
STABILITY OF ABSTRACT LINEAR SEMIGROUPS
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Abstract. We establish some decay properties of the semigroup generated by a lin-
ear integro-differential equation in a Hilbert space, which is an abstract version of the
equation

ut(t)− β∆u(t)−
∫ ∞

0

k(s)∆u(t− s)ds = 0

describing hereditary heat conduction.

1. Introduction

Let H be a real Hilbert space, and let A be a strictly positive linear operator on H with
domain D(A) b H (thus A has compact inverse). Given a piecewise-smooth decreasing
summable function µ 6≡ 0 on R+ = (0,∞), and naming V = D(A1/2), we consider the
L2-weighted space M = L2

µ(R+; V ) along with the infinitesimal generator of the right-
translation semigroup on M, that is, the linear operator

(Tη)(s) = −η′(s), D(T ) = {η ∈M : η′ ∈M, η(0) = 0},
where the prime stands for the distributional derivative with respect to s ∈ R+, and
η(0) = lims→0 η(s) in V . In this paper, we address the study of the asymptotic behavior
of the linear evolution system in the unknowns u(t) : [0,∞) → H and ηt : [0,∞) →M

(1.1)





u̇(t) + βAu(t) +

∫ ∞

0

µ(s)Aηt(s)ds = 0, t > 0,

η̇t = Tηt + u(t), t > 0,

u(0) = u0,

η0(s) = η0(s).

Here, β is a nonnegative parameter, while u0 ∈ H and η0 ∈ M are given initial data.
Problem (1.1) is cast in the so-called memory setting (see [4]), since η accounts for the
past values of the variable u, and the memory kernel µ measures how much the system is
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influenced by its past history. Indeed, putting

(1.2) k(s) =

∫ ∞

s

µ(y)dy,

system (1.1) can be shown to be a reformulation of the integro-differential equation

(1.3) u̇(t) + βAu(t) +

∫ ∞

0

k(s)Au(t− s)ds = 0, t > 0,

with the initial conditions

u(0) = u0, u(t)|t<0 = η′0(−t).

In fact, (1.1) is more general than (1.3), which requires more regularity on the initial
datum η0. We will return on this equivalence later in §3.

Remark 1.1. When H = L2(Ω) and A = −∆ with Dirichlet boundary conditions, (1.3)
describes the evolution of the temperature relative to the equilibrium value in a rigid
isotropic homogeneous heat conductor occupying a bounded domain Ω, where the heat
conduction law is of Coleman-Gurtin type [2] if β > 0, or of Gurtin-Pipkin type [13] if
β = 0.

Problem (1.1) generates a linear contraction semigroup S(t) acting on the Hilbert space
H×M, whose decay properties as t →∞ constitute the object of our investigation. More
precisely, for a given memory kernel µ, we are interested to study the stability and the
exponential stability of S(t). Well-posedness and asymptotic results for (1.1) or (1.3) have
been established in several works (see e.g. [6, 8, 9, 10, 15, 16]; see also [21, 22] for a similar
system arising in the theory of simple fluids of Boltzmann type). In particular, [9] shows
that S(t) is exponentially stable provided that µ satisfies the differential inequality

(1.4) µ′(s) + δµ(s) ≤ 0, ∀s > 0,

for some δ > 0. This sufficient condition, commonly exploited to obtain exponential
decay of semigroups arising from problems with memory (see e.g. the book [14]), is rather
restrictive. Indeed, the recent paper [1] shows that a necessary condition in order for
exponential stability to hold for a similar problem arising from viscoelasticity is that
there exists C ≥ 1 and δ > 0 such that

(1.5) µ(t + s) ≤ Ce−δtµ(s),

for every t ≥ 0 and almost every s > 0. We will see in the next section that the same fact
holds true also for (1.1). As noted in [1], it is not difficult to demonstrate that (1.5) is
equivalent to (1.4) if C = 1. Nonetheless, when C > 1, the gap between the two conditions
is huge. Therefore, one of the aims of the present work is to establish the exponential
stability of S(t) under much weaker conditions than (1.4). A similar attempt has turned
out to be successful in the analysis of a linearly viscoelastic equation with memory [17].
Here, at least in the case when H is finite-dimensional, (1.5) will be proved to be sufficient
as well, unless the system admits periodic orbits.
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Plan of the paper. In the following §2, we show that, within a proper functional setting,
(1.1) generates a strongly continuous linear semigroup of contractions. The relation be-
tween (1.1) and the corresponding equation (1.3) is discussed in some detail in §3. In §4,
we dwell on the stability of the semigroup, showing that, when β = 0, periodic trajectories
occur for some particular kernels, referred to as resonant. Finally, in §5 and §6, we analyze
the exponential stability of S(t) when H is finite-dimensional and infinite-dimensional,
respectively.

Notation. We denote by ‖ · ‖X and 〈·, ·〉X the norm and the inner product on a given
space X. In particular,

‖u‖V = ‖A1/2u‖H , ‖η‖2
M =

∫ ∞

0

µ(s)‖η(s)‖2
V ds.

Beside M, we shall also consider the L2-weighted space N = L2
µ(R+; H). We name

{αm} and {em}, with m ∈ N = {1, 2, 3, . . .} or m ∈ {1, . . . , N} (depending whether
H is infinite-dimensional or N -dimensional), the increasing sequence of the eigenvalues
of A, with α1 > 0, and the corresponding sequence of eigenvectors, respectively. If H
is infinite-dimensional, αm → ∞ as m → ∞. Finally, we introduce the phase space
H = H ×M.

2. The Semigroup

We preliminarily state in a precise way the assumptions on the memory kernel.

General assumptions on µ. Let µ : R+ → [0,∞) be a decreasing function such that

κ =

∫ ∞

0

µ(s)ds < ∞.

We assume that there exists a strictly increasing sequence {sn}, with s0 = 0, either finite
(possibly reduced to s0 only) or converging to s∞ ∈ (0,∞], such that µ has jumps at
s = sn, n > 0, and is absolutely continuous on each interval (sn−1, sn) and on the interval
(s∞,∞), if defined.

Remark 2.1. Note that µ can be unbounded in a neighborhood of zero. Besides, µ′ is
defined almost everywhere.

In the course of the investigation, we will sometimes encounter the following particular
kernels (cf. [1]).

¦ Step kernels: Kernels of the form

µ(s) =
∞∑

n=1

γnχ[sn−1,sn)(s),

where {γn} is a strictly decreasing positive sequence (up to when, possibly, γn = 0
for some n ∈ N). Note that

∞∑
n=1

γn(sn − sn−1) = κ.
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¦ `-paced kernels: Step kernels for which there exists τ > 0 and a strictly increas-
ing sequence {kn} of natural numbers, with k0 = 0, such that

sn = τkn.

Up to redefining {kn}, it is clear that τ is not uniquely determined (for instance,
any τ/p with p ∈ N will do). It is however clear there exists the largest possible
one, called pace of the kernel and denoted by `, which is the greatest common
divisor of {τkn}.

¦ Resonant kernels: `-paced kernel for which the quantity

Ωm =
`

2π

√
αmκ , m ∈ N,

belongs to N for at least one m ∈ N, The reason of the word “resonant” will be
clear in the sequel.

Introducing the pair z = (u, η), we rewrite (1.1) as the Cauchy problem in H

(2.1)





d

dt
z(t) = Lz(t), t > 0,

z(0) = z0,

where z0 = (u0, η0). The linear operator L is defined by

L(u, η) = (−A(βu +
∫∞

0
µ(s)η(s)ds), T η + u),

with domain

D(L) = {(u, η) ∈ H : u ∈ V, η ∈ D(T ), βu +
∫∞

0
µ(s)η(s)ds ∈ D(A)}.

An application of the Lumer-Phillips Theorem [19] entails

Theorem 2.2. Problem (2.1) generates a contraction semigroup S(t) = etL on H, that
is,

‖S(t)z0‖H ≤ ‖z0‖H, ∀z0 ∈ H.

Besides, for every z0 ∈ D(L), the energy equality

(2.2)
d

dt
‖S(t)z0‖2

H + 2β‖u(t)‖2
V −

∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds + J[ηt] = 0,

holds, with

J[ηt] =
∑

n

[µ(s−n )− µ(s+
n )]‖ηt(sn)‖2

V ,

where the sum includes the value n = ∞ if s∞ < ∞. Concerning the second component
of the solution S(t)z0, we have the explicit representation formula

(2.3) ηt(s) =

{∫ s

0
u(t− y)dy, 0 < s ≤ t,

η0(s− t) +
∫ t

0
u(t− y)dy, s > t,

which is valid for every z0 ∈ H. We address the reader to [9, 12], where the above instances
are discussed in more detail.

Our analysis will be focused on the following issues.
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• Stability of S(t): For every z0 ∈ H,

lim
t→∞

‖S(t)z0‖H = 0.

• Exponential stability of S(t): There exist ω > 0 and M ≥ 1 such that

‖S(t)z0‖H ≤ Me−ωt‖z0‖H, ∀z0 ∈ H.

In order to investigate the stability of S(t), we shall exploit the following abstract result
(see [1, Lemma 4.1]).

Lemma 2.3. Let S(t) be a contraction semigroup on a Hilbert space H, and let V ⊂ H
be a reflexive Banach space with continuous and dense embedding (but not necessarily
compact). Suppose that for every z0 ∈ V the following hold.

(i) ‖S(t)z0‖H = ‖z0‖H for all t > 0 implies that z0 = 0.
(ii) The set

⋃
t≥t∗ S(t)z0 is bounded in V and relatively compact in H, for some t∗ ≥ 0.

Then S(t) is stable.

As far as exponential stability is concerned, we have

Lemma 2.4. A contraction semigroup S(t) on a real Hilbert space H is exponentially
stable if and only if there exists ε > 0 such that

inf
λ∈R

‖(iλ− L)z0‖H ≥ ε‖z0‖H, ∀z0 ∈ D(L).

In the formula above, H and L are understood to be the complexifications of the original
H and L, respectively.

Lemma 2.4, contained in [9], is a slight modification of [3, Theorem 5.1.5] (see also
[20]).

We conclude the section by proving the necessary condition for exponential decay an-
ticipated in the Introduction.

Theorem 2.5. If S(t) is exponentially stable, then the kernel µ fulfills (1.5).

Proof. Denote for simplicity M1 = L2
µ(R+,R). Let ζ ∈ M1, and choose z0 = (0, ζe1).

Then, the corresponding solution to (2.1) is given by S(t)z0 = (ϕ(t)e1, ξ
te1), where





ϕ̇(t) + βα1ϕ(t) + α1

∫ ∞

0

µ(s)ξt(s)ds = 0, t > 0,

ξ̇t = Tξt + ϕ(t), t > 0,

ϕ(0) = 0,

ξ0(s) = ζ(s).

Here, T is the the infinitesimal generator of the right-translation semigroup Σ(t) on M1,
acting as

[Σ(t)ζ](s) =

{
0, 0 < s ≤ t,

ζ(s− t), s > t.

By the exponential decay assumption, we know that

max{|ϕ(t)|,√α1 ‖ξt‖M1} ≤ ‖S(t)z0‖H ≤ √
α1 Me−ωt‖ζ‖M1 .
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In particular, setting ψ(t) =
∫ t

0
ϕ(y)dy, we have

|ψ(t)| ≤
∫ t

0

|ϕ(y)|dy ≤ M
√

α1

ω
‖ζ‖M1 .

On account of (1.2) and (2.3),

M2e−2ωt‖ζ‖2
M1

≥ ‖ξt‖2
M1

≥
∫ ∞

t

µ(s)|ζ(s− t) + ψ(t)|2ds

≥ 1

2

∫ ∞

t

µ(s)|ζ(s− t)|2ds− |ψ(t)|2k(t)

≥ 1

2
‖Σ(t)ζ‖2

M1
− M2α1

ω2
k(t)‖ζ‖2

M1
.

Thus, for every ζ ∈M1,

‖Σ(t)ζ‖M1 ≤ Υ(t)‖ζ‖M1 ,

having set

Υ(t) = M

√
2e−2ωt +

2α1

ω2
k(t) .

Since Υ(t) → 0 as t →∞, by means of standard arguments of semigroup theory (see e.g.
[19]), we conclude that Σ(t) is exponentially stable on M1. In light of [1, Theorem 3.3],
this is the same as postulating condition (1.5) to hold. ¤

3. On the Equivalence between (1.1) and (1.3)

Before proceeding with the stability analysis, we come back to the equivalence between
system (1.1) and the integro-differential equation (1.3). We take here the occasion to
clarify some details which have been overlooked in the review paper [12]. Indeed, in order
to prove such an equivalence, we need to ask an additional condition on µ, when not
compactly supported. Namely, there exists K ≥ 0 such that

(3.1) k(s) ≤ K
√

µ(s) ,

with k given by (1.2), for all s large enough. If µ is compactly supported, that is,

S∞ = sup{s ∈ R+ : µ(s) > 0} < ∞,

then we immediately find the stronger relation

(3.2) k(s) ≤
( ∫ ∞

s

√
µ(y) dy

)√
µ(s).

Remark 3.1. The original model of hereditary heat conduction leading to (1.3) requires
that the kernel k appearing in the equation be summable (see e.g. [8]). In terms of µ, it
amounts to saying that ∫ ∞

0

sµ(s)ds < ∞.
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Although this requirement is inessential in order to obtain existence and uniqueness results
for (1.1), if we assume the summability of k, then (3.1) is automatically satisfied. Precisely,
if µ is not compactly supported, denoting

r(s) =
µ(s)

[k(s)]2
,

we claim that

lim
s→∞

r(s) = ∞,

which clearly implies (3.1). Indeed, for an arbitrary σ > 0, the tangent τ(s) to the curve
k(s) at s = σ is given by

τ(s) = −r(σ)[k(σ)]2s + k(σ) + r(σ)[k(σ)]2σ.

Since k is convex, τ(s) ≤ k(s). Therefore,

lim
σ→∞

1

r(σ)
= lim

σ→∞
2

∫ σ+1/[r(σ)k(σ)]

σ

τ(s)ds ≤ 2 lim sup
σ→∞

∫ ∞

σ

k(s)ds = 0.

We are now in a position to establish our argument, under assumption (3.1). We
first mention that, applying the Lumer-Phillips Theorem [19] in the weaker phase space
W = D(A−1/2)×N , it is easy to show that (1.1) generates a contraction semigroup S0(t)
on W , which clearly coincides with S(t) when restricted to H.

Let u(t) ∈ C([0,∞), H) be a solution to the integro-differential equation (1.3), with a
prescribed initial datum u(t)|t≤0. We require that u0 = u(0) ∈ H, η0 ∈ M and η′0 ∈ N ,
where we set

η0(s) =

∫ s

0

u(−y)dy.

We show that u(t) is equal to the first component of S(t)(u0, η0). As a byproduct, the
solution to (1.3) is unique. To this aim, we multiply (1.3) by A−1w, for a generic vector
w ∈ H, to obtain

〈A−1u̇(t), w〉H + β〈u(t), w〉H +

∫ ∞

0

k(s)〈u(t− s), w〉Hds = 0.

Defining

ηt(s) =

∫ t

t−s

u(y)dy,

we have that

(ηt)′(s) = u(t− s).

Hence, both ηt and (ηt)′ belong to N for every t ≥ 0 and ηt(s) → 0 in H as s → 0, which
is the same as saying that A−1/2ηt ∈ D(T ). Consequently, arguing as in [12], the limit

lim
s→S∞

µ(s)‖ηt(s)‖2
H
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exists, and is equal to 0 if S∞ = ∞ or s∞ < S∞ < ∞. Integrating by parts, and exploiting
the continuity of ηt(s) at s = 0, we get

∫ ∞

0

k(s)〈u(t− s), w〉Hds =

∫ S∞

0

k(s)〈(ηt)′(s), w〉Hds

=

∫ S∞

0

µ(s)〈ηt(s), w〉Hds + lim
s→S∞

k(s)〈ηt(s), w〉H

=

∫ ∞

0

µ(s)〈ηt(s), w〉Hds.

Indeed, from (3.1) (if S∞ = ∞) or (3.2) (if S∞ < ∞),

|k(s)〈ηt(s), w〉H | ≤ k(s)‖ηt(s)‖H‖w‖H ≤ k(s)√
µ(s)

√
µ(s) ‖ηt(s)‖H‖w‖H → 0,

as s → S∞. Therefore,

〈A−1u̇(t), w〉H + β〈u(t), w〉H +

∫ ∞

0

µ(s)〈ηt(s), w〉Hds = 0.

Since w is arbitrary and ηt fulfills (2.3) by construction (with η0 as above), we conclude
that (u(t), ηt) = S0(t)(u0, η0) = S(t)(u0, η0), owing to the fact that (u0, η0) ∈ H.

Conversely, if u0 ∈ H and η0 ∈M, with η′0 ∈ N and η0(s) → 0 in H as s → 0, using the
representation formula (2.3) and reversing the argument, we see that the first component
u(t) of S(t)(u0, η0) is a solution to (1.3) with initial data u(0) = u0 and u(t)|t<0 = η′0(−t).
In summary, we established both the sought equivalence and an existence and uniqueness
result for (1.3).

4. Stability

The preliminary question is whether for all kernels µ in the considered class the corre-
sponding semigroup S(t) is at least stable. The answer is negative.

Proposition 4.1. If β = 0 and µ is a resonant kernel, then S(t) admits periodic orbits.
Thus, in particular, it is not stable.

Proof. Due to our hypotheses, there exists m ∈ N for which ν =
√

αmκ fulfills

`ν

2π
∈ N.

We prove the claim by showing that the solution (u(t), ηt) to (2.1) with initial data
z0 = (u0, η0) ∈ D(L) given by

u0 = 0, η0(s) =
1

ν
[cos νs− 1]em,

is

u(t) = [sin νt]em, ηt(s) =
1

ν
[cos ν(t− s)− cos νt]em.

Indeed, u(0) = u0, η0(s) = η0(s) and, by a direct calculation,

η̇t(s) = −(ηt)′(s) + u(t).
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Concerning the first equation of (2.1), we readily get the equality

u̇(t) +

∫ ∞

0

µ(s)Aηt(s)ds =
αm

ν

( ∫ ∞

0

µ(s) cos ν(t− s)ds

)
em = 0,

since cos ν(t− s) is `-periodic and µ is constant on each interval [`kn−1, `kn). ¤
Remark 4.2. A similar instance occurs for abstract semigroups arising in linear vis-
coelasticity, as shown in [1, Proposition 5.1]. We should remark that in [1] the resonance
condition is stated incorrectly.

A positive result on stability is

Theorem 4.3. Assume that

(4.1)

∫ ∞

0

s2µ(s)ds < ∞.

Then, S(t) is stable if and only if

(i) either β > 0; or
(ii) β = 0 and µ is not resonant.

Before coming to the proof, some observations are in order.

Remark 4.4. Condition (4.1), already encountered in the papers [15, 21, 22] in connection
with stability issues, is the same as requiring the integrability of

∫∞
s

k(y)dy. This is
necessary if we want to include initial data η0 of the form η0(s) = sv, with v ∈ V .
With reference to (1.3), it amounts to saying that we can consider constant initial data
u(t)|t<0 = v.

Remark 4.5. Let us consider the following simple, albeit paradigmatic, example. Take
H = L2(0, π), and let

A = − d2

dx2
, D(A) = H2(0, π) ∩H1

0 (0, π).

Then, {αm} = {m2}. Setting

Ω =
`

2π

√
κ ,

we see that Ωm = mΩ. Hence, in this case, a kernel µ is resonant if and only if Ω ∈ Q.
Similar considerations can be made for other particular realizations of H and of the

operator A, obtaining, from case to case, statements depending on the distribution of the
eigenvalues of A (cf. [1]).

Proof of Theorem 4.3. The strategy of the proof is outlined in [1], although the argu-
ments have to be adapted to our particular equation. We will reach the desired conclusion
by means of some lemmata, whose proofs will be reported only when appreciable differ-
ences from [1] occur.

Lemma 4.6. There exists a reflexive Banach space V ⊂ D(L), with continuous and dense
(but not compact) embedding into H, such that, for every z0 ∈ V, the set

⋃
t≥1 S(t)z0 is

bounded in V and relatively compact in H.
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Proof. Define

V = D(A)× [
L2

µ(R+;D(A3/2)) ∩ D(T )
]
,

endowed with the norm

‖(u, η)‖2
V = ‖Au‖2

H + ‖Aη‖2
M + ‖Tη‖2

M.

Let z0 = (u0, η0) ∈ V be fixed. In this proof, c will stand for a generic constant depending
only on z0. Multiplying (2.1) by (A2u,A2η) in H, on account of (2.2), we immediately
get the bound

‖Au(t)‖2
H + ‖Aηt‖2

M ≤ c.

The computation is formal, but it can be rigorously justified either via semigroup argu-
ments or within a suitable regularization scheme. Since η0 ∈ D(T ), by means of (2.3), we
learn that

(ηt)′(s) =

{
u(t− s), 0 < s ≤ t,

η′0(s− t), s > t,

and we easily obtain the remaining control

‖Tηt‖M ≤ c.

Hence, we have the boundedness of
⋃

t≥0 S(t)z in V . By virtue of a slight generalization
of [18, Lemma 5.5], the required compactness in H would follow from the uniform control
(as t ≥ 1) of the tails of ηt

lim
x→∞

[
sup
t≥1

∫

(0, 1
x
)∪(x,∞)

µ(s)‖ηt(s)‖2
V ds

]
= 0.

But the bound on u(t) and (2.3) yield (defining η0(s) = 0 if s < 0)

‖ηt(s)‖2
V ≤ cs2 + 2‖η0(s− t)‖2

V ,

which, using a simple argument devised in [11], allows us to say that the limit above is
indeed equal to zero. We remark that (4.1) is needed to draw this conclusion. ¤

Till the end of the section, z0 is a generic element of D(L). In correspondence of z0, we
set

U(t) =

∫ t

0

u(y)dy.

Note that U(t) is constant if and only if U(t) ≡ 0 if and only if u(t) ≡ 0.

Lemma 4.7. If the equality

(4.2) 2β‖u(t)‖2
V −

∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds + J[ηt] = 0, ∀t ≥ 0,

implies that U(t) is constant for every z0 ∈ D(L), then S(t) is stable. In particular,
stability occurs if β > 0.
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Proof. We show that Lemma 2.3 applies. Indeed, (ii) is verified from Lemma 4.6. To show
(i), assume that ‖S(t)z0‖H is constant for every z0 ∈ D(L) (and thus, for every z0 ∈ V).
Then, using the hypothesis and (2.2), we have that u(t) = 0 for every t ≥ 0. Hence, by
means of (2.3),

‖η0‖2
M = ‖z0‖2

H = ‖S(t)z0‖2
H = ‖ηt‖2

M =

∫ ∞

0

µ(t + s)‖η0(s)‖2
V ds, ∀t ≥ 0.

An application of the dominated convergence theorem shows that the last integral con-
verges to zero as t →∞, so implying that η0 = 0. ¤

We now investigate the more difficult case β = 0.

Lemma 4.8. Let β = 0. If µ is not an `-paced kernel, then S(t) is stable.

We omit the proof, since it is essentially the same as the one of [1, Theorem 4.9]. We
just mention that the key argument is to show that, if (4.2) holds and µ is not `-paced,
then U(t) is periodic with arbitrarily small periods, and so it is constant. The conclusion
follows from Lemma 4.7.

In the last lemma, we deal with the remaining case of `-paced kernels. This will
complete the proof of Theorem 4.3. Although the subsequent proof parallels the one of
[1, Proposition 5.2], we will write it down in full detail for two reasons. Firstly, here we
considerably simplify the argument. Secondly, the conclusion that we reach is stronger
than in [1].

Lemma 4.9. Let β = 0, and let µ be an `-paced kernel. Then, S(t) is stable if and only
if µ is not resonant.

Proof. Let z0 ∈ D(L), and assume that (4.2) holds. Since

µ(s) =
∞∑

n=1

γnχ[`kn−1,`kn)(s),

assumption (4.2) translates into

ηt(`kn) = 0, ∀t ≥ 0,

for every n ∈ N such that µ(`kn−1) > 0. Rewriting (2.3) in terms of U , we have

ηt(s) =

{
U(t)− U(t− s), 0 < s ≤ t,

U(t) + η0(s− t), s > t.

Hence,
U(t) = U(t− `kn), ∀t ≥ `kn

and
η0(s) = −U(`kn − s), ∀s ∈ (0, `kn].

The first equality says that U(t) is `kn-periodic, and so it is also `-periodic, since the great-
est common divisor of {kn} is equal to one. Extending U(t) for all times by periodicity,
from the second equality we learn that

η0(s) = −U(−s) =⇒ ηt(s) = U(t)− U(t− s),
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for every s such that µ(s) > 0, so that we obtain the equality∫ ∞

0

µ(s)Aηt(s)ds = κAU(t)−
∫ ∞

0

µ(s)AU(t− s)ds = κAU(t),

since U(t − s) is `-periodic and µ is constant on each interval [`kn−1, `kn). We conclude
that U(t) satisfies the abstract wave equation

Ü(t) + κAU(t) = 0.

For every m, the `-periodic function γm(t) = 〈U(t), em〉H solves the ordinary differential
equation

γ̈m(t) + καmγm(t) = 0.

In particular, γm(t) is τm-periodic, with τm = 2π/
√

καm . Most important, τm is the
smallest period of γm(t), unless γm(t) is identically zero, meaning that ` = pτm for some
p ∈ N, in conflict with the assumption that µ is not resonant. Thus, γm(t) must vanish
for every m, which implies that U(t) ≡ 0. We are now in a position to apply Lemma 4.7
to infer the stability of S(t). Conversely, if µ is resonant, we know from Proposition 4.1
that S(t) is not stable. ¤

5. Exponential Stability: The Finite-Dimensional Case

We now dwell on the particular instance where H = RN . Accordingly, A is a strictly
positive (N × N)-matrix. In this case, although H remains infinite-dimensional, if the
necessary condition (1.5) for exponential decay is satisfied, then S(t) behaves exactly as
a semigroup on a finite dimensional space, namely, stability implies exponential stability.
Indeed, we have

Theorem 5.1. Assume that µ satisfies (1.5).

(i) If β > 0, then S(t) is exponentially stable.
(ii) If β = 0, then S(t) is exponentially stable, unless µ is resonant.

Proof. We restrict ourselves to prove the case (ii), since (i) holds for a general Hilbert
space H, not necessarily finite-dimensional (see the following Theorem 6.3). Throughout
the proof, | · | will denote both the absolute value in R and the euclidean norm in CN .

Assume that µ is not resonant. Arguing by contradiction, we suppose that S(t) is
not exponentially stable. Then, exploiting Lemma 2.4, we can find sequences λn ∈ R,
un ∈ CN and ηn ∈MN = L2

µ(R+,CN), with η′n ∈MN and ηn(0) = 0, such that

(5.1) |un|2 + ‖ηn‖2
MN

= 1

and

(5.2)





iλnun +

∫ ∞

0

µ(s)Aηn(s)ds = an,

iλnηn(s)− un + η′n(s) = bn(s),

for some an → 0 in CN and bn → 0 in MN . The second equation of (5.2) can be
integrated, to obtain

(5.3) ηn(s) =
1− e−iλns

iλn

un + Γn(s, λn),
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having defined, for λ ∈ R,

Γn(s, λ) = e−iλs

∫ s

0

eiλσbn(σ)dσ.

In the limit, the expression still makes sense if λn = 0. We now claim that

(5.4) lim
n→∞

‖Γn(·, λ)‖MN
= 0,

uniformly as λ ∈ R. Indeed,

|Γn(s, λ)| ≤
∫ s

0

|bn(σ)|dσ,

and therefore,

‖Γn(·, λ)‖2
MN

≤
∫ ∞

0

µ(s)

( ∫ s

0

|bn(σ)|dσ

)2

ds =

∫ ∞

0

( ∫ s

0

√
µ(s) |bn(σ)|dσ

)2

ds.

By virtue of (1.5),

F (s) =

∫ s

0

√
µ(s) |bn(σ)|dσ ≤

√
C

∫ s

0

e−
δ
2
(s−σ)

√
µ(σ) |bn(σ)|dσ =

√
C (f ∗ √µ |bn|)(s),

where we set f(s) = e−δs/2 and ∗ denotes the convolution on R+. Using a standard
measure theoretical result,

‖F‖L2(R+) ≤
√

C ‖f‖L1(R+)‖√µ bn‖L2(R+) =
2
√

C

δ
‖bn‖MN

,

and, consequently,

‖Γn(·, λ)‖MN
≤ 2

√
C

δ
‖bn‖MN

→ 0,

as n →∞.
The next step is to show that λn is bounded. If not so, passing to a subsequence,

|λn| → ∞. Then, collecting (5.3) and (5.4), we readily see that ηn → 0 in MN , and the
first equation of (5.2) yields iλnun → 0, which forces the convergence un → 0, against
(5.1).

Knowing that un and λn are bounded, up to subsequences, we may assume that λn → λ
and un → u. Thus, from (5.3) and (5.4),

ηn(s) → η(s) =
1− e−iλs

iλ
u

in MN and, in light of (5.1),

|u|2 + ‖η‖2
MN

= |u|2
(

1 +

∫ ∞

0

2− 2 cos λs

λ2
µ(s)ds

)
= 1 =⇒ u 6= 0.

Exploiting the first equation of (5.2), we also obtain that

(5.5) iλu +

∫ ∞

0

µ(s)Aη(s)ds = 0.
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We can exclude the value λ = 0 since, in that case, η(s) = su, and (5.5) entails Au = 0.
As λ 6= 0, substituting the expression of η(s) in (5.5), we end up with the equation

(5.6) [λ2 + (µ̂(λ)− κ)A]u = 0,

where

(5.7) µ̂(λ) =

∫ ∞

0

e−iλsµ(s)ds

is the half Fourier transform of µ. We conclude that u solves (5.6) if and only if u = em

for some m ∈ {1, . . . , N}. Thus, (5.6) leads to the equality

(5.8) λ2 − καm = −αmµ̂(λ).

Since αm > 0, it must be

=µ̂(λ) = −
∫ ∞

0

µ(s) sin λs ds = 0,

which is possible if and only if µ(s) assumes the same value (up to a nullset) on each
interval Ip of the form

Ip = [2pπ
|λ| ,

2(p+1)π
|λ| ], p ∈ N.

This implies that also <µ̂(λ) = 0 (so that µ̂(λ) = 0), and µ is `-paced with pace

` =
2πq

|λ| ,

for some q ∈ N. A further use of (5.8) then yields Ωm = q, which violates the assumption
that µ is not resonant. ¤

6. Exponential Stability: The Infinite-Dimensional Case

When H is infinite-dimensional, the picture is completely different. Indeed, it is no longer
true that, under (1.5), stability implies exponential stability. We will show this fact for
the particular example given by Remark 4.5, although analogous considerations apply to
more general situations. To this end, we first need the following result on the half Fourier
transform (5.7) of a step kernel (see [1, Lemma 6.2] for a proof).

Lemma 6.1. Let µ be a non-resonant step kernel and define

cm = mµ̂(m
√

κ ).

Then, cm 6= 0 for every m ∈ N, and there is a sequence {mj} such that cmj
→ 0.

Proposition 6.2. If µ is a step kernel, then the semigroup S(t) of Remark 4.5 is never
exponentially stable.

Proof. We assume that µ is not resonant, otherwise S(t) is not even stable. Given m ∈ N
and ζm = (0,m−1em) ∈ H, we look for ρm ∈ C and ψm ∈ L2

µ(R+,C), with ψ′m ∈ L2
µ(R+,C)

and ψm(0) = 0, such that the vector zm = (ρmem, ψmem) ∈ D(L) solves the (complex)
equation

(im
√

κ − L)zm = ζm.
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Note that

‖ζm‖H =
√

κ

and

‖zm‖H ≥ ‖ρmem‖H = |ρm|.
Thus, in light of Lemma 2.4, we will reach the conclusion by showing that |ρmj

| → ∞ for
some subsequence {mj}. Indeed, written in components, the equality above reads





im
√

κ ρm + m2

∫ ∞

0

µ(s)ψm(s)ds = 0,

im
√

κψm(s) + ψ′m(s)− ρm =
1

m
.

Integrating the second equation, with the condition ψm(0) = 0, we obtain

ψm(s) =
1

im2
√

κ
(1 + mρm)(1− e−im

√
κ s),

and substituting ψm(s) into the first equation, we find the relation

mcmρm = mκ− cm.

We now exploit Lemma 6.1. Since cm 6= 0,

ρm =
κ

cm

− 1

m

and the corresponding ψm(s) solves the system. Besides, |ρmj
| → ∞ for some {mj}. ¤

In order to provide sufficient conditions for exponential stability to hold, we first need
a definition borrowed from [17]. Introducing the Borel probability measure mµ on R+ as

mµ(P) =
1

κ

∫

P
µ(s)ds, P ⊂ R+,

the flatness set of µ is

Fµ = {s ∈ R+ : µ(s) > 0 and µ′(s) = 0},
while the flatness rate of µ is

Rµ = mµ(Fµ).

The main result of the present section reads as follows.

Theorem 6.3. Let (1.5) hold. If β = 0, assume in addition that Rµ < 1/2. Then, S(t)
is exponentially stable.

Remark 6.4. Here, we are not making any assumption on the dimension of H. Besides,
as it will be clear from the subsequent proofs, the theorem holds without the requirement
that A has compact inverse. Indeed, only the continuous inclusion V ⊂ H is needed. For
further use, let us denote by α > 0 the corresponding Poincaré constant, that is,

α‖v‖2
H ≤ ‖v‖2

V , ∀v ∈ V.
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Remark 6.5. The interesting question of what happens when H is infinite-dimensional,
β = 0 and Rµ ∈ [1

2
, 1) is not covered by our theory, and remains open. This problem,

already encountered in [17], seems to be particularly hard to solve. Even more so, after
Theorem 5.1, we cannot hope to have any numerical evidence either.

We shall split the proof in two cases, according to the value of β (strictly positive or
zero). The following simple result, a very particular instance of the renowned Datko’s
theorem [5], will be extremely useful to tackle the more difficult case β = 0. A three-line
proof is given.

Lemma 6.6. Assume that there exists c ≥ 0 such that∫ ∞

0

‖S(t)z0‖2
Hdt ≤ c,

for any z0 ∈ D(L) with ‖z0‖H = 1. Then S(t) is exponentially stable.

Proof. Due to (2.2), for every z0 ∈ D(L) with ‖z0‖H = 1 we have

‖S(τ)z0‖2
H ≤

1

τ

∫ τ

0

‖S(t)z0‖2
Hdt ≤ c

τ
.

By density, we conclude that the norm of S(t) decays to zero. ¤

In the sequel, for z0 = (u0, η0) ∈ D(L), we denote for simplicity

E(t) = ‖S(t)z0‖2
H.

As before, we set

U(t) =

∫ t

0

u(y)dy,

and we take k as in (1.2).

Proof of Theorem 6.3 [case β = 0]. Given z0 ∈ D(L) and ν ∈ (0, 1), we consider the
functionals

Φ(t) = −1

κ

∫ ∞

0

ϕν(s)〈u(t), ηt(s)〉Hds,

Ψ1(t) =
1

2
〈U(t), u(t)〉H ,

Ψ2(t) =
1

2

∫ ∞

0

k(s)‖ηt(s)− U(t)‖2
V ds,

where

ϕν(s) = µ(sν)χ(0,sν ](s) + µ(s)χ(sν ,∞](s),

for some fixed sν ∈ (0, s1) such that
∫ sν

0
µ(s)ds ≤ ν/2, is introduced (in place of µ) to

handle the (possible) case when µ is singular in the origin (see [17]).

Lemma 6.7. There exists K > 0 such that

(6.1) ‖U(t)‖2
H ≤ K

[
Ψ2(t) + ‖ηt‖2

M
]
.
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Proof. We have

α
( ∫ ∞

0

k(s)ds
)
‖U(t)‖2

H ≤
∫ ∞

0

k(s)‖U(t)‖2
V ds

≤ 4Ψ2(t) + 2

∫ ∞

0

k(s)‖ηt(s)‖2
V ds

≤ 4Ψ2(t) +
2C

δ
‖ηt‖2

M.

Here, we used the representation formula (2.3) written in terms of U along with the
inequality

(6.2) k(s) ≤ C

δ
µ(s),

which is a straightforward consequence of (1.5). ¤

By means of direct calculations, we have

Lemma 6.8. The functional

Ψ(t) = 2Ψ1(t) + Ψ2(t)

fulfills the differential equality

(6.3)
d

dt
Ψ(t) = −1

2
‖ηt‖2

M + ‖u(t)‖2
H .

Concerning Φ(t), denoting, for P ⊂ R+,

Γ+
P [ηt] =

∫

P
µ(s)‖ηt(s)‖2

V ds, Γ−P [ηt] =

∫

R+\P
µ(s)‖ηt(s)‖2

V ds,

and arguing as in [17, Lemma 4.1], we can prove

Lemma 6.9. For any ν ∈ (0, 1), there exists cν > 0, depending only on ν, such that, for
every measurable set P ⊂ R+,

d

dt
Φ(t) ≤ −(1− ν)‖u(t)‖2 + (1 + ν)mµ(P)Γ+

P [ηt] + cνΓ
−
P [ηt](6.4)

− cν

( ∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds− J[ηt]

)
.

Lemma 6.10. There exist a measurable set P ⊂ R+ and constants ν ∈ (0, 1), a < 1,
M > 0 and ε > 0 such that the functional

L(t) = ME(t) + Φ(t) + aΨ(t)

satisfies

(6.5)
d

dt
L(t) + εE(t) ≤ 0.
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Proof. Since Rµ < 1/2, we can choose n ∈ N large enough such that, setting

P = {s ∈ R+ : nµ′(s) + µ(s) > 0},
we have that mµ(P) < 1/2. Indeed, the sets Pj = {s ∈ R+ : jµ′(s)+µ(s) > 0} are nested
with respect to j ∈ N and fulfill

⋂∞
j=1Pj = Fµ, up to a set of null measure. Then, taking

a =
1

2
+ µ̂(P) < 1,

and collecting (6.3) and (6.4), we obtain

d

dt
[Φ(t) + aΨ(t)] ≤ −(1− a− ν)‖u(t)‖2 − 1

2
(1− a− ν)Γ+

P [ηt] + cνΓ
−
P [ηt]

− cν

( ∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds− J[ηt]

)
.

Hence, recalling that
‖ηt‖2

M = Γ+
P [ηt] + Γ−P [ηt],

provided that we fix ν small enough, we end up with the differential inequality

d

dt
[Φ(t) + aΨ(t)] + εE(t) ≤ cΓ−P [ηt]− c

( ∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds− J[ηt]

)
,

for some ε > 0 and some c > 0. Finally, setting M ≥ c + nc, on account of (2.2), we are
led to

d

dt
L(t) + εE(t) ≤ cΓ−P [ηt] + nc

∫ ∞

0

µ′(s)‖ηt(s)‖2
V ds ≤ 0,

since nµ′(s) + µ(s) ≤ 0, for almost every s ∈ R+ \ P . ¤
Remark 6.11. It is clear that, up to choosing M > 0 large enough, we also have that

ME(t) + Φ(t) ≥ 0.

Besides, exploiting (6.2), it is apparent that

L(0) ≤ QE(0),

for some Q > 0.

We are now in a position to conclude the proof of Theorem 6.3. For z0 ∈ D(L), with
‖z0‖H = 1, we integrate (6.5) on [0, τ ]. In view of the remark above, and since

‖u(τ)‖2
H + ‖ητ‖2

M ≤ E(0) = 1,

this entails

aΨ2(τ) + ε

∫ τ

0

E(t)dt ≤ QE(0)− a〈U(τ), u(τ)〉H ≤ Q + a‖U(τ)‖H .

On the other hand, from Lemma 6.7,

a‖U(τ)‖H ≤ aK

4
+

a

K
‖U(τ)‖2

H ≤ 1 +
K

4
+ aΨ2(τ).

Therefore,

ε

∫ τ

0

E(t)dt ≤ Q + 1 +
K

4
.
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From the arbitrariness of τ > 0, the exponential stability of S(t) follows by an application
of Lemma 6.6.

Proof of Theorem 6.3 [case β > 0]. For z0 ∈ D(L), we introduce the functional

Υ(t) =

∫ ∞

0

k(s)‖ηt(s)‖2
V ds,

which, in light of (6.2), satisfies the differential inequality

d

dt
Υ(t) = −‖ηt‖2

M + 2

∫ ∞

0

k(s)〈ηt(s), u(t)〉V ds

≤ −‖ηt‖2
M +

2C

δ
‖u(t)‖V

∫ ∞

0

µ(s)‖ηt(s)‖V ds

≤ −1

2
‖ηt‖2

M + c‖u(t)‖2
V ,

for some c > 0. Defining then

L1(t) = ME(t) + Υ(t),

for some M > 0 large enough, it is clear from (2.2) that the differential inequality

d

dt
L1(t) + εE(t) ≤ 0

holds for some ε > 0. Owing to (6.2), L1(t) controls and is controlled by E(t). Hence, the
claim is a direct consequence of the Gronwall lemma.
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