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Abstract. Starting from transportation models for branching struc-
tures, we define a function that represents the elevation of the landscape
in a river basin. This function is already well-known in the geophysical
community but it is only considered under a very strong discretization.
We generalize it to the continuous case and study its properties, provid-
ing several applications.

1. Introduction

Lots of branching structures transporting different kind of fluids, such as
road systems, communication networks, river basins, blood vessels, leaves
and trees and so on, may be easily thought of as coming from a variational
principle. They appear when transport costs encourage joint transportation.
Recently these problems received a lot of attention by mathematicians. This
paper mainly discusses some features wich are crucial in river basins appli-
cations, but addresses also applications to other fields.

1.1. Branching transport models by Gilbert and Xia. A mathemat-
ical formalization for the branching transport problems is very classical and
has been performed first for atomic measures and then generalized. We
briefly present here the problem introduced by Gilbert in [11] and [12],
where it is presented as an extension of Steiner’s minimal length problems.
The main applications that Gilbert referred to were in the field of commu-
nication networks. Given two atomic probability measures µ =

∑m
i=1 aiδxi

and ν =
∑n

j=1 bjδyj
, consider

(PG) min E(G) :=
∑

h

wα
hH

1(eh), (1.1)

where the infimum is among all weighted oriented graphs G = (eh, êh, wh)h

(where eh are the edges, êh represent their orientations and wh the weights)
satisfying Kirchhoff’s Law: in each segment vertex which is not one of the
xi’s or yj ’s the total incoming mass equals the outcoming, while in each xi

we have

ai + incoming mass = outcoming mass

and, conversely, in each yj we have

incoming mass = outcoming mass + bj .
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These conditions correspond exactly to the well known Kirchhoff Law for
electric circuits. The orientations êh do not appear in the energy E but
appear in fact in Kirchhoff constraints. The exponent α is a fixed parameter
0 < α < 1 so that the function t 7→ tα is concave and subadditive. In this
way larger links bringing the mass from µ to ν are preferred to several smaller
links transporting the same total mass. It is not difficult to check that the
energy of any finite graph may be improved if we remove cycles from the
graph. In this way we can minimize among finite graphs which are actually
trees. This implies a bound on the number of edges and hence ensures a
suitable compactness which is enough to prove existence of a minimizer.

More recently Xia, in [20], has proposed a new formalization leading to
generalizations of this problem to arbitrary probability measures µ and ν.
In this case the interest of the author of [20] is to view this problem as an
extension of Monge-Kantorovich optimal transport theory (see [19]). In fact
Steiner and Monge’s problems represent the limit cases α = 0 and α = 1,
respectively.

1.2. Landscape equilibrium and OCNs in geophysics. It is interesting
to see how people working in geophysics arrive to very similar problems in
the study of river basins. There is a wide literature on this and a quite
comprehensive reference is [17]. The specific subject dealt with by this
paper is developed both in [17] and in [2] (this last paper being our main
reference, but a short previous summary of these ideas can be found in [1]
as well). While studying the configuration of a river basin, the main objects
are two: the landscape elevation, which is a function z giving the altitude of
any point of the region we are considering, and a river network N , which is
the datum of all the streams that concur to bring water (which falls on the
region as rain) to a single point (where a lake is supposed to be present).
A first link between both objects is the fact that at any point the direction
followed by water is the direction of steepest descent of z. Hence, once we
know z we are able to deduce N and to compute the multiplicity θ(x) at
any point x, that is the quantity of water passing through x while following
the steepest descent lines of z. At first the interest is towards an evolution
model, which allows z and N (and hence θ) to depend on time as well. The
evolution of z is ruled by an erosion equation of the form

∂z

∂t
= −θ|∇z|2 + c, (1.2)

where ∇z is the spatial gradient of z and c is a positive constant. The idea is
that the erosion effect increases both with the quantity of water and with the
slope. The constant c is called uplift and takes care of the fact that all the
material brought down by erosion in the end is uniformly redistributed from
below in the whole region as a geomorphological effect. Equation (1.2) is in
fact a simplified version of other more general evolution equations involv-
ing higher order terms. The following phenomenon concerning solutions of
(1.2) can be empirically observed: approximately, up to a certain time scale
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both z and θ (i.e. N) move, in a very strong erosional evolution; then, up
to a larger time scale the network is almost constant, letting θ(x, t) = θ(x)
depend on the position only, and the landscape function evolves without
changing its lines of maximal slope; finally there is a much larger time scale
such that z approximatively agrees with a landscape equilibrium, i.e. a sta-
tionary solution of (1.2). We are interested in studying landscape equilibria.
In this case the steepest descent condition, that we can read as “∇z follows
the direction of the network”, is completed by a second one which we get
by imposing ∂z/∂t = 0 in (1.2). This leads to |∇z| = c1/2θ−1/2 and this last
condition is called slope-discharge relation. It is explicitly suggested in [2]
that in (1.2) one could change the exponents of θ and |∇z| (preserving any-
way the increasing behavior with respect to both variables), thus obtaining
different slope-discharge relationships. In general we get |∇z| = c θα−1 and
the physically interesting case is when the exponent α is very close to 1/2.

To find landscape equilibria a discretization is performed in [2] and a
regular square grid is used. Functions defined on the pixels of the grid and
vanishing at a given point x0 representing the outlet are considered, as well
as networks composed by edges of the grid, directed from every point to one
of the neighbors.

• As we already mentioned, the conditions on the direction of the
water allow to reconstruct a network from a function. In fact, given
a function z with no local minima other than x0, one can always
follow the maximal slope paths of z.

• These are obtained by linking any point x of the grid to a point
which realizes the minimum of z among the neighbors of z. Notice
in particular that these paths are only composed by edges following
the two main directions of the grid.

• In this way a network N = N(z) can be deduced from z.
• On the other hand, the slope-discharge condition allows to recon-

struct a function from a network N , provided it is tree-shaped.
• In order to make this reconstruction, first compute the multiplicities

of the points of the network: at a point x its multiplicity θ(x) is
the number of points which find x on their way to the outlet (this
works under the assumption that the quantity of rain falling down
at any pixel is the same, i.e. rain falls uniformly on the grid). See
also Figure 1.2, where the multiplicity of a point xi is computed as
the number of points in the area Ai.

• Then set z(x0) = 0 and for any other point x consider the only path
on N linking x0 to x. Set z(x) =

∑

i θ(xi)
α−1, where the xi’s are the

points on the path. In Figure 1.2 the path linking x0 to x is shown.
• In this way we get a function z = z(N).

In general it will not be true that a function z(N) has maximal slope in the
direction of the network N . Finding a landscape equilibrium means exactly
satisfying both conditions at a time, through a fixed point problem. The
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Figure 1. The path from x to x0 and the multiplicity of xi

algorithm starts from a tree-shaped network N , builds the function z(N),
and then the new network N ′ = N(z(N)). If N ′ = N , then the landscape
function z = z(N) is a landscape equilibrium.

The important idea presented in [2] is the relation between landscape
equilibria and Optimal Channel Networks (OCNs in literature, see for in-
stance [18], [16] and [13]). An OCN is a network N minimizing a certain
dissipated energy. The dissipated energy in a system satisfying the slope-
discharge relation is the total potential energy that water loses on the net-
work. For each pixel we have a quantity of water θ which falls down towards
the next pixel and its elevation decreases by a quantity which is propor-
tional to |∇z| and hence to θα−1. Hence, the total energy loss is given by
∑

i θ(xi)θ(xi)
α−1 =

∑

i θ(xi)
α. It is clear that this energy is the same as in

(1.1) (no length of segments is involved because in a regular grid they all
have the same, given, length). What is proven in [2] is that, if N is an OCN
minimizing this energy, then the landscape function z = z(N) reconstructed
from it is in fact an equilibrium. This actually means that not only the
slope of z in the direction of the network is given by θα−1, which is true by
construction, but also that this direction is the direction of maximal slope.

Notice that the problems studied in [2] and in the other papers on the
subject have undergone a very strong discretization. In fact they correspond
to solve (PG) where µ is a discretization on a regular grid of the Lebesgue
measure and ν = δx0

, but with the extra constraint that only edges eh

which are given with the grid are allowed. Compared to continuous models
there is a loss of rotational invariance, a fixed scale effect due to the mesh,
and several questions concerning the river basin may lose their meaning
(for instance questions about the interfaces between two separated parts
of the basin and points where the water takes two different directions, or
most regularity issues). On the other hand, a continuous counterpart for
the landscape function could not be simply a regular solution of (1.2) or
of its statical version, as for C1 functions steepest descent curves are well-
defined, but they never merge and therefore do not give raise to a positive
multiplicity θ (except for the case d = 1, see [2]).
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1.3. A landscape function appearing for derivative purposes. We
will briefly see here another aspect of branching transport problems such as
(PG) where a function similar to the landscape function appears.

Definition 1. We define irrigation cost of a finite atomic measure µ ∈ P(Ω)
the minimum of problem (PG) for ν = δ0. This quantity is denoted by
Xα(µ).

A variational analysis of this functional yields the following.

Theorem 1.1. Suppose µ =
∑m

i=1 aiδxi
with ai > 0 (so that the finite set

K = {xi : i = 1, . . . , n} is actually the support of µ) and that µ1 is another
probability measure concentrated on K with µ1 =

∑m
i=1 biδxi

. Then we have

Xα(µ1) ≤ Xα(µ) + α
m

∑

i=1

z(xi)(bi − ai),

where the function z is defined in this way: take an optimal graph G for
the problem (PG) for the measures µ and δ0; this graph is a tree; for any xi

define

z(xi) =
∑

h∈H(i)

wα−1
h H1(eh),

where H(i) denotes the sets of indices of the edges of the unique path from
0 to xi.

Proof. We will build a new oriented graph which is acceptable for Problem
(PG) when irrigating µ1 starting from δ0. This graph will be built by using
the same edges (eh)h as in G but changing the weights wh’s. We define the
new weights w′

h by

w′
h = wh +

∑

i: h∈H(i)

(bi − ai).

It is easy to check that this new graph satisfies the constraints, and so we
get

Xα(µ1) ≤
∑

h

(w′
h)αH1(eh) ≤ Xα(µ) + α

∑

h

wα−1
h

∑

i: h∈H(i)

(bi − ai),

where the last inequality is obtained by concavity of t 7→ tα. By changing
the order in performing the sums we easily get the thesis. ¤

Remark 1. The link between this function z and the one used in geophysics
is straightforward: to compute a value z(x) in fact what we do is integrating
the multiplicity of the graph along the river from 0 up to x. See Figure 1.3
and compare with Figure 1.2: in this case there are in general many more
degrees of freedom, the multiplicity of the represented point xi is the total
mass of the region Ai and the geometry of points and edges is not prescribed.
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Figure 2. The path from x to x0 and the multiplicity of xi

Remark 2. As a consequence of Theorem 1.1, if we set µε = µ + ε(µ1 − µ),
we get the following inequality:

lim sup
ε→0+

Xα(µε) − Xα(µ)

ε
≤

∫

z d(µ1 − µ).

This inequality gives information on the derivative of the functional Xα and
this fact is very useful in variational problems of the following kind:

(P+) min Xα(µ) + F (µ),

where F may be any functional whose derivative is known. We will show
later an example and briefly explain the interest of these problems.

Remark 3. The result of Theorem 1.1 has been established under no con-
straints on the direction of the edges, i.e. in the setting of problem (PG). It
is easy to reproduce them in the case of grid-constrained OCNs, as in the
proof there is no need to change the edges of the graph. Hence it is a result
which is valid also in the setting of [2].

1.4. Goals of the paper. The main goal of this paper is to define a land-
scape function in the continuous case and analyze its properties. We will
use the recent developments about these irrigation problems concerning ar-
bitrary probability measures (and not only atomic ones) that we mentioned
before. We will consider the irrigation of an arbitrary measure on a domain
Ω starting from a single source δ0. Here the main problem is that the opti-
mal structures which arise are not necessarily trees in the sense that there
may be points which are reached by several curves. We will anyway propose
a landscape function z and check that it is well-defined. Then we will prove
that it shares all the properties that we had in the discrete case, in particular
the fact that on a point x0 of the irrigation network it has maximal slope
in the direction of the network itself and that this slope is given by θα−1,
where θ is the multiplicity of the network at x0. Moreover we will prove that
even in the continuous case an inequality on the derivative of the energy Xα
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involving the landscape function is available and finally we will give some
continuity and semicontinuity results.

The interest of generalizing the concept of landscape function to the ir-
rigation of arbitrary probability measures does not have only variational
applications. In river basins applications, in fact, it is natural to consider
directly a configuration where the starting measure is the Lebesgue measure
instead of considering a grid discretization. Moreover, getting rid of the
discretization will also add isotropy and other features to the models in [2]
and [17].

The main results leading to the definition of a landscape function and to
the study of its properties will be presented from Section 3 on. Section 2 is
in fact devoted to a short summary of the different models and of the main
features that will be used later.

2. Branched transport structures: models and tools

Recently, several models have been developed to study branching trans-
port structures. At a first sight they are very different, but many equiv-
alences can be proved. On one hand there are the Eulerian approaches,
first by Gilbert and then by Xia, and on the other there are Lagrangian,
time-dependent approaches mainly presented in [15] and [4]. The Eulerian
models are the most similar to the one used by the geophysical community,
and the generalization by Xia will be explained here a little more. The La-
grangian ones, on the other hand, are the most useful to deal with a possible
landscape function thanks to the form of the functionals involved.

2.1. Relaxed minimization by Xia and its minimal value. Let us
briefly see how Xia extended the Gilbert approach. The key point is that the
constraint on the incoming and outcoming masses in each vertex (Kirchhoff
Law) may be easily written as ∇ · λG = µ − ν, where λG =

∑

h wh[[eh]]
is a vector measure ([[e]] being the integration measure on the segment e
following its direction: a measure which is absolutely continuous w.r.t. H1

with density ê on e and 0 elsewhere). This consideration led Xia in [20]
to extend the problem by relaxation to generic probabilities µ and ν. The
problems becomes

(PX) min Ē(λ) : ∇ · λ = µ − ν

where Ē(λ) := inf lim infn E(λGn) where the infimum is over all possible
sequences of finite graphs (Gn)n such that the corresponding vector measures
λGn converge to λ.

It is possible to prove that, when µ and ν are both actually atomic mea-
sures, we retrieve the problem by Gilbert. This can be done by means of
necessary optimality conditions: if we minimize over vector measures Xia’s
functional, proving that a minimizer must necessarily be a finite graph (see
[21] and [5]). Hence Xia’s formulation is an extension of Gilbert’s one.
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The minimum value of (PX), which obviously depends on µ and ν, will be
denoted by dα(µ, ν). It is very important to understand when this minimal
value is finite. It is proven in [20] that, when α is sufficiently close to
1, namely α > 1 − 1/d, then this minimum is finite for any pair (µ, ν).
Moreover the following uniform estimate (see [20]) holds

dα(µ, ν) ≤ Cα,d diam(Ω).

To deal with local perturbations, it is not difficult to deduce a sharper
estimate, namely

dα(µ, ν) ≤ Cα,d δα diam(ω), (2.1)

whenever µ−ν = δ(µ′−ν ′) and µ′ and ν ′ are probability measures on ω ⊂ Ω.
When α is below the threshold 1 − 1/d there are pairs of measures which
are not linkable by a finite energy configuration. The possibility of reaching
by finite energy a certain measure is somehow linked to its “dimension” (see
[8]).

Definition 2. For any measure µ ∈ P(Ω) we set Xα(µ) = dα(µ, δ0). This
is an extension of Definition 1. Moreover, a measure µ is called α−irrigable
if Xα(µ) < +∞.

In [20] it is proven that, for α > 1 − 1/d, the quantity dα defines a new
distance over the space of probability measures P(Ω), which induces the
weak topology. Both the continuity with respect to this topology and the
triangle inequality will be used in the sequel.

2.2. Patterns and traffic plan models. This subsection is an informal
summary of the models in [15] and [4] and their properties. Languages and
approaches have been sometimes simplified in view of the aim of this paper.

Let Ω be a fixed compact domain in R
d. Let us denote by Γ the set of

1−Lipschitz curves γ : [0, +∞[→ Ω that are eventually constant. It means
that, if we define the stopping time of a curve γ by

σ(γ) = inf {s : γ is constant on [s,+∞[} ,

these are curves with σ(γ) < +∞. Let us also denote by Γarc the set of
those curves in Γ which are parametrized by arc length and by Γinj the set
of curves in Γ which are injective on [0, σ(γ)[. In the sequel we will often
identify a curve with its image, in the sense that sometimes we will write γ
instead of γ([0, σ(γ)]) = γ([0, +∞[).

Given a probability measure η on the space Γ, for any point x ∈ R
d the

η−multiplicity of x is defined by

[x]η := η {γ ∈ Γ : x ∈ γ([0, σ(γ)])} . (2.2)

Then we can define Zη(γ) =
∫ σ(γ)
0 [γ(t)]α−1

η dt and J(η) =
∫

Γ Zη dη. Notice
that, for simplicity, here Zη is defined without the term |γ′|(t) which appears
in the original definition in [4]. It will be deduced later that minimizers are
actually parametrized by arc length.
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Finally, we consider the maps π0, π∞ : Γ → Ω, given by π0(γ) = γ(0),
and π∞(γ) = γ(σ(γ)). The two image measures (π0)]η and (π∞)]η, which
belong to P(Ω), will be called the starting and the terminal measure of η,
respectively. Following the notation of [4] we may define a traffic plan as a
measure η ∈ P(Γ) such that

∫

Γ σ(γ)η(dγ) < +∞. We will also call pattern
a traffic plan η such that (π0)]η = δ0. In the case of a pattern the terminal
measure will also be called the measure irrigated by η

The minimization problem proposed in [4] is

(P ) min J(η) : η is a traffic plan, (π∞)]η = µ, (π0)]η = ν,

where µ and ν are given measures in P(Ω). As [γ(t)]η ≤ 1, we have Zη(γ) ≥
σ(γ). Hence it is straightforward that any η such that J(η) < +∞ is actually
a traffic plan. A traffic plan η which minimizes J among the traffic plans
with the same starting and terminal measures, with J(η) < +∞, will be
called an optimal traffic plan. In the case ν = δ0 it will be called optimal
pattern.

A useful tool developed in [4] (see also [3]) is the following: if η is con-
centrated on Γarc ∩ Γinj then the following remarkable formula holds:

J(η) =

∫

Rd

[x]αη H1(dx). (2.3)

This formula gives an evident link with Gilbert and Xia’s models.

2.3. Useful tools: optimality conditions for (P ). Before presenting
some consequences of optimality, let us deal with some concepts from [15]
which are crucial in the case ν = δ0.

For any t ≥ 0 consider an equivalence relation on Γ given by “the two
curves γ1 and γ2 are in relation at time t if they agree on the interval [0, t]”,
and denote the equivalence classes by [·]t, so that

[γ]t = {γ̃ : γ̃(s) = γ(s) for any s ≤ t} .

For notational simplicity, let us set |γ|t,η := η([γ]t).

Definition 3. Given η ∈ P(Γ), a curve γ ∈ Γ is said to be η−good if
∫ σ(γ)

0
|γ|α−1

t,η dt < +∞.

Here are now the most important results that can be found in [15], [4],
[3], [5] and [14] or easily deduced from them.

(1) Problem (P ) admits a solution, provided the infimum is finite (i.e.
there is at least a solution with finite energy).

(2) If η is an optimal traffic plan, then η is concentrated on Γarc ∩ Γinj .
In particular, we may apply formula (2.3) for J .

(3) Suppose that η is an optimal traffic plan, that two curves γ0, γ1 ∈
Γarc ∩Γinj meet twice (i.e. γ0(s0) = γ1(s1), γ0(t0) = γ1(t1) and si 6=
ti) and that [γ0(t)]η ≥ c > 0 for any t ∈ [s0, t0]. Then either both
curves coincide in the trajectory between the two common points or
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we have
∫ t0
s0

[γ0(t)]
α−1
η dt <

∫ t1
s1

[γ1(t)]
α−1
η dt. In particular two different

curves with multiplicities bounded from below cannot part and then
meet again.

(4) If η is an optimal pattern (in particular ν = δ0), then for η−a.e.
curve γ and a.e. t < σ(γ) we have [γ(t)]η = η([γ]t). Roughly
speaking this means that if all the mass starts from a common point
then there is no parting-and-meeting-again-later (this is the single
path property described in [5].

(5) As a consequence, any optimal pattern η is concentrated on the set
of η−good curves, and any η−good curve γ belongs to Γarc ∩ Γinj

and satisfies [γ(t)]η = η([γ]t) for any t < σ(γ).
(6) Last but not least min (P ) = dα(µ, ν), which means that the minima

of the Lagrangian and of the Eulerian model coincide.

Remark 4. Notice that an optimal traffic plan η is concentrated on the set of
η−good curves, but this does not mean that this set is linked to the support
of η. In fact any restriction of an η−good curve is itself an η−good curve and
hence, for instance, in the discrete case, we have plenty of η−good curves
but the support of η is finite. In particular the set of η−good curves may
be very different from the set of fibers of a traffic plan that we find in [4] or
[5] and does not depend on any parametrization, but it is more intrinsic.

3. A general development formula

In this section we will develop in a useful way the variation of the func-
tional J when passing from a traffic plan η to a traffic plan η′. Formula 2.3
will be crucial.

Theorem 3.1. Let η and η′ be probability measures on Γ and ∆η = η′ − η.
Let us suppose that both η and ∆η are concentrated on Γarc ∩ Γinj and
∫

Γ Zη d|∆η| < +∞. Then

J(η′) ≤ J(η) + α

∫

Γ
Zη d∆η − α(1 − α)

∫

Rd

[x]2∆η H
1(dx). (3.1)

Proof. Let us set Sη = {x ∈ R
d : [x]η > 0} and analogously Sη′ = {x ∈

R
d : [x]η′ > 0}. First we prove that under the assumptions of this theorem

H1(Sη′ \ Sη) = 0. In fact, for any point x ∈ Sη′ \ Sη we have necessarily
[x]η = 0 and [x]∆η > 0. Hence it is sufficient to prove that the integral of
[x]∆η on this set vanishes to get the desired result. Yet we have
∫

Sη′\Sη

[x]∆ηH
1(dx) =

∫

Sη′\Sη

H1(dx)

∫

Γ
∆η(dγ)Ix∈γ =

∫

Γ
∆η(dγ)H1

(

γ∩(Sη′\Sη)
)

,

where I denotes the function whose value is 1 if the condition in the index
is satisfied, 0 otherwise (indicator function). The second assumption of the
theorem implies that for ∆η−a.e. curve γ the quantity Zη(γ) is finite and
hence, for a.e. t, we have γ(t) ∈ Sη. Since γ is 1−Lipschitz continuous,
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this yields H1 (γ \ Sη) = 0. Hence we have
∫

Sη′\Sη
[x]∆ηH

1(dx) = 0, which

proves H1(Sη′ \ Sη) = 0.
Now, as both η and η′ are concentrated on Γarc ∩ Γinj , to evaluate J we

can use the expression in (2.3) and get

J(η′) =

∫

Sη

([x]η + [x]∆η)
α H1(dx)

≤ J(η) + α

∫

Sη

[x]α−1
η [x]∆ηH

1(dx) − α(1 − α)

∫

Sη

[x]2∆ηH
1(dx), (3.2)

where we have used the fact that Sη′ ⊂ Sη up to H1−negligible sets and the
concavity inequalities

(t+s)α ≤ tα+αtα−1s−α(1−α)(max{t, t+s})α−2s2 ≤ tα+αtα−1s−α(1−α)s2

(this last inequality being valid when both t and t + s belong to ]0, 1]).
Let us now work on the second term of the last sum we obtained. We

have
∫

Sη

[x]α−1
η [x]∆ηH

1(dx) =

∫

Sη

H1(dx)

∫

Γ
∆η(dγ) [x]α−1

η Ix∈γ .

Here we want to change the order of integration and to do this we check
what happens in absolute value:

∫

Sη

H1(dx)

∫

Γ
|∆η|(dγ)[x]α−1

η Ix∈γ =

∫

Γ
|∆η|(dγ)

∫

Sη

H1(dx) [x]α−1
η Ix∈γ

=

∫

Γ
|∆η|(dγ)

∫ σ(γ)

0
[γ(t)]α−1

η dt =

∫

Γ
Zηd|∆η| < +∞. (3.3)

In this series of equality, the first one is just changing the integration order,
while the second relies on the fact that |∆η|−a.e. we have H1(γ \ Sη) = 0
and, γ being parametrized by arc length, the H1−integral on its image may
become an integral in dt on [0, σ(γ)]. The finiteness of the last integral in
(3.3) allows us to change the order of integration between ∆η and H1 and
by analogous computations we get

∫

Sη

H1(dx)

∫

Γ
∆η(dγ)[x]α−1

η Ix∈γ =

∫

Γ
Zηd∆η.

Inserting this last equality in (3.2) gives the thesis. ¤

4. Existence of the landscape function and applications

In this section we come specifically back to Problem (P ) for ν = δ0.
Even when not specifically stated, from now on η will be an optimal pattern
irrigating an α−irrigable measure µ.
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4.1. Well-definedness of the landscape function. First a very elemen-
tary truncation lemma is needed. As it is just the formalization of a well-
known principle (that a part of an optimal structure is itself optimal), it will
not be proven here. It is in fact proven in [5] when stating the optimality of
the connected components of a traffic plan in R

d \ {x0}.

Lemma 4.1. If γ0 is a curve such that |γ|t0,η > 0, set x0 = γ0(t0), A =
[γ0]t0, µA = (π∞)](IA · η), µ′ = µ− µA + η(A)δx0

, η′ = η − IA · η + η(A)δγ̄0
,

where the curve γ̄0 is the curve γ0 stopped at time t0. Then η′ is an optimal
pattern irrigating the measure µ′.

Theorem 4.2. If γ0 and γ1 are two η−good curves sharing the same end-
point x̄, then Zη(γ0) = Zη(γ1).

Proof. If the two curves are identical the thesis is easily obtained. If they
are not identical, then they must split at a certain time t̄. It is possible
that one of them stops at time t̄, but not both, as in this case they would
be identical. Then we can choose two times t0 and t1 with |γi|ti,η > 0 and
t̄ ≤ ti ≤ σ(γi) for i = 0, 1 (if one of the two curves stops at time t̄, say for
instance σ(γ0) = t̄, then we are forced to choose t0 = σ(γ0) = t̄ and we have
|γ0|t0,η = |γ1|t̄,η and |γ1|t̄,η > 0 as a consequence of t̄ < σ(γ1)). Figure 4.1
shows the two possible situations.

t t
γ0

γ0

γ1 γ1

Figure 3. Both curves may go on after t̄ or one may stop

Let us set xi = γi(ti) and l = |x1 − x0|. Then we use the notations of the
previous Lemma and we write

dα(δ0, µ
′) ≤ dα(δ0, µ

′′) + dα(µ′, µ′′), (4.1)

where µ′′ = µ − µA + η(A)δx1
. Define η′′ = η − IA · η + η(A)δγ̄1

, where
the curve γ̄1 is the curve γ1 stopped at time t1. It is easy to check that
(π∞)]η

′′ = µ′′ and then

dα(δ0, µ
′′) ≤ J(η′′) ≤ J(η′) + α

∫

Γ
Zη d(η′′ − η′)

= J(η′) + αη(A)

(
∫ t1

0
|γ1|

α−1
t,η dt −

∫ t0

0
|γ0|

α−1
t,η

)

.

Here we have used Theorem 3.1 to estimate J(η′′). Actually by this theorem
we should have had Zη′ instead of Zη. Yet we can interchange Zη′ and Zη

because we have only replaced the measure η on A by a same amount of
12



mass concentrated on γ̄0, and on γ0 ∪ γ1 this does not affect multiplicities.
As far as the second term of the sum in (4.1)is concerned it is easy to see
that we have

dα(µ′, µ′′) ≤ lη(A)α.

By inserting these estimates in (4.1) we get
∫ t0

0
|γ0|

α−1 dt −

∫ t1

0
|γ1|

α−1 dt ≤ α−1lη(A)α−1.

Now estimate the length l by

l = |x0 − x1| ≤ |x0 − x̄| + |x̄ − x1| ≤ (σ(γ0) − t0) + (σ(γ1) − t1)

≤ η(A)1−α

∫ σ(γ0)

t0

|γ0|
α−1
t,η dt + η(B)1−α

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt.

Hence
∫ t0

0
|γ0|

α−1dt−

∫ t1

0
|γ1|

α−1dt ≤α−1

(

∫ σ(γ0)

t0

|γ0|
α−1
t,η dt +

η(B)1−α

η(A)1−α

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt

)

.

Notice that we cannot have |γi|σ(γi),η > 0 for both i = 0, 1, thanks to the
no-loop property (property 3). So, if it is |γ1|σ(γ1),η = 0, once we fix t0 such
that η(A) > 0, we can choose t1 so that η(B) ≤ η(A) since η(B) → 0 as
t1 → σ(γ1). Otherwise, if |γ1|σ(γ1),η > 0, we can choose directly t1 = σ(t1).
In both cases we have
∫ t0

0
|γ0|

α−1 dt −

∫ t1

0
|γ1|

α−1 dt ≤ α−1

(

∫ σ(γ0)

t0

|γ0|
α−1
t,η dt +

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt

)

.

(4.2)
Then we let t0 and t1 tend to σ(γ0) and σ(γ1), according to the criteria for
the choice of t1 we have used so far, and we get at the limit

Zη(γ0) − Zη(γ1) ≤ 0,

because the integral terms on the right hand side of (4.2) tend to zero as
a consequence of the fact that γ0 and γ1 are both η−good curves. By
interchanging the role of γ0 and γ1 the thesis is proven. ¤

Corollary 4.3. If two different η−good curves γ0 and γ1 meet at a certain
point x = γ0(t0) = γ1(t1), then |γ0|t0,η = |γ1|t1,η = 0.

Proof. If one of the two multiplicities |γi|ti,η were positive a strict inequality
between Zη(γ0) and Zη(γ1) should hold. Yet equality has just been proven
and this is a contradiction. ¤

Corollary 4.4. Any η−good curve γ is in fact injective on [0, σ(γ)].

Proof. the injectivity on [0, σ(γ)[ is already known. Hence, consider the
case γ(σ(γ)) = γ(t) for t < σ(γ). This would imply |γ|t,η > 0 but it is
contradiction with Corollary 4.3, applied to the curve γ and to the curve γ̄,
which is γ stopped at time t. ¤

13



Remark 5. The injectivity on [0, σ(γ)] was already known for η−a.e. curve
γ (see [4]). Yet, it was not possible to identify an explicit class of curves
sharing this property. For the purposes of this paper it is important to
switch from a generic “a.e.” to the fact that this is true for η−good curves.

The result of Theorem 4.2 allows us to define a function on Ω by the
values of Zη.

Definition 4. We define the landscape function associated to the traffic
plan η as the function zη given by

zη(x) =

{

Zη(γ) if γ is η−good and x = γ(σ(γ));

+∞ if no η − good curve ends at x.

Remark 6. It was in fact possible to prove more easily that µ−a.e. the value
of z was well defined (in the sense that if on a non negligible set of points
x we had two different values for Zη we would have had the possibility to
strictly improve the value of J). Yet, we do not want a function z which
is defined a.e. but a pointwise defined value, to deal later with pointwise
properties, being also concerned with negligible sets such as Sη.

Remark 7. Notice, as in Remark 4, that restrictions of η−good curves are
still η−good and that this implies that if the landscape function is finite on
a point x then it is finite also on the whole η−curve arriving up to x.

4.2. Variational applications: the functional Xα. Some consequences
of the existence of the landscape function are presented here.

Corollary 4.5. For the functional Xα we have the following representation
formula Xα(µ) =

∫

Ω z dµ, where z = zη is the landscape function associated
to any optimal pattern η irrigating the measure µ.

Proof. It is sufficient to take the formula Xα(µ) = J(η) =
∫

Γ Zηdη and use
the fact that Zη(γ) depends only on π∞(γ) through Zη(γ) = z(π∞(γ)) and
get

Xα(µ) =

∫

Γ
Zηdη =

∫

Ω
z d((π∞)]η =

∫

Ω
z dµ.

¤

Corollary 4.6. If µ is α−irrigable, then any landscape function z is finite
µ−a.e.

Proof. Corollary 4.5 yields
∫

z dµ = Xα(µ) < +∞ and from this the result
is straightforward. ¤

Remark 8. As the word “any” in the previous statement suggests, there is
no uniqueness for the landscape function, and there is a landscape function
for any optimal pattern.

14



Moreover, using Theorem 3.1 together with the existence of the landscape
function, a derivative result extending the discrete case can be obtained.
Notice that the following theorem will be useful also for other purposes, for
instance when looking for continuity properties of the landscape function
(see Section 6).

Theorem 4.7. For a given function g on Ω, such that ||g||L∞(µ) ≤ 1 and

such that
∫

Ω g dµ = 0, set µ1 = µ(1 + g). Then

Xα(µ1) ≤ Xα(µ) + α

∫

Ω
z(x)g(x)µ(dx),

where the function z = zη is the landscape function according to an arbitrary
optimal pattern η irrigating the measure µ.

Proof. We will consider a variation of η given by η1 = (1 + (g ◦ π)) · η. Since
π]η1 = (1 + g) · µ, we have

Xα(µ1) − Xα(µ) ≤ J(η1) − J(η).

We want to apply Theorem 3.1 to this situation, with ∆η = (g ◦π) ·η. Since
∆η is absolutely continuous with respect to η with bounded density, it is
straightforward that both the conditions required by the theorem (∆η being
concentrated on Γarc ∩ Γinj and Zη being |∆η|−integrable) are satisfied, so
that one gets

J(η′) ≤ J(η) + α

∫

Γ
Zηd∆η.

Now use the fact that Zη depends only on its terminal point and get
∫

Γ
Zηd∆η =

∫

Ω
z d((π∞)]∆η) =

∫

Ω
zgdµ.

Putting together all the results yields the thesis. ¤

A simple consequence of this theorem may be expressed in terms of deriva-
tives.

Corollary 4.8. Set µε = µ+εg ·µ. Then the following derivative inequality
holds:

lim sup
ε→0+

Xα(µ + εg · µ) − Xα(µ)

ε
≤ α

∫

Ω
z(x)g(x)µ(dx).

4.3. Variational applications: minimizing (P+). As we said the last
derivative inequality may be useful in variational problems involving Xα.
For the sake of clearness we provide a short example.

Example 1. Let us consider the functional F : P(Ω) → [0, +∞] given by

F (µ) =

{

∫

Ω u2 dLd if µ = u · Ld,

+∞ if µ is not absolutely continuous.
15



If we want to minimize (for α > 1 − 1/d) the sum Xα(µ) + F (µ) over all
probabilities µ on Ω we get as an optimality condition, by deriving and using
Corollary 4.8,

αz + 2u = const a.e. on {u > 0}. (4.3)

This implies several interesting properties. First of all we can notice that,
both z and u being positive, they are also bounded. It was not a priori
evident that u ∈ L∞(Ω), since the natural condition was u ∈ L2(Ω). Since
z(x) ≥ |x|, this gives also an estimate on the support of µ. As the constant
appearing in (4.3) could be uniformly estimated (it is sufficient to multi-
ply (4.3) by u and integrate, thus obtaining const = αXα(µ) + 2F (µ) ≤
2 min(Xα + F )), this could also be used to prove an existence result for
Ω = R

d, proving also that actually minimizers of Xα + F are supported in
a given bounded ball. Moreover, Formula 4.3 yields some regularity result
on u according to the results we will prove later on z.

Variational problems such as (P+) have been first proposed in [15], where
the authors suggested to consider problems involving both the irrigation
pattern χ and the irrigated measure µχ, and are very similar to what con-
sidered in [6]. In fact in [6] a similar sum is minimized, but with a standard
Wasserstein distance instead of the term Xα(µ) = dα(µ, δ0). Such a model
was proposed to study urban planning problems, with µ standing for the
population density in a region, exactly as (P+) may be used in studying the
shape of a leaf or a flower, represented by µ. In fact the minimization of a
sum of an Xα term and a convex functional on µ could be an easy model
taking into account that leaves want to be as spread as possible to catch
sunlight but have to be irrigated starting from a single source. In the frame-
work of [6] the key condition coming from optimality was ψ + f ′(u) = const
and the landscape function z dealt with in this paper plays somehow the
role of the Kantorovich potential ψ. Also Corollary 4.5 can be seen as a sim-
ilarity between the landscape function and the Kantorovich potential (see
[19]). Moreover, the Hölder continuity result at the end of this paper per-
fectly agrees with the fact that Kantorovich potentials (which correspond to
α = 1) are Lipschitz continuous.

5. Properties of the landscape function

5.1. Semicontinuity.

Lemma 5.1. Given any η ∈ P(Γ), the function Zη : Γ → R is lower semi-
continuous with respect to pointwise convergence.

Proof. This result is almost implicitly proven both in [15] and in [4], but
never explicitly stated. It is anyway proven that x 7→ [x]η is upper semi-
continuous, and hence x 7→ [x]α−1

η is l.s.c. Then, to prove lim infn Zη(γn) ≥
Zη(γ), fix a time t1 < σ(γ) and use lim inf σ(γn) ≥ σ(γ). Eventually we
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have σ(γn) > t1 and, by Fatou’s Lemma, we get

lim inf
n

Zη(γn) ≥ lim inf
n

∫ t1

0
[γn]α−1

η dt ≥

∫ t1

0
[γ]α−1

η dt.

Passing to the limit as t1 → σ(γ) gives the thesis. ¤

Theorem 5.2. The landscape function z is lower semi-continuous.

Proof. Consider a sequence xn → x and, correspondingly, some η−good
curves γn such that π∞(γn) = xn and z(xn) = Zη(γn). We may assume
supn z(xn) < +∞. Since it holds σ(γn) ≤ Zη(γn) = z(xn), we also have
supn σ(γn) < +∞ and we can extract a subsequence (not relabeled) such
that γn → γ uniformly. It is not difficult to prove that π∞(γ) = x. Thus, it is
sufficient to use Lemma 5.1 to get Zη(γ) ≤ lim infn Zη(γn) = lim infn z(xn).
This implies that γ is an η−good curve and that z(x) = Zη(γ), which yields
the thesis. ¤

5.2. Maximal slope in the network direction. The next property that
can be proven in general (i.e., under no extra assumption on α, Ω, µ . . . )
on the landscape function is the most important in view of its meaning in
river basins applications. Our interest is in a continuous counterpart of the
landscape function of [2]. What we actually need is a result concerning
the fact that, on the points of the irrigation network Sη, the direction of
maximal slope of z is exactly the direction of the network. If an η−good
curve γ0 is fixed, by the definition of z, for a.e. t0 the derivative of z along
the curve γ at the point x0 = γ0(t0) is exactly |γ0|

α−1
t0,η . This is the reason

why we prove the following result. Notice that, as we said, in this continuous
case the function z cannot be expected to be very regular, and in fact the
maximal slope result we are going to prove involves differentiability in a very
pointwise way but very weak as well.

Theorem 5.3. Let x0 = γ0(t0), where γ0 is an η−good curve, t0 a time
with t0 ≤ σ(γ0) and θ0 := |γ0|t0,η > 0. Then, for any x /∈ γ0([0, t0]), we have

z(x) ≥ z(x0) − θα−1
0 |x − x0| − o(|x − x0|).

This corresponds to saying that the slope at x0 in the direction of the network
is actually the maximal slope at x0.

Proof. Let us fix x /∈ γ0([0, t0]) such that z(x) < z(x0). We may assume
that x = γx(tx) for an η−good curve γx (otherwise z(x) = +∞) and that
the two curves γ0 and γx get apart at a certain time t1(x) < t0 (the case
t1(x) ≥ t0 implies in fact z(x) ≥ z(x0)). By Lemma 5.4 (see below) we know
that t1(x) → t0 as |x − x0| → 0. Let us set θ(t) = |γ0|t,η: for t ∈ [t1(x), t0]
we may write θ(t) ≤ θ0(1 + εx), where εx is infinitesimal as |x − x0| → 0 as
a consequence of t1(x) → t0. We use again Lemma 4.1 and its notations.
In particular A = [γ0]t0 and θ0 = θ(t0) = η(A). Let us also define, as in
Theorem 4.2, µ′′ = µ − µA + η(A)δx and η′′ = η − IA · η + η(A)δγ̄x , where
the curve γ̄x is the curve γx stopped at time tx, and it is easy to check that
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0 γx

Figure 4. Curves and points in the proof

(π∞)]η
′′ = µ′′. Then, by the optimality of η′ (we recall, according to the

notations of Lemma 4.1 µ′ = µ−µA +η(A)δx0
and η′ = η− IA ·η +η(A)δγ̄0

,
where γ̄0 is the curve γ0 stopped at time t0, see also Figure 5.2), we have

J(η′) = Xα(µ′) ≤ Xα(µ′′) + dα(µ′′, µ′) ≤ J(η′′) + |x − x0|θ
α
0 . (5.1)

We want to compare J(η′) and J(η′′) and to do this here we need a more
refined estimate than what we could find by using Theorem 3.1. As η′−η′′ =
θ0(δγ̄0

−δγ̄x), we have in particular [y]η′′ = [y]η′ +θ0(Iy∈γ̄x −Iy∈γ̄0
). By using

Formula (2.3) we get the following:

J(η′′)−J(η′) =

∫

γ̄x\γ̄0

(

([y]η′ + θ0)
α− [y]αη′

)

dH1−

∫

γ̄0\γ̄x

(

[y]αη′ − ([y]η′− θ0)
α
)

dH1.

It is not difficult to check that, for y ∈ γ̄x ∪ γ̄0, it holds [y]η′ = [y]η, as we
have replaced the part of η concentrated on A by an equal amount of mass
on γ̄0. Hence we may estimate (rewriting the integrals w.r.t. H1 as integrals
in dt)

J(η′′) − J(η′) ≤ α

∫ tx

t1(x)
|γx|

α−1
t,η θ0 dt −

∫ t0

t1(x)
(θ(t)α − (θ(t) − θ0)

α) dt.

Since the function s 7→ sα − (s − θ0)
α is decreasing and θ(t) ≤ (1 + εx)θ0,

we get θ(t)α − (θ(t) − θ0)
α ≥ θα

0 ((1 + εx)α − εα
x). Hence we get

J(η′′) − J(η′) ≤ α(z(x) − z(x1)) − |t0 − t1(x)|θα
0 ((1 + εx)α − εα

x) ,

where x1 = γ0(t1(x)) = γx(t1(x)). Write (1 + εx)α − εα
x = (1 + ε′x)−1

and ε′x > 0 is infinitesimal as x → x0. From θα−1
0 ≥ (θ(t))α−1 we get

|t0 − t1(x)|θα
0 ≥ θ0(z(x0) − z(x1)). Now notice that, for |x − x0| sufficiently

small, the inequality α < (1 + ε′x)−1 is satisfied, and hence

J(η′′) ≤ J(η′) + (1 + ε′x)−1θ0(z(x) − z(x0).

If we finally insert it into (5.1) we finally get

z(x) − z(x0) ≥ −θα−1
0 |x − x0|(1 + ε′x), ¤.

Lemma 5.4. According to the notations of Theorem 5.3, when x → x0 and
z(x) ≤ z(x0), the parting time t1(x) tends to t0.
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Proof. Suppose, by contradiction, that there exists a sequence xk → x0

such that limk t1(xk) = t̄ < t0 and z(xk) ≤ z(x0). Since γ0 is injective
(Corollary 4.4), we may infer the existence of a positive quantity δ such
that |γ0(t1(xk)) − x0| ≥ δ (otherwise there would be a time t ≤ t̄ < t0 with
γ0(t) = x0). For any k consider an η-good curve γk such that xk = γk(tk).
First notice that, at least for k large enough, thanks to |γk(t1(xk)) − xk| =
|γ0(t1(xk)) − xk| → |γ0(t̄) − x0| ≥ δ, we have tk > t̄ + δ/2. Then let us
consider the points γk(t̄+δ/2): this collection of points must in fact be finite,
otherwise we would have |γk|t̄+δ/2,η → 0 and hence z(xk) ≥ |γk|

α−1
t̄+δ/2,η

|tk −

(t̄ + δ/2)| → +∞ because |tk − (t̄ + δ/2)| ≥ |xk − γ0(t̄)| − δ/2 ≥ δ/2. This
is in contradiction with z(xk) ≤ z(x0) and then we may suppose, up to
subsequences, that γk(t̄ + δ/2) = x̄ (for a point x̄ which does not belong
to the image of γ0, otherwise we would contradict Property 3) and that γk

uniformly converges to a curve γ. At the limit we should get a curve γ
passing through γ0(t̄), x̄ and x0, i.e. we have created a loop because γ0 does
not pass through x̄ (see Figure 5.2 as well).

t1(k)

xk
x0

t

( t+  /2)δγ
k

Figure 5. A sequence of curves creating a loop at the limit

From z(xk) ≤ z(x0) we can infer by semicontinuity (Lemma 5.1) that γ
is an η−good curve and hence this loop is against Corollary 4.3. ¤

6. Hölder continuity under extra assumptions

Here we will be able to prove some extra regularity properties on z, but
we have to add some assumptions. The most important ones are on α
(α > 1− 1/d is required) and on the irrigated measure µ (a lower bound on
its density is supposed).

6.1. Campanato spaces by medians. We will here give a simple variant
of a well-known result by Campanato (see [7]) about an integral characteri-
zation of Hölder continuous functions.

Definition 5. Given a measurable function u on a domain U we call median
of u in U any number m which satisfies the following equivalent conditions:

• |{x ∈ U : u(x) > m}| ≤ 1
2 |U | and |{x ∈ U : u(x) < m}| ≤ 1

2 |U |;
• there exists a measurable subset A ⊂ {x ∈ U : u(x) = m} such that
|{x ∈ U : u(x) > m} ∪ A| = 1

2 |U |;
• the function t 7→

∫

U |u(x) − t|dx achieves its minimum at t = m.
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The sets of medians of u in U is an interval of R; the middle point of this
interval is called central median of u in U

Definition 6. If A is a given positive number, a domain Ω ⊂ R
d is said

to be of type A if it holds |Ωx0,r| ≥ Ard for any r ∈ [0, diamΩ], where
Ωx0,r = Ω ∩ B(x0, r).

Lemma 6.1. If Ω is a domain of type A and u is a function in L1(Ω) such
that

∫

Ωx0,r

|u − ũx0,r|dx ≤ Crd+β ,

for a finite constant C and any r ∈ [0, diam Ω], where ũx0,r is the central
median of u on Ωx0,r, then u admits a representative which is Hölder con-
tinuous of exponent β.

Proof. This is nothing but the fact that Campanato spaces may be built by
using medians instead of average values. See the proof of Theorem 1.2 at
page 70 in [10] and adapt it. In fact it is easy to see that for each point x0

the value ũx0,r converges as r → 0 to a value ũ(x0) and that

|ũ(x) − ũ(y)| ≤ C|x − y|β ,

exactly as in the proof we mentioned. What we need to prove is that ũ(x) =
u(x) a.e.. This can be obtained in this way: let us denote the average value
of u on Ωx0,r by ūx0,r. Then

|ūx0,r−ũx0,r| ≤ |Ωx0,r|
−1

∫

Ωx0,r

|u(x)−ũx0,r|dx ≤ |Ωx0,r|
−1

∫

Ωx0,r

|u(x)−ūx0,r|dx,

where the second inequality has been established as a consequence of the
minimality property of the median. As at Lebesgue points the last expres-
sion tends to zero, this implies that the average ūx0,r and the median ũx0,r

share the same limit a.e. On the same points we also have ūx0,r → u(x0),
and this proves ũ(x0) = u(x0) a.e. ¤

6.2. Hölder continuity of the landscape function.

Theorem 6.2. Suppose that Ω is a domain of type A for A > 0, that
α > 1 − 1/d and that µ ∈ P(Ω) is a probability measure such that the
density of its absolutely continuous part is bounded from below by a positive
constant. Then any landscape function z has a representative z̃ which is
Hölder continuous of exponent β = d(α − (1 − 1/d)).

Proof. Let us fix a measure µ1 and apply Theorem 4.7 to it and µ. By using
the triangle inequality for dα, we get

−dα(µ, µ1) ≤ Xα(µ1) − Xα(µ) ≤ α

∫

Ω
z d(µ1 − µ), (6.1)
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provided µ1 is a measure of the form allowed in Theorem 4.7, i.e. µ1 << µ
with bounded density. From (6.1) we get

α

∫

Ω
z d(µ − µ1) ≤ dα(µ, µ1). (6.2)

Suppose that µ has an absolutely continuous part with density everywhere
larger than λ0 > 0 and choose

µ1 = µ − λ0IA · Ld + λ0IB · Ld,

where A and B are two measurable subsets of Ωx0,ε with |A| = |B|, A∪B =
Ωx0,ε and A ⊂ {z ≥ m} and B ⊂ {z ≤ m} and m is the central median
value for z in Ωx0,ε. By construction µ1 is a probability measure to which
the estimate of Theorem 4.7 may be applied. With this choice of µ and µ1

we get
∫

Ω
z d(µ − µ1) =

∫

A
z(x)λ0 dx −

∫

B
z(x)λ0 dx

= λ0

(
∫

A
(z(x) − m)dx −

∫

B
(z(x) − m)dx

)

= λ0

∫

Ωx0,ε

|z(x) − m|dx.

Putting into (6.2)
∫

Ωx0,ε

|z(x) − m|dx ≤ (αλ0)
−1dα(µ, µ1).

To estimate dα(µ, µ1) use (2.1) and get
∫

Ωx0,ε

|z(x) − m|dx ≤
Cα,d

λ1−α
0

ε1+αd.

Since 1 + αd = d + β, Lemma 6.1 may be applied. ¤

An important consequence of this fact is the following:

Corollary 6.3. Under the same assumptions on Ω, α and µ of Theorem
6.2, the inequality

Xα(µ1) ≤ Xα(µ) +

∫

Ω
z̃d(µ1 − µ)

holds for any measure µ1 ∈ P(Ω).

Proof. The inequality holds for µ1 of the form µ1 = (1 + g) ·µ with g ∈ L∞,
but any measure µ1 ∈ P(Ω) may be approximated by these kind of measures.
Since z̃ is continuous, at both the sides of the inequalities we have quantities
which are continuous with respect to weak convergence in the variable µ1.
This allows to conclude that the same inequality is valid for any µ1. ¤

Even if we have proven that the landscape function z equals a.e. a function
which is Hölder continuous, this is not enough. In fact, this result does
not provide information on the behavior of z on negligible sets. Yet, the
pointwise values of z on Sη are of particular interest (as in last Section),
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and Sη is one-dimensional and thus negligible. This is why the next step
will be proving that z and z̃ actually agree everywhere.

Theorem 6.4. Let mε denote the central median of z in the ball B(x0, ε).
Under the same assumptions of Theorem 6.2 one has mε → z(x0) as ε → 0.
Consequently, we have z̃(x0) = z(x0).

Proof. By the semicontinuity of z it is easy to get lim infε→0 mε ≥ z(x0),
hence only an estimate from above for mε is needed. Let us now con-
sider a ball B(x0, ε) and a set Aε ⊂ B(x0, ε) ∩ {z ≥ mε} such that |Aε| =
|B(x0, ε)|/2. Then set Γε = {γ ∈ Γ : (π∞)(γ) ∈ Aε}, µε = µ + µ(Aε)δx0

−
IAε ·µ, and ηε = η+η(Γε)δγ0

−IΓε ·η, where γ0 is an η−good curve stopping
at x0. Theorem 3.1 can be applied to η and ηε and hence we have

J(ηε) ≤ J(η)+α

(

η(Γε)Zη(γ0)−

∫

Γε

Zηdη

)

= J(η)+αµ(Aε)z(x0)−α

∫

Aε

z(x)µ(dx)≤J(η) + αµ(Aε)(z(x0) − mε).

Hence we have

Xα(µ) ≤ Xα(µε)+Cεµ(Aε)
α ≤ Xα(µ)+αµ(Aε)(z(x0)−mε)+Cεµ(Aε)

α.

This implies

mε − z(x0) ≤ Cεµ(Aε)
α−1 ≤ Cε1+d(α−1).

Since the exponent 1+d(α−1) is larger than 0 we get lim supε→0 mε ≤ z(x0).
To get the second part of the thesis, just use z̃(x0) = limε→0 mε. ¤

Remark 9. The landscape function z is in general never Lipschitz continuous
(not even locally), as on the set Sη it has slopes given by θα−1. This means
that, if we have arbitrarily small values of θ, we cannot have a Lipschitz
constant for z. Yet estimates of the kind θ ≥ c > 0 would imply H1(Sη) <
+∞ and no measure whose support is not one-dimensional may be irrigated
by a set of finite length (or locally finite length).
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(49), no. 2, 417–451, 2005.
[5] M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation

networks, preprint in preparation, 2006.
[6] G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban

area. SIAM J. Math. Anal. (37), no. 2, 514–530, 2005.
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