “affine” functions of the form

(1.22) φ(x2, . . . , xn, y2, . . . , yn) = c+ 〈(x2, . . . , xn, y2, . . . , yn), w〉,
with c ∈ R, w ∈ R

2n−1 (the previous formula reads φ(y, t) = c + wy when n = 1).
These functions are trivial solutions of (1.21) and vertical planes are therefore
stationary points of the area functional. In fact, they are minimizers since they
have constant horizontal normal (see [3], Example 2.2).

These considerations and Theorem 1.1 suggest the following formulations of the
Bernstein problem in the Heisenberg group:

Bernstein problem for X1-graphs in Hn:

(B1) Are there entire solutions φ ∈ C2(R2n) of the minimal surface equation
(1.21) which do not parametrize vertical planes?

(B2) Let φ : R
2n → R be such that Eφ is a minimizer for H-perimeter in H

n. Is
it true that ∂Eφ is a vertical plane?

To our knowledge, Problem (B1) is answered in the affirmative if n = 1 [?, 16]
and if n ≥ 5 [3, 17]. In [16] it has been provided a remarkable example in H

1 of a C2

entire solution φ of (1.21) whose subgraph Eφ is not a minimizer and ∂Eφ is not a
vertical plane.This is in contrast with the classical case : Euclidean subgraphs of C2

solutions to the minimal surface equation (1.3) are also minimizers. Problem (B2) is
answered in the affirmative for n = 1 with the additional assumption φ ∈ C2(R2n)
[3]. For n > 5, Problem (B2) is answered in the negative. Precisely, we have:

Theorem 1.4. (i) Let φ ∈ C2(R2) and assume that Eφ is a minimizer in H1.
Then ∂Eφ is a vertical plane, i.e. φ(y, t) = wy + c for some constants w, c ∈ R.

(ii) If n ≥ 5 there exist functions φ ∈ C2(R2n) for which Eφ is a minimizer in
Hn but ∂Eφ is not a vertical plane.

Theorem 1.4 (ii) also yields a negative answer to Problem (B1) when n ≥ 5 (see
[3]). An extension of Theorem 1.4 (i) to more general C2 entire graphs without
characteristic points has been obtained in [17].

In Section 2, we give a negative answer to Problem (B2) for n = 1 when the
regularity assumption φ ∈ C2(R2) of Theorem 1.4 is dropped.

Theorem 1.5. Let ϑ : R
2 → R be the function defined by

(1.23) ϑ(y, t) := −sgn(t)
√

|t|.
Then the subgraph Eϑ is H-perimeter minimizing in H1 and

∂Eϑ =
{

(x, y, 2xy − x|x|) ∈ H
1 : x, y ∈ R

}

is not a vertical plane. (See also Figure 2).

Although the intrinsic graph ∂Eϑ is of class C1,1 from the Euclidean viewpoint,

the function ϑ only belongs to C0, 1
2 (R2) \Liploc(R2). We also show that ϑ satisfies

equation (1.21) in a weak sense and that it satisfies a second variation formula for
the area functional for X1-graphs (see Remark 3.9). Regularity results for Lipschitz
vanishing viscosity solutions to the intrinsic minimal surface equation (1.21) have
been recently announced in [4, 5].

To our knowledge, Problems (B1) and (B2) are still open for the cases n = 2, 3
and 4. Problem (B2) still remains open also for n = 1 if the boundary ∂Eφ of a
minimizer Eφ is required to be an H-regular surface.

Acknowledgements. We thank J.H. Cheng, A. Malchiodi, M. Ritoré, C. Rosales
and P. Yang for useful discussions on the topic during the RIM Conference on
Mathematics held in Hong Kong in December 2007.
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Figure 2. The intrinsic graph of ϑ.

2. The counterexample

A set E ⊂ Hn with locally finite H-perimeter is said to be locally minimizing in
a fixed open set Ω ⊂ Hn if for any open subset Ω′ ⋐ Ω one has

(2.1) ‖∂E‖H(Ω′) ≤ ‖∂F‖H(Ω′)

for any measurable F ⊂ Hn such that E∆F ⋐ Ω′. We call such a set minimizer.
The following calibration result is proved in [3] in the general setting of Carnot

groups.

Theorem 2.1. Let E ⊂ Hn be a measurable set, Ω ⊂ Hn be an open set and
ν : Ω → Rm be a Borel map. Assume that:

(i) E has locally finite H-perimeter in Ω;
(ii) ν = νE ‖∂E‖H-a.e. in Ω;

(iii) there exists an open set Ω̃ ⊂ Ω such that ‖∂E‖H(Ω\ Ω̃) = 0 and ν ∈ C0(Ω̃);
(iv) divH ν = 0 in distributional sense in Ω.

Then E is a minimizer of H-perimeter in Ω.

Proof of Theorem 1.5. By (1.14) the (intrinsic) subgraph of ϑ in (1.23) is

E = Eϑ =
{

(x, y, t) ∈ H
1 : x < ϑ(y, t− 2xy)

}

=
{

(x, y, t) ∈ R
3 : f(x, y, t) < 0

}(2.2)

where

f(x, y, t) := t− 2xy + x|x|, (x, y, t) ∈ H
1.

Indeed, the function g : R → R, g(τ) = −sgn(τ)
√

|τ | and g(0) = 0, is strictly
decreasing with inverse function g−1(x) = −x|x|. The set E can be represented
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also as an entire t-subgraph of class C1,1, namely it is E = Etu with

(2.3) u(x, y) = 2xy − x|x|.

Thus the boundary S = ∂E =
{

(x, y, t) ∈ H1 : f(x, y, t) = 0
}

is (Euclidean) C1,1

regular and therefore E has locally finite Euclidean and H-perimeters (see [21],
Remark 2.13).

Let S0 = S \ {(0, y, t) : y, t ∈ R}. The inward horizontal normal to E at points
in S0 is

(2.4) νE(x, y, t) = −
(

1√
5
, − x

|x|
2√
5

)

, (x, y, t) ∈ S0.

In fact, it is f ∈ C1,1(H1) and

X1f(x, y, t) = 2|x|, Y1f(x, y, t) = −4x.

By Theorem 1.2, the surface S0 is H-regular with horizontal normal

νE = νS0
= −

(

1√
5
, − x

|x|
2√
5

)

, (x, y, t) ∈ S0,

which is (2.4).
The surface S is not H-regular in a neighborhood of any point (0, y, 0) ∈ S \ S0,

because the normal νS0
cannot be extended with continuity at such points.

We prove that E is a minimizer in H1 for H-perimeter by means of Theorem 2.1.
Let ν = (ν1, ν2) : H1 \ W → R2 be the map

ν(x, y, t) := −
(

1√
5
,− x

|x|
2√
5

)

.

Condition (i) of Theorem 2.1 is trivially satisfied. Condition (iii) is also satisfied

with Ω̃ = H1 \ W. Indeed, letting K =
{

(0, y, 0) : y ∈ R
}

, we have

‖∂E‖H

(

Ω \ Ω̃
)

= ‖∂E‖H

(

K
)

≤ S3
∞

(

K
)

≤ H2
(

K
)

= 0,

because ‖∂E‖H ≪ S3
∞ (see [21], Theorem 7.1) and S3

∞ ≪ H2 (see [22], Proposition
4.4), where H2 denotes the 2-dimensional Euclidean Hausdorff measure in R3. The
same argument shows that also (ii) in Theorem 2.1 is satisfied.

It remains to check (iv), i.e. that divH ν = 0 in H1 in distributional sense. In
fact, for any ϕ ∈ C1

c(H
1) we have

∫

R3

(ν1X1ϕ+ ν2 Y1ϕ) dL3 = − 1√
5

∫

R3

(ϕx + 2yϕt) dL3 +
2√
5

∫

R3

x

|x| (ϕy − 2xϕt) dL3

= 0,

because both integrals vanish. �

Remark 2.2. An example of a C1,1 entire t-graph given by a function similar to
the u in (2.3), which locally minimizes the area functional for t-graphs

W 1,1(ω) ∋ u 7→
∫

ω

√

(ux − 2 y)2 + (uy + 2 x)2dxdy, ω ⊂ R
2
x,y,

was already given in [10]. Examples of entire t-graphs of class C1,1 which are locally
minimizers among C1 regular surfaces are also given in [41].
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3. First and second variation of the area

We extend the area formula (1.20) to intrinsic graphs with Sobolev regularity.

Definition 3.1. Let ω ⊂ R2n be an open set.

(i) We say that a function φ ∈ L1(ω) ∩ L2(ω) belongs to the class W 1,1
W

(ω)
if there exist a sequence (φj)j∈N ⊂ C1(ω) and a vector valued map w ∈
L1(ω,R2n−1) such that as j → +∞

(3.1) φj → φ, φ2
j → φ2 and ∇φjφj → w in L1(ω).

(ii) We say that a function φ ∈ L1(ω) ∩ L2(ω) belongs to the class W 1,1
W,T (ω)

if there exist a sequence (φj)j∈N ⊂ C1(ω), a vector valued map w ∈
L1(ω,R2n−1) and a function v ∈ L1(ω) such that (3.1) holds together with

(3.2) Tφj → v in L1(ω).

(iii) We say that a function φ ∈ C0(ω) belongs to the class C1
W

(ω) if Φ(ω) is an
H-regular surface, where Φ : ω → H

n is the map in (1.15).

Moreover, we say that φ ∈ L2
loc(ω) belongs to the class W 1,1

W,loc(ω) (respectively

W 1,1
W,T ,loc(ω)) if there exist (φj)j∈N ⊂ C1(ω) and w ∈ L1

loc(ω,R
2n−1) such that all

convergences in (3.1) (respectively in (3.1) and (3.2)) hold in L1
loc(ω).

For a function φ ∈ W 1,1
W,loc(ω), the distribution ∇φφ is represented by an L1

loc

function w and namely the function in (3.1). Analogously, if φ ∈ W 1,1
W,T ,loc(ω), Tφ

is represented by a function, and precisely the function v in (3.2).

Remark 3.2. By definition we have the trivial inclusions

(3.3) W 1,1
W,T (ω) ⊂W 1,1

W
(ω) ⊂ L1(ω) ∩ L2(ω),

as well as the inclusions of the corresponding local classes. Moreover, by Theorem
1.3 we also have

(3.4) C1
W(ω) ⊂W 1,1

W,loc(ω).

In general, the inclusion C1
W

(ω) ⊂ W 1,1
W,T ,loc(ω) does not hold. Indeed, we are

able to show that

(3.5) C1
W(ω) ∩W 1,1

W,T,loc ⊂W 1,1
loc (ω),

while an example of a function in C1
W

(ω) \W 1,1
loc (ω) is provided by [29]. To prove

(3.5), let φ ∈ C1
W

(ω) ∩W 1,1
W,T,loc be fixed and consider a sequence of mollifications

φj := φ ∗ ̺j. Here, ̺j(x) := j−2n̺(x/j) and ̺ is a fixed standard mollifier. Up to
subsequences one has

φj → φ in L∞
loc(ω) and Tφj → Tφ in L1

loc(ω),

whence limj→∞(φjTφj) = φTφ in L1
loc(ω). Therefore, the distribution T (φ2) =

2φTφ belongs to L1
loc(ω). The continuity of ∇φφ ensures that φ ∈W 1,1

loc (ω).

The class W 1,1
W,T ,loc(ω) is closed under additive smooth perturbations and it can

therefore be used to compute the first variation of the area of intrinsic graphs (see
Theorem 3.5 and Remark 3.8).

Lemma 3.3. If φ ∈ W 1,1
W,T ,loc(ω) and ψ ∈ C∞

c (ω) then φ+ ψ ∈ W 1,1
W,T ,loc(ω) and

Xi(φ+ ψ) = Xiφ+Xiψ i = 2, ..., 2n, i 6= n+ 1,

Wφ+ψ(φ+ ψ) = Wφφ+Wψψ − 4T (φψ), T (φ+ ψ) = Tφ+ Tψ.
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Proof. We prove that φ + ψ fulfills Definition 3.1. Let (φj)j∈N be as in Definition
3.1 relatively to φ. It is sufficient to consider the sequence (φj + ψ)j∈N: indeed, it
is trivial to see that φj → φ, (φj + ψ)2 → (φ + ψ)2, Xi(φj + ψ) → Xiφ +Xiψ (if
n ≥ 2) and T (φj + ψ) → Tφ+ Tψ in L1(ω). For the last requirement, notice that

Wφj+ψ(φj + ψ) = Wφjφj +Wψψ − 4φjTψ − 4ψTφj

→Wφφ+Wψψ − 4φTψ − 4ψTφ in L1
loc(ω).

�

An area formula for X1-graphs of functions in W 1,1
W

(ω) is now available.

Theorem 3.4. Let ω ⊂ R2n be a bounded open set and let Eφ be the subgraph of a

function φ ∈ W 1,1
W

(ω). Then we have

(3.6) ‖∂Eφ‖H(Ω) =

∫

ω

√

1 + |∇φφ|2dL2n,

where Ω = ω · Re1.

Proof. Let (φj)j∈N and w be as in Definition 3.1. Without loss of generality we can
also assume that φj → φ L2n- a.e. in ω. Let E := Eφ and Ej := Eφj

, and, as in

(1.15), set Φj(A) = A · φj(A)e1, Φ(A) = A · φ(A)e1. For any ϕ ∈ C1
c(Ω,R

2n) we
have

(3.7)

∫

Ej∩Ω

divHϕ dL2n+1 = −
∫

Ω

〈νEj
, ϕ〉 d‖∂Ej‖H .

Moreover, it is (see [2], Remark 2.23)

‖∂Ej‖H Ω = Φj#

(

√

1 + |∇φjφj |2 L2n ω

)

,

and

(3.8) νEj
◦ Φj =

(

− 1
√

1 + |∇φjφj |2
,

∇φjφj
√

1 + |∇φjφj |2

)

∈ R × R
2n−1.

From (3.7) and (3.8) we obtain

(3.9)

∫

Ej∩Ω

divHϕ dL2n+1 =

∫

ω

[

ϕ1 ◦ Φj − 〈∇φjφj , ϕ̂ ◦ Φj〉
]

dL2n,

where ϕ̂ = (ϕ2 . . . , ϕ2n). Now notice that

χEj
→ χE L2n+1 − a.e. in Ω

ϕi ◦ Φj → ϕi ◦ Φ L2n+1 a.e. in Ω, i = 1, . . . , 2n.

By the lower semicontinuity of perimeter we have ‖∂E‖H(Ω) < +∞. Moreover,
letting j → +∞ in (3.9), by the dominated convergence theorem we get

(3.10) −
∫

Ω

〈νE , ϕ〉 d‖∂E‖H =

∫

E

divHϕdL2n+1 =

∫

ω

[

ϕ1 ◦Φ−〈∇φφ, ϕ̂ ◦Φ〉
]

dL2n,

where νE = (ν
(1)
E , . . . , ν

(2n)
E ) denotes the inward generalized horizontal normal to E

defined in (1.12).
Identity (3.10) can be also read as

(3.11) νE ‖∂E‖H Ω = Φ#

(

ν
√

1 + |∇φφ|2 L2n ω

)

,

where

ν =

(

− 1
√

1 + |∇φφ|2
,

∇φφ
√

1 + |∇φφ|2

)

in ω.
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Moreover, we have

(3.12) νE ◦ Φ = ν L2n − a.e. in ω.

By (3.11) we get −ν(1)
E ‖∂E‖H Ω = Φ#

(

L2n ω
)

and in particular

(3.13) Φ#

(

L2n ω
)

≪ ‖∂E‖H Ω .

Being ‖∂E‖H a Radon measure, classical results ensure the existence of a se-
quence (ϕj)j∈N ⊂ C1

c(Ω,R
2n) with |ϕj | 6 1 such that

(3.14) ϕj → νE ‖∂E‖H − a.e. in Ω.

By (3.12), (3.13) and (3.14) we get

(3.15) ϕj ◦ Φ → ν L2n − a.e. in ω.

Let ϕ ≡ ϕj in (3.10), taking the limit as j → ∞ by (3.14) and (3.15) we achieve
the thesis. �

If X : C∞
c (ω) → L1(ω) is an operator we denote by X∗ : L∞(ω) → D′(ω) the

adjoint operator of X . We have X∗
j ψ = −Xjψ for all j = 2, ..., 2n, j 6= n + 1,

and T ∗ψ = −Tψ, ∀ψ ∈ C∞
c (ω). It is not difficult to check that if φ ∈ L1(ω) and

Tφ ∈ L1(ω) in distributional sense then

(Wφ)∗ψ = −Wφψ + 4ψTφ for ψ ∈ C∞
c (ω),

We also set

∇φ∗ :=
(

X∗
2 , . . . , X

∗
n,W

φ∗, X∗
n+2, . . . , X

∗
2n

)

if n > 2

∇φ∗ := Wφ∗ if n = 1.

We give a weak formulation of the first and second variation of the area functional
(3.6) in the Sobolev class W 1,1

W,T (ω).

Theorem 3.5. Let φ ∈ W 1,1
W,T ,loc(ω) be such that the subgraph E ≡ Eφ is H-

perimeter minimizing in Ω = ω · Re1. Then, for any ψ ∈ C∞
c (ω)

(3.16)

∫

ω

〈∇φφ,∇φ∗ψ〉
√

1 + |∇φφ|2
dL2n = 0 ,

and

(3.17)

∫

ω

(1 + |∇φφ|2)
[

|∇φ∗ψ|2 − 8ψTψWφφ
]

− 〈∇φφ,∇φ∗ψ〉2

[1 + |∇φφ|2]3/2
dL2n > 0

where

〈∇φφ,∇φ∗ψ〉 :=
∑

j 6=n+1

Xjφ X
∗
j ψ +WφφWφ∗ψ.

Here and in the following the sums range over j = 2, . . . , 2n with j 6= n+ 1. When
n = 1 there is no sum.

Proof. Let ψ ∈ C∞
c (ω) and set φs := φ + sψ if s ∈ R. By Lemma 3.3 φs ∈

W 1,1
W,T ,loc(ω) and

Wφsφs = Wφφ+W sψ(sψ) − 4sT (φψ)

= Wφφ− s Wφ∗ψ − 4s2ψTψ.



12 ROBERTO MONTI, FRANCESCO SERRA CASSANO, AND DAVIDE VITTONE

By Theorem 3.4 we can define the function g : R → [0,+∞)

g(s) : = ‖∂Eφs
‖H(Ω) =

∫

ω

√

1 + |∇φsφs|2dL2n

=

∫

ω

[

1 +
∑

j 6=n+1

(Xjφ+ sXjψ)2 +
(

Wφφ− sWφ∗ψ − 4s2ψTψ
)2
]1/2

dL2n.

It easy to see that g is twice differentiable and it is not difficult to compute

(3.18) g′(s) =

∫

ω

∑

j 6=n+1Xjφs Xjψ +Wφsφs (−Wφ∗ψ − 8sψTψ)
√

1 + |∇φsφs|2
dL2n,

g′′(s) =

∫

ω

1

1 + |∇φsφs|2

{

√

1 + |∇φsφs|2×

×
[

∑

j 6=n+1

(Xjψ)2 +
(

Wφ∗ψ + 8sψTψ
)2 − 8ψTψWφsφs

]

+

−
[

[

∑

j 6=n+1Xjφs Xjψ +Wφsφs
(

−Wφ∗ψ − 8sψTψ
)

]2

√

1 + |∇φsφs|2

]}

dL2n.

(3.19)

Moreover it is E∆Eφs
⋐ Ω, and since E is a minimizer we have g′(0) = 0 and

g′′(0) ≥ 0. By (3.18) and (3.19) we get

g′(0) =

∫

ω

∑

j 6=n+1Xjφ Xjψ −WφφWφ∗ψ
√

1 + |∇φφ|2
dL2n = −

∫

ω

〈∇φφ,∇φ∗ψ〉
√

1 + |∇φφ|2
dL2n,

g′′(0) =

∫

ω

(1 + |∇φφ|2)
[

|∇φ∗ψ|2 − 8ψTψWφφ
]

− 〈∇φφ,∇φ∗ψ〉2

[1 + |∇φφ|2]3/2
dL2n,

and then thesis follows. �

Theorem 3.5 can be applied when φ ∈ Liploc(ω).

Proposition 3.6. The inclusion W 1,1
loc (ω) ∩ C0(ω) ⊂W 1,1

W,T ,loc(ω) holds.

Proof. We prove that a function φ ∈ W 1,1
loc (ω) ∩ C0(ω) fulfills the requirements of

Definition 3.1 by considering a (sub-)sequence of standard mollifications φj := φ∗̺j .
Again, ̺j(x) := j−2n̺(x/j) and ̺ is a fixed standard mollifier.

Well known arguments ensure that φj → φ in L∞
loc(ω) and, in particular, φj → φ

and φ2
j → φ2 in L1

loc(ω). Also the convergences

Tφj → Tφ, Xiφj → Xiφ, Yiφj → Yiφ in L1
loc(ω)

are immediate for i = 2, . . . , n. Moreover, for any ω′ ⋐ ω we have
∫

ω′

|2T (φ2
j)− 4φTφ| dL2n

6

∫

ω′

4|φj −φ||Tφj| dL2n +

∫

ω′

4|φ||Tφj −Tφ| dL2n → 0,

because φj → φ in L∞(ω′), ‖Tφj‖L1(ω′) are uniformly bounded, φ is bounded on

ω′ and Tφj → Tφ in L1(ω′). This implies that, as j → +∞, we have

Wφjφj = Y1φj − 2T (φ2
j) → Y1φ− 4φTφ in L1

loc(ω).

The proof is accomplished. �

Corollary 3.7. Let φ ∈ Liploc(ω) be such that Eφ is H-perimeter minimizing in
Ω = ω · Re1. Then (3.16) and (3.17) hold.

Proof. Since Liploc(ω) ⊂ W 1,1
loc (ω) ∩ C0(ω), Theorem 3.5 applies by Proposition

3.6. �
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Variation formulae are obtained in [2] under the assumption φ ∈ C2(ω) (see
also [16] and [15]). A first variation formula for the area functional in Hn defined
on t-graphs of Sobolev type is provided in [10]. Variation formulae for general C2

surfaces in the setting of CC structures are obtained also in [14], [25], [9], [43], [28],
[15] and [33].

Remark 3.8. It is not clear how to compute the first variation for the functional

W 1,1
W

(ω) ∋ φ 7→
∫

ω

√

1 + |∇φφ|2dL2n.

In fact, variations similar to the ones of Lemma 3.3 do not seem to be possible in
the class W 1,1

W
(ω).

Remark 3.9. By Proposition 3.6, the function ϑ in (1.23) satisfies ϑ ∈ W 1,1
W,T ,loc(R

2).
Therefore

(3.20)

∫

R2

WϑϑWϑ∗ψ
√

1 + |Wϑϑ|2
dL2 = 0

and

(3.21)

∫

R2

(1 + |Wϑϑ|2)
[

|Wϑ∗ψ|2 − 8ψTψWϑϑ
]

− (WϑϑWϑ∗ψ)2

[1 + |Wϑϑ|2]3/2
dL2

> 0

hold for any ψ ∈ C∞
c (R2).
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[41] M. Ritoré, Area-Stationary Surfaces and isoperimetric Regions in the Heisenberg Group

H
1, Lectures notes Fifth School on Analysis and Geometry in Metric Spaces, Levico Terme,

2007.
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