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Abstract

We model the parameters of a control problem as an ergodic diffusion process evolving
at a faster time scale than the state variables. We study the asymptotics as the speed of the
parameters gets large. We prove the convergence of the value function to the solution of
a limit Cauchy problem for a Hamilton-Jacobi equation whose Hamiltonian is a suitable
average of the initial one. We give several examples where the effective Hamiltonian
allows to define a limit control problem whose dynamics and payoff are linear or nonlinear
averages of the initial data. This is therefore a constant-parameter approximation of the
control problem with random entries. Our results hold if the fast random parameters are
the only disturbances acting on the system, and then the limit system is deterministic, but
also for dynamics affected by a white noise, and then the limit is a controlled diffusion.

Keywords: singular perturbations, viscosity solutions, deterministic control, stochastic
control, asymptotic approximation, multiscale problems, well-posedness of control prob-
lems, sensitivity of control problems.
AMS subject classification: 35B25, 91B28, 93C70, 49L25.

1 Introduction

In all control problems the data (dynamical system, payoff functional,...) depend on several
parameters that are often assumed constant, at least for short intervals of time, but may in fact
change over time in a way that is usually unknown a priori. These parameters summarize the
behaviour of all external un-modelled variables. A sequence of observations of these variables
often looks like a sample of a stochastic process. One can take an average of them and use
it as a constant parameter in the model. Alternatively, one can add some parameters to the
state variables, assuming a dynamics consistent with the observed behavior. As an example,
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let us take a deterministic system in IRn with state Xt and control ut (with the notations of
stochastic processes) and model the parameters Yt ∈ IRm as a given diffusion process:

Ẋt = f(Xt, Yt, ut),

dYt = b(Yt)dt+
√

2τ(Yt)dWt,

(1)

where Wt is a Brownian motion. For the payoff functional, the most reasonable choice is
taking the expectation with respect to the distribution of the process Yt:

E
[∫ T

t
l(Xs, Ys, us) ds+ g(XT , YT )

]
. (2)

This model is more realistic than the one with constant parameters, but much harder to
analyze, because the new system is a degenerate controlled diffusion and the increased di-
mension of the state space makes all computations more costly. The goal of this paper is
to reconcile the two approaches by showing that, with a careful choice of the quantities to
average, the constant-parameters model is a good approximation of the one with augmented
state variables.

The main assumption we make is that the parameters Yt are an ergodic process evolving
on a faster time-scale than the ”true” state variables Xt (see Section 2.4). This means that
Yt = Ỹt/ε for a small ε > 0 and the process Ỹt̃ has an invariant probability measure µ such
that

lim
T→+∞

E
[

1
T

∫ T

0
φ(Ỹt̃) dt̃

]
=
∫

IRm

φ(y) dµ(y)

for all continuous µ-integrable functions φ, locally uniformly with respect to the initial position
Ỹ0. Our result shows that in the limit as ε → 0 the problem of maximizing (2) for the
n + m dimensional system (1) converges to a suitably µ-averaged optimization problem for
a deterministic n-dimensional system. Such effective problem is not always the same as for
uncontrolled systems, because the limits f, l of the drift and running cost f, l can be different
from the simple linear averages

∫
IRm f(x, y, u) dµ(y),

∫
IRm l(x, y, u) dµ(y).

Before describing the result more precisely let us comment these assumptions. The ergod-
icity means that the process Ỹτ forgets its initial condition for large time and its distribution
becomes stationary. The rescaled process Yt satisfies a SDE of the form

dYt =
1
ε
b(Yt)dt+

√
2
ε
τ(Yt)dWt

and has the same properties on a finite time interval for small ε. Moreover its trajectories
undergo rapid oscillations, therefore describing variables with a bursty behaviour. For these
reasons the process Yt was introduced to model some unknown parameters in financial math-
ematics since the 80s, with ε = 1 first and then with ε small, see the books [26], [25] and the
references therein. In that context the initial model for the state Xt is a diffusion process
whose volatility is supposed to be a function of Yt. The book by Fouque, Papanicolaou and
Sircar [26] gives a nice survey of the empirical data supporting the stochastic volatility models,
of the formal asymptotic expansion method for analyzing them, and of their applications to
option pricing and hedging and to some optimization problems in financial markets. In these
applications most authors choose for Yt an Ornstein-Uhlenbeck process, that is also mean-
reverting, Gaussian, and has an explicit formula for the density of the invariant measure µ.
See also [27, 28, 42, 7] for more recent developments and further references.
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Another motivation for modeling the random parameters with a fast ergodic process is
the following. Suppose φ is a function of the parameters Yt appearing in the model (e.g.,
f , l....). A practitioner typically gets some historical values y1, ..., yN of the parameters and
then estimates φ by the arithmetic mean of the observed data

φ ≈ 1
N

N∑
i=1

φi, φi := φ(x, yi, u).

Suppose the data yi are samples of the process Yt taken on a regular partition of the time
interval [0, 1], that is, yi = Yi/N . Then for large N and small ε the ergodicity of Ỹτ gives

1
N

N∑
i=1

φi ≈
∫ 1

0
φ(Yt) dt = ε

∫ 1/ε

0
φ(Ỹτ ) dτ ≈

∫
IRm

φ(y) dµ(y).

Once we have shown that the effective control problem obtained in the limit ε → 0 of the
system (1) involves the average

∫
φdµ, we can conclude that the arithmetic mean of the

observed data is a good approximation of φ(Yt) in a constant-parameter model, provided
there are many data and the parameters evolve fast enough.

We are left with the question: what are the right quantities to average? We give a simple
answer: they are the terminal cost g and the Hamiltonian appearing in the Hamilton-Jacobi-
Bellman equation, namely,

H(x, y, p) := min
u
{−f(x, y, u) · p− l(x, y, u)} .

In fact, our main result states that the value function V ε(t, x, y) of the maximization problem
of the functional (2) for the system

Ẋs = f(Xs, Ys, us), Xt = x,

dYs = 1
εb(Ys)ds+

√
2
ετ(Ys)dWs, Yt = y,

(3)

converges locally uniformly to the viscosity solution V (t, x) of

−∂V
∂t

+
∫

IRm

H(x, y,DxV ) dµ(y) = 0, V (T, x) =
∫

IRm

g(x, y) dµ(y).

The effective Hamiltonian H(x, p) :=
∫
H(x, y, p) dµ(y) is concave in the variables p, so it can

be represented as a HJB Hamiltonian for suitable dynamics f and running cost l. These func-
tions, together with the effective terminal cost

∫
g(x, y) dµ(y), define the effective (constant-

parameters, deterministic) optimal control problem that approximates the stochastic model.
However, there is not a general recipe for finding explicit formulas for f and l. In Section 4
we first give sufficient condition under which f, l are the linear averages of f, l, and then we
show that different nonlinear averagings must be taken in a model from economics of Ramsey
type (see [30], [17], [41]) and in one from advertising theory following Vidale and Wolfe (see
[41], [33]).

The same effective Hamiltonian and limit control problem are also obtained if the equation
for the state variables Xs in (3) is replaced by

dXs = f(Xs, Ys, us)ds+ εαdWs
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for some α > 0. Therefore the effective control problem is the same if the dynamics is also
affected by a small white noise, in addition to the fast oscillating stochastic parameters.

Our method is based on the HJB equation and uses the theory of viscosity solutions (see
[6] and [20]). It allows us to treat a more general problem than (3), namely

dXt = f(Xt, Yt, ut)dt+
√

2σε(Xt, Yt, ut)dWt Xto = x ∈ IRn,

dYt = 1
εb(Xt, Yt)dt+

√
2
ετ(Xt, Yt)dWt Yto = y ∈ IRm,

(4)

with σε → σ locally uniformly. Here the evolution of the Xs variables is disturbed by a white
noise and the matrices σε, σ satisfy only standard regularity and growth assumptions and can
be degenerate, so that the previous cases are recovered by taking σ ≡ 0 and either σε ≡ 0 or
σε = εαI. Moreover, the evolution of the Ys variables is now no more decoupled, therefore
describing the case when the parameters are influenced by the state Xs. This generality
applies also to models where Ys are not parameters but true state variables that evolve on a
faster time scale than Xs, provided they are uncontrolled.

Our results fall within the domain of singular perturbations of diffusion processes and
of control systems. There is a wide literature on this subject and its applications, see the
recent survey papers [22, 38] and their large bibliographies. For results based on probabilistic
methods we refer to the books [35, 34], the recent papers [39, 40, 13, 14], and the references
therein. An approach based on the HJB equations started with [32, 10] and was developed
within the theory of viscosity solutions by Alvarez and one of the authors in [1, 2, 3], see
also [4, 5] for problems with an arbitrary number of scales. These methods originate in
periodic homogenization theory [37, 24] and work nicely for fast variables restricted to a
compact set, in particular the m-dimensional torus. The contribution of this paper is the
treatment of unbounded fast variables Yt, such as the classical Ornstein-Uhlenbeck process.
In the companion paper [7] similar results were given for financial models with stochastic
volatility, that have a special structure, null running cost, and dynamics of the fast variables
independent of Xs. We use here some ergodic results of [7]. A convergence theorem in the
unbounded setting was proved by Kushner [35] with probabilistic methods in the case of fast
variables and controls appearing in a decoupled way, so that the effective system and cost are
the linear averages of f and l. We get a variant of his theorem as a special case of ours in
Section 4.1. Our results are also related to the theory of well-posedness of control problems
[23] and to sensitivity analysis in optimization [18, 43, 12].

Finally let us mention that a different model of stochastic control problems with fast
random oscillations was studied by Bensoussan and Blankenship [11]. It fits in the recent
theory of homogenization of fully nonlinear elliptic PDEs in stationary ergodic media [16].

The paper is organized as follows. Section 2 presents the mathematical problem with
the precise assumptions, the HJB equation, and the initial value problem satisfied by V ε.
In Section 3 we construct the effective Hamiltonian and terminal cost and prove the main
result, Theorem 3.2, on the convergence of V ε to the solution of the effective Cauchy problem.
Section 4 is devoted to examples and applications. For the economic model of Section 4.2 we
also discuss the convergence of the optimal feedback control for the problem with ε > 0 to
the one for the effective problem.
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2 The two-scale stochastic control problem

2.1 The stochastic system

Let (Ω,F ,Ft,P) be a complete filtered probability space and let (Wt)t be an Ft-adapted
standard r-dimensional Brownian motion. We consider the stochastic control system (4)
where ε > 0 and the coefficients satisfy the following standard conditions. We will use
the symbols Mk,j and Sk to denote, respectively, the set of k × j matrices and the set of
k × k symmetric matrices. For a given compact set U , f : IRn × IRm × U → IRn and
σε : IRn × IRm ×U → Mn,r are continuous functions, Lipschitz continuous in (x, y) uniformly
w.r.t. u ∈ U and ε > 0 and with linear growth in x, i.e.

for some C > 0 |f(x, y, u)|, ‖σε(x, y, u)‖ ≤ C(1 + |x|) ∀x, y, ∀ε > 0. (5)

Moreover we assume that

lim
ε→0

σε(x, y, u) = σ(x, y, u) locally uniformly,

where σ : IRn × IRm × U → Mn,r satisfies the same conditions as σε. The coefficients
b : IRn × IRm → IRm and τ : IRn × IRm → Mm,r are locally Lipschitz continuous functions
with linear growth, i.e.

for some C > 0 |b(x, y)|, ‖τ(x, y)‖ ≤ C(1 + |x|+ |y|) for every x, y. (6)

Finally, the diffusion driving the fast variables Yt is uniformly non degenerate, i.e.,

∃Λ(y) > 0 such that ξτ(x, y)τT (x, y) · ξ = |ξτ(x, y)|2 ≥ Λ(y)|ξ|2 ∀x, y, ξ. (7)

We will not make any non-degeneracy assumption on the matrices σε, σ, so the case σ ≡ 0 is
allowed.

2.2 The optimal control problem

We define the following pay off functional for a finite horizon optimal control problem asso-
ciated to system (4)

J(t, x, y, u) := E
[
eλ(t−T )g(XT , YT ) +

∫ T

t
l(Xs, Ys, us)eλ(s−T )ds | Xt = x, Yt = y

]
, t ∈ [0, T ],

where E denotes the conditional expectation. The associated value function is

V ε(t, x, y) := sup
u·∈U

J(t, x, y, u).

The discount factor is λ ≥ 0. The utility function g : IRn × IRm → IR and the running cost
l : IRn × IRm × U → IR are continuous functions and satisfy

∃K > 0 such that sup
y∈IRm

|g(x, y)|, sup
y∈IRm,u∈U

|l(x, y, u)| ≤ K(1 + |x|2) ∀x ∈ IRn. (8)

The set of admissible control functions U is the standard one in stochastic control problems
(see [25, Ch. IV, Definition 2]), i.e. it is the set of Ft−progressively measurable processes
taking values in U .

These conditions and those of the preceding Section will hold throughout the paper.
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2.3 The HJB equation

It is well known that, under suitable growth conditions, the value function V ε can be charac-
terized as the unique continuous viscosity solution to an appropriate parabolic problem with
terminal data.

The HJB equation associated via Dynamic Programming to the value function V ε is

−V ε
t +F ε

(
x, y, V ε, DxV

ε,
DyV

ε

ε
,D2

xxV
ε,
D2

yyV
ε

ε
,
D2

xyV
ε

√
ε

)
= 0 in (0, T )× IRn× IRm, (9)

complemented with the obvious terminal condition

V ε(T, x, y) = g(x, y). (10)

This is a fully nonlinear degenerate parabolic equation (strictly parabolic in the y variables
by the assumption (7)).

The Hamiltonian F ε : IRn × IRm × IR× IRn × IRm × Sn × Sm ×Mn,m → IR is defined as

F ε(x, y, s, p, q,M,N,Z) := Hε(x, y, p,M,Z)− L(x, y, q,N) + λs, (11)

where

Hε(x, y, p,M,Z) := min
u∈U

{
−trace

(
σε(σε)TM

)
− f · p− 2trace

(
σετTZT

)
− l
}

(12)

with σε, f and l computed at (x, y, u), τ = τ(x, y), and

L(x, y, q,N) := b(x, y) · q + trace(τ(x, y)τT (x, y)N). (13)

We define also the Hamiltonian with σε replaced by σ that will be useful in the following,

H(x, y, p,M,Z) := min
u∈U

{
−trace

(
σσTM

)
− f · p− 2trace

(
στTZT

)
− l
}
. (14)

Proposition 2.1. For any ε > 0, the function V ε in Section 2.2 is the unique continuous
viscosity solution to the Cauchy problem (9)-(10) with at most quadratic growth in x and y.
Moreover there exist a constant K > 0 independent of ε such that

|V ε(t, x, y)| ≤ K(1 + |x|2) for all t ∈ [0, T ], x ∈ IRn, y ∈ IRm. (15)

Proof. This is a variant of a standard result (see [25] and the references therein) where we
must take care of the unboundedness of the solution. So we just give a sketch of the proof.

Using definition of V ε and assumption (8), it is easy to deduce that, for every η > 0, there
exists u ∈ U s.t.

|V ε(t, x, y)| ≤ E
[
K(1 + |Xu

T |2) +K

∫ T

t
(1 + |Xu

s |2)e−λ(T−s)ds

∣∣∣∣Xt = x, Yt = y

]
+ η.

Standard estimates on the second moment of the solution to (4) (see, for instance, [21, Lemma
3.1.] or [25, Appendix D]) and the boundedness of f and σε with respect to y give that

∃C > 0 s.t. sup
0≤s≤T

E|Xu
s |2 ≤ (|x|2 + CT )eCT , ∀u ∈ U . (16)
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From this we get immediately (15) and this estimate in particular implies that the functions
V ε are locally equibounded.

We define the lower and upper semicontinuous envelope of V ε as

V ε
∗ (t, x, y) = lim inf

(t′,x′,y′)→(t,x,y)
V ε(t′, x′, y′) and (V ε)∗(t, x, y) = lim sup

(t′,x′,y′)→(t,x,y)
V ε(t′, x′, y′).

By definition V ε
∗ (t, x, y) ≤ V ε(t, x, y) ≤ (V ε)∗(t, x, y). A standard argument in viscosity

solution theory, based on the dynamic programming principle (see, e.g., [25, Ch. IV, Thm
7.1], [15, Thm 4.1]), gives that V ε

∗ and (V ε)∗ are, respectively, a viscosity supersolution and
a viscosity subsolution to (9), at every point (t, x, y) ∈ (0, T )× IRn × IRm.

Moreover limt→T V
ε(t, x, y) = g(x, y) locally uniformly in (x, y) ∈ IRn×IRm. This result is

well known and follows from (8), (16), and from the continuity in mean square of Xt, Yt. For
example, the same argument detailed in the proof of Proposition 3.1 in [7] can be repeated
with minor changes.

Then the conclusion is obtained using a recent comparison result between sub and super-
solutions to parabolic problems satisfying the quadratic growth condition

|V (t, x, y)| ≤ K(1 + |x|2 + |y|2)

proved in Theorem 2.1 in [21]. Since V ε satisfies (15) the result applies in our case, so
(V ε)∗(t, x, y) ≤ V ε

∗ (t, x, y). Recalling the definition of semicontinuous envelopes, we get

(V ε)∗(t, x, y) = V ε
∗ (t, x, y) = V ε(t, x, y) ∀ (t, x, y) ∈ [0, T ]× IRn × IRm.

This implies that V ε is a continuous viscosity solutions of (9), and, again by Theorem 2.1 in
[21], that it is the unique solution with at most quadratic growth in x and y.

2.4 Ergodicity of the fast variables

Consider the diffusion processes in IRm obtained putting ε = 1 in (4) and fixing x ∈ IRn

dYt = b(x, Yt)dt+
√

2τ(x, Yt)dWt, (17)

called the fast subsystems. To recall the dependance on the parameter x, we will denote the
process in (17) as Y x

· . Observe that its infinitesimal generator is Lxw := L(x, y,Dyw,D
2
yyw),

with L defined by (13) .
Throughout the paper, we will assume the following condition:

∀x ∈ IRn there exists w ∈ C(IRm), k > 0, R0 > 0 such that

−Lxw ≥ k for |y| > R0 in viscosity sense , and w(y) → +∞ as |y| → +∞. (18)

This condition is reminiscent of other similar conditions about ergodicity of diffusion
processes in the whole space, see for example [29], [10], [36], [14], [13]. Lions and Musiela [36]
also state that (18) is indeed equivalent to the ergodicity of the process in (17) and to the
classical Lyapunov-type condition of Hasminskii [29].

Remark 2.1. Condition (18) can be interpreted as a weak Lyapunov condition for the process
(17) relative to the set {|y| ≤ R0}. Indeed, a Lyapunov function for the system (17) relative
to a compact invariant set K is a continuous, positive definite function L such that L(y) = 0
if and only if y ∈ K, the sublevel sets {y |L(y) ≤ k} are compact and −LxL(y) = l(y) in IRm,
where l is a continuous function with l = 0 on K and l > 0 outside. For more details see [29].
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Example 2.1. Condition (18) is satisfied if, for every x ∈ IRn,

lim sup
|y|→+∞

[
b(x, y) · y + trace(τ(x, y)τT (x, y))

]
< 0.

In this case it is immediate to check (18) by choosing w(y) = |y|2 and R0 sufficiently big. A
typical model process which satisfies the previous condition is the Ornstein-Uhlenbeck process
with equation

dYt = (m(x)− Yt)dt+
√

2τ(x)dWt.

Pardoux and Veretennikov [39, 40] assume ττT bounded and lim|y|→+∞ supx b(x, y) ·y = −∞,
and call it recurrence condition.

In the following we give two results from [7] saying that, under (18) and the standing
assumptions in Section 2.1, the process Y x

· in (17) is ergodic, in the sense that it has a unique
invariant measure, and a Liouville property holds. Moreover, we will discuss the regularity
of the invariant measure w.r.t. the frozen variable x. The Liouville property replaces the
standard strong maximum principle of the periodic case and is the key ingredient for extending
some results of [3] to the non-periodic setting. The proof is in [7], Lemma 4.1.

Lemma 2.1. For x ∈ IRn fixed, consider the problem

−LxV = −L(x, y,DV (y), D2V (y)) = 0 y ∈ IRm. (19)

Then

i) every bounded viscosity subsolution to (19) is constant;

ii) every bounded viscosity supersolution to (19) is constant.

Next we state the existence and uniqueness of an invariant measure, see Proposition 4.2
in [7] (see also chapter IV in [29]).

Proposition 2.2. Under the standing assumptions, for every x ∈ IRn, there exists a unique
invariant probability measure µx on IRm for the process Y x

· .

Example 2.2. For the multi-dimensional Ornstein-Uhlenbeck process

dYt = (m(x)− Yt)dt+
√

2τ(x)dWt.

the invariant measure has the explicit expression (see e.g. Section 4.1.2 in [19], see also Section
3.2.3 in [26])

dµx(y) =
1

(2π)m/2 det(ττT (x))
exp

[
−1

2
(ττT (x))−1(y −m(x)) · (y −m(x))

]
dy ∀x.

Finally, the last result is about the Lipschitz regularity of µx with respect to x. This result
will be a key ingredient to prove locally Lipschitz regularity in x of the effective Hamiltonian
(24). Obviously, when b, τ do not depend on x this regularity property is trivially satisfied.
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Proposition 2.3. Besides the standing assumptions, assume that

b ∈ C1(IRn × IRm, IRm) and τ ∈ C1(IRn × IRm,Mm,r) (20)

with all their derivatives bounded and Hölder continuous in y uniformly in x. Then the
invariant measure µx of the process Y x

· has a density ϕx(y) and there exist k > 1, C > 0,
such that

|ϕx1(y)− ϕx2(y)| ≤ C
1

1 + |y|k
|x1 − x2|, ∀x1, x2 ∈ IRn, y ∈ IRm.

Proof. For the proof we refer to Theorem 6 in [40], where such result is proved by PDE
methods. The idea is to consider the adjoint operator to Lx and to study the dependence
of the solutions of the adjoint equation on the parameter x. The main tools are non trivial
estimates on the fundamental solutions of nondegenerate second order parabolic PDEs.

Remark 2.2. In [13] there is an analogous result (Prop. 5.2) about the Lipschitz regularity
w.r.t. x of the effective system obtained by the average of a singularly perturbed stochastic
system such as (4), under different assumptions and using mainly stochastic control methods.
The authors replace regularity conditions such as (20) with appropriate estimates on the
trajectories of the system, such as:

∃C > 0 s.t. E|Y x1
t − Y x2

t | ≤ C|x1 − x2| ∀t ≥ 0

where Y xi· is the process in (17) with x = xi and Y0 = y. The authors state that this estimate
can be obtained by an exponential stability condition on the process Y such as

∃a, b > 0 s.t. E|(Y ′)x
t − (Y ′′)x

t | ≤ ae−bt|y′ − y′′|, ∀t ≥ 0, ∀x,

where (Y ′)x
· and (Y ′′)x

· both satisfy (17) with initial condition respectively (Y ′)x
0 = y′ and

(Y ′′)x
0 = y′′.

3 The convergence result

This section is devoted to the main result of the paper, namely, the convergence theorem for
the singular perturbation problem. First of all, we will construct the effective Hamiltonian H
and the effective terminal data g. Then we will prove in Theorem 3.2 that the value function
V ε(t, x, y), solution to (9), converges locally uniformly, as ε→ 0, to a function V (t, x) which
will be characterized as the unique solution of the Cauchy problem

−Vt +H
(
x,DxV,D

2
xxV

)
+ λV (x) = 0 in (0, T )× IRn

V (T, x) = g(x) in IRn.
(21)

3.1 The effective Hamiltonian and initial data

Section 2.4 contains the main tools to define the candidate limit Cauchy problem of the
singularly perturbed problem (9) as ε → 0. We start showing the existence of an effective
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Hamiltonian giving the limit PDE. In principle, for each (x, p, P ) one expects the effective
Hamiltonian H(x, p, P ) to be the unique constant c ∈ IR such that the cell problem

−L(x, y,Dχ,D2χ) +H(x, y, p, P , 0) = c in IRm, (22)

where H is defined in (14), has a viscosity solution χ, called corrector (see [37], [24], [1]).
Actually, for our approach, it is sufficient to consider, as in [2], a δ-cell problem

δwδ − L(x, y,Dwδ, D
2wδ) +H(x, y, p, P , 0) = 0 in IRm, (23)

whose solution wδ is called approximate corrector. The next result states that δwδ converges
to −H and it is smooth.

Theorem 3.1. Under the standing assumptions in Sections 2.1, 2.2 and 2.4, for any fixed
(x, p, P ) and δ > 0 there exists a solution wδ = wδ;x,p,P (y) in C2(IRm) of (23) such that

− lim
δ→0

δwδ = H(x, p, P ) :=
∫

IRm

H(x, y, p, P , 0) dµx(y) locally uniformly in IRm, (24)

where µx is the invariant probability measure on IRm for the process Y x
· .

The proof is given in [7], Theorem 4.3.
We define now the effective terminal value for the limit as ε → 0 of the singular pertur-

bation problem (9). We fix x and consider the following Cauchy initial problem:{
wt − L(x, y,Dw,D2w) = 0 in (0,+∞)× IRm

w(0, y) = g(x, y),
(25)

where g satisfies assumption (8).

Proposition 3.1. Under the standing assumptions in Sections 2.1, 2.2 and 2.4, for every x
there exists a unique bounded classical solution w(·, ·;x) to (25) and

lim
t→+∞

w(t, y;x) =
∫

IRm

g(x, y)dµx(y) =: g(x) locally uniformly in y. (26)

Moreover g is continuous and satisfy a quadratic growth condition as (8).

Proof. The proof can be found in [7] Proposition 4.4. The regularity of g and the growth
condition can be obtained, using the definition of g, from condition (8) and the regularity of
the invariant measure stated in Proposition 2.3.

We say that the Comparison Principle holds for a Cauchy problem as (21) if
given U ∈ USC([0, T ] × IRn) and V ∈ LSC([0, T ] × IRn), respectively, a subsolution and a
supersolution to the PDE and such that

U(T, x) ≤ V (T, x) for every x,
∃C > 0 s.t. |U(t, x)|, |V (t, x)| ≤ C(1 + |x|2) for every t, x,

then U(t, x) ≤ V (t, x) in [0, T ]× IRn.
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Proposition 3.2. Under the standing assumptions in Sections 2.1, 2.2 and 2.4, the Com-
parison Principle holds for the effective Cauchy problem (21) with H and g given by (24) and
(26) if at least one of the following five sets of assumptions is verified:

(i) b, τ are independent of x;

(ii) σε → σ ≡ 0 and b, τ satisfy the regularity assumptions (20);

(iii) the fast subsystem is Ornstein-Uhlenbeck, i.e., b(x, y) = m(x) − y and τ(x, y) = τ(x),
with m ∈ C1(IRn, IRm), τ ∈ C1(IRn,Mm,r), and τ(x)τT (x) ≥ τ0I with τ0 > 0;

(iv) σε → σ(x, u) (independent of y) and b, τ satisfy the regularity assumptions (20);

(v) σε → σ(x, y) (independent of u), there exists a Lipschitz σ : IRn → Mn,r such that

σ(x)σ(x)T =
∫

IRm

σ(x, y)σT (x, y) dµx(y),

f and l are bounded, b, τ satisfy the regularity assumptions (20), for some C > 0 g
satisfies

|g(x1, y)− g(x2, y)| ≤ C(1 + |x1|+ |x2|)|x1 − x2| ∀x1, x2, y,

and either g is independent of y, or it has at most linear growth in x:

|g(x, y)| ≤ C(1 + |x|).

Proof. In the case (i) the effective Hamiltonian is the average with respect to a measure µ(y)
of a Hamiltonian satisfying the structural assumptions of [21] for the Comparison Principle,
uniformly in y. It is immediate to check that the same proof as in [21, Thm 2.1] holds for the
Cauchy problem with averaged Hamiltonian as well. Similarly, it is easy to check that the
same arguments work also in case (iv). Finally, also in case (iii) the Comparison Principle
can be obtained following the proof of [21, Thm 2.1]. Indeed the main point in this case is to
check that for every R > 0 there exists some CR > 0 such that, for every u ∈ U ,∫

IRm

∣∣∣σ(x1, y, u)
√
ϕx1(y)− σ(x2, y, u)

√
ϕx2(y)

∣∣∣2 dy ≤ CR|x1 − x2|2, ∀x1, x2 ∈ B(0, R).

This is satisfied when, e.g.,∫
IRm

|Dxϕx(y)|2

ϕx(y)
dy ≤ CR, ∀x ∈ B(0, R).

This is the case of the Ornstein-Uhlenbeck process under the assumptions in (iii), as it is
possible to check with straightforward computations on the explicit formula given in Example
2.2.

Case (ii) is actually a particular case of (iv), but we state it separately because the
effective Hamiltonian H is of the first order and so the proof is much easier. Using the
standing assumptions and Proposition 2.3 one checks that H satisfies the following structural
conditions: there exists C > 0 such that

|H(x, p1)−H(x, p2)| ≤ C(1 + |x|)|p1 − p2|, ∀x, p1, p2 ∈ IRn, (27)
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and for every R > 0 there exists a continuity modulus ωR s.t.

|H(x1, p)−H(x2, p)| ≤ ωR(|x1 − x2|(1 + |p|)), ∀x1, x2 ∈ B(0, R), p ∈ IRn. (28)

Under these conditions, a classical Comparison Principle holds, see Theorem 2.5 in [31] or
Theorem V.3.15 in [6] for the case of continuous sub and supersolutions, . The adaptation to
the case of semicontinuous sub and supersolutions is straightforward, see [6, Exercise V.5.17].

In case (v), it is easy to check, using the standing assumptions and Proposition 2.3, that H
is the semilinear operator H(x, p, P ) = −trace(σσtP )+K(x, p) and K satisfies the structural
conditions (27), (28) with ωR ≡ ω for all R > 0. Moreover, standard calculations show that
the effective terminal data g satisfies for some C

|g(x1)− g(x2)| ≤ C(1 + |x1|+ |x2|)|x1 − x2| ∀x1, x2.

Therefore the Comparison Principle follows from Theorem 2.1 in [9].

3.2 The convergence theorem

We will assume in the following that the Comparison Principle holds for the effective Cauchy
problem (21). We refer to Proposition 3.2 for a list of sufficient conditions ensuring its validity.

Theorem 3.2. We assume, besides the standing assumptions in Sections 2.1, 2.2 and 2.4,
that (21) satisfies the Comparison Principle, and that either g = g(x) is independent of y or
that the coefficients b, τ are independent of x. Then the solution V ε to (9) converges uniformly
on compact subsets of [0, T ) × Rn × IRm to the unique continuous viscosity solution to the
limit problem (21) satisfying a quadratic growth condition in x, i. e.,

∃K > 0 s.t. |V (t, x)| ≤ K(1 + |x|2) ∀(t, x) ∈ [0, T ]× IRn. (29)

In particular, if g is independent of y, then the convergence is uniform on compact subsets of
[0, T ]× IRn × IRm and g = g.

Proof. The proof is divided in several steps.

Step 1 (Relaxed semilimits ).
Recall that by (15) the functions V ε are locally equibounded in [0, T ]× IRn × IRm, uniformly
in ε. We define the half-relaxed semilimits in [0, T ]× IRn × IRm (see [6, Ch V]):

V (t, x, y) = lim inf
ε→0,t′→t,x′→x,y′→y

V ε(t′, x′, y′) V (t, x, y) = lim sup
ε→0,t′→t,x′→x,y′→y

V ε(t′, x′, y′)

for t < T , x ∈ IRn and y ∈ IRm,

V (T, x, y) = lim inf
t′→T−,x′→x,y′→y

V (t′, x′, y′) V (T, x, y) = lim sup
t′→T−,x′→x,y′→y

V (t′, x′, y′).

It is immediate to get by definitions that the estimates (15) hold also for V and V . This
means that

|V (t, x, y)|, |V (t, x, y)| ≤ K(1 + |x|2) for all t ∈ [0, T ], x ∈ IRn, y ∈ IRm. (30)
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Step 2 (V , V do not depend on y).
We check that V (t, x, y), V (t, x, y) do not depend on y, for every t ∈ [0, T ) and x ∈ IRn.
We claim that V (t, x, y) (resp., V (t, x, y)) is, for every t ∈ (0, T ) and x ∈ IRn, a viscosity
subsolution (resp., supersolution) to

−L(x, y,DyV,D
2
yyV ) = 0 in IRm (31)

where L is the differential operator defined in (13). If the claim is true, we can use Lemma
2.1, since V , V are bounded in y according to estimates (30), to conclude that the functions
y → V (t, x, y), y → V (t, x, y) are constants for every (t, x) ∈ (0, T )× IRn. Finally, using the
definition it is immediate to see that this implies that also V (T, x, y) and V (T, x, y) do not
depend on y. We prove the claim only for V , since the other case is completely analogous.

First of all we show that the function V (t, x, y) is a viscosity subsolution to (31). To do
this, we fix a point (t, x, y) and a smooth function ψ such that V −ψ has a maximum at (t, x, y)
in B = B((t, x, y), r), for some fixed r > 0. Using the definition of weak relaxed semilimits it
is possible to prove (see [6, Lemma V.1.6]) that there exists εn → 0 and B 3 (tn, xn, yn) →
(t, x, y) maxima for V εn − ψ in B such that V εn(tn, xn, yn) → V (t, x, y). Therefore, recalling
that V ε is a subsolution to (9), we get

−ψt +H

(
xn, yn, Dxψ,D

2
xxψ,

1
√
εn
D2

xyψ

)
− 1
εn
L(xn, yn, Dyψ,D

2
yyψ) + λV εn(tn, xn, yn) ≤ 0,

where all the derivatives of ψ are computed resp. in (tn, xn, yn). This implies

−L(xn, yn, Dyψ,D
2
yyψ) ≤ εn

[
ψt −H

(
xn, yn, Dxψ,D

2
xxψ,

1
√
εn
D2

xyψ

)
− λV εn(tn, xn, yn)

]
.

We observe that the part between brackets in the right-hand side of the previous is uniformly
bounded with respect to n in B and using the regularity properties of ψ and of the coefficients
in the equation we get, as εn → 0, the desired conclusion.

We show now that if V (t, x, y) is a subsolution to (31), then for every fixed (t, x) the
function y 7→ V (t, x, y) is a subsolution to (31), which was our claim. To do this, we fix y and
a smooth function φ such that V (t, x, ·)−φ has a strict local maximum at y in B(y, δ) and such
that φ(y) ≥ 1 for all y ∈ B(y, δ). We define, for η > 0, φη(t, x, y) = φ(y)

(
1 + |x−x|2+|t−t|2

η

)
and we consider (tη, xη, yη) a maximum point of V −φη in B((t, x, y), δ). Repeating the same
argument as in [6, Lemma II.5.17], it is possible to prove, eventually passing to subsequences,
that, as η → 0, (tη, xη, yη) → (t, x, y) and Kη :=

(
1 + |xη−x|2+|tη−t|2

η

)
→ K > 0. Moreover,

using the fact that V is a subsolution to (31), we get −L(xη, yη,KηDφ(yη),KηD
2φ(yη) ≤ 0,

which gives, using the linearity of L and passing to the limit as η → 0, the desired conclusion
−L(x, y,Dφ(y), D2φ(y)) ≤ 0.

Step 3 (V and V are sub and supersolutions of the limit PDE).
First we claim that V and V are sub and supersolution to the PDE in (21) in (0, T ) × IRn.
We prove the claim only for V since the other case is completely analogous. The proof
adapts the perturbed test function method introduced in [24] for the periodic setting. We
fix (t, x) ∈ ((0, T ) × IRn) and we show that V is a viscosity subsolution at (t, x) of the limit
problem. This means that if ψ is a smooth function such that ψ(t, x) = V (t, x) and V − ψ
has a maximum at (t, x) then

−ψt(t, x) +H(x,Dxψ(t, x), D2
xxψ(t, x)) + λV (t, x) ≤ 0. (32)
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Without loss of generality we assume that the maximum is strict in B((t, x), r) and that
0 < t − r < t + r < T . We fix y ∈ IRm, η > 0 and consider a solution χ = wδ ∈ C2 of the
δ-cell problem (23) at (x,Dxψ(t, x), D2

xxψ(t, x)) (see Theorem 3.1) such that

|δχ(y) +H(x,Dxψ(t, x), D2
xxψ(t, x))| ≤ η ∀ y ∈ B(y, r). (33)

We define the perturbed test function as

ψε(t, x, y) := ψ(t, x) + εχ(y).

Observe that

lim sup
ε→0,t′→t,x′→x,y′→y

V ε(t′, x′, y′)− ψε(t′, x′, y′) = V (t, x)− ψ(t, x).

By a standard argument in viscosity solution theory (see [6, Lemma V.1.6], [20]) we get that
there exist sequences εn → 0 and (tn, xn, yn) ∈ B := B((t, x, y), r) such that:

(tn, xn, yn) → (t, x, y), for some y ∈ B(y, r),

V εn(tn, xn, yn)− ψεn(tn, xn, yn) → V (t, x)− ψ(t, x),

(tn, xn, yn) is a strict maximum of V εn − ψεn in B.

Then, using the fact that V ε is a subsolution to (9), we get

−ψt +Hεn
(
xn, yn, Dxψ,D

2
xxψ, 0

)
+ λV εn(tn, xn, yn)− L(xn, yn, Dyχ,D

2
yyχ) ≤ 0 (34)

where the derivatives of ψ and χ are computed respectively in (tn, xn) and in yn. Using the
fact that χ solves the δ-cell problem (23), we obtain

−ψt(tn, xn)− δχ(yn) + λV εn(tn, xn, yn) ≤
≤ H(x, yn, Dxψ(t, x), D2

xxψ(t, x), 0)−Hεn(xn, yn, Dxψ(tn, xn), D2
xxψ(tn, xn), 0)

+ L(xn, yn, Dyχ,D
2
yyχ)− L(x, yn, Dyχ,D

2
yyχ).

By taking the limit as n→ +∞ the r.h.s. of this inequality cancel out. Next we use (33) to
replace −δχ with H − η and get that the left hand side of (32) is ≤ η. Finally, by letting
η → 0 we obtain (32).

Step 4 (Behaviour of V and V at time T ).
We show that, at every x, V (x, T ) ≤ g(x) and V (x, T ) ≥ g(x).

We start with V . If g = g(x, y) and the coefficients b, τ are independent of x, we reproduce
and complete the argument given in [7, Thm 5.1, Step 4]. We fix x ∈ IRn and denote wr the
unique bounded classical solution to{

wt − L(y,Dw,D2w) = 0 in (0,+∞)× IRm

wr(0, y) = sup{|x−x|≤r} g(x, y) in IRm.
(35)

By Proposition 3.1, limt→+∞wr(t, y) =
∫
IRm sup|x−x|≤r g(x, y)dµ(y) =: gr(x) locally uni-

formly in y, where µ is the invariant probability measure on IRm for the process Y . Note that
sup|x−x|≤r1

g(x, y) ≥ sup|x−x|≤r2
g(x, y) for r1 ≥ r2 ≥ 0, y ∈ IRm and limr→0 sup|x−x|≤r g(x, y) =

g(x, y). So, by monotone convergence theorem, limr→0 gr(x) = g(x).
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We fix r > 0 and a constant Kr > 0 such that V ε(t, x, y) ≤ Kr and |g(x, y)| ≤ Kr/2 for
every ε > 0, x ∈ Br := B(x, r), y ∈ IRm and t ∈ [0, T ]. Observe that this is possible by
estimates (15) and assumption (8). Moreover we fix a smooth nonnegative function ψr such
that ψr(x) = 0 and ψr(x)+infy g(x, y) ≥ Kr for every x ∈ ∂Br. Let Cr be a positive constant
such that

|Hε(x, y,Dψr(x), D2ψr(x), 0)| ≤ Cr for x ∈ Br, y ∈ IRm and ε > 0

where Hε is defined in (12). Note that such constant exists due to assumptions (5) and (8).
We define the function

ψε
r(t, x, y) = wr

(
T − t

ε
, y

)
+ ψr(x) + Cr(T − t)

and we claim that it is a supersolution to the parabolic problem
−Vt + F ε

(
x, y, V,DxV,

DyV
ε , D2

xxV,
D2

yyV

ε ,
D2

xyV√
ε

)
= 0 in (0, T )×Br × IRm

V (t, x, y) = Kr in (0, T )× ∂Br × IRm

V (T, x, y) = g(x, y) in Br × IRm

(36)

where F ε is defined in (11). Indeed

−(ψε
r)t + F ε

(
x, y,Dxψ

ε
r ,
Dyψ

ε
r

ε
,D2

xxψ
ε
r ,
D2

yyψ
ε
r

ε
,
D2

xyψ
ε
r√

ε

)
=

=
1
ε

[
(wr)t − L(y,Dwr, D

2wr)
]
+ Cr +Hε(y, x,Dψr(x), D2ψr(x), 0) ≥ 0.

Moreover ψε
r(T, x, y) = sup|x−x|≤r g(x, y) + ψr(x) ≥ g(x, y). Finally, observe that the con-

stant function infy sup|x−x|≤r g(x, y) is always a subsolution to (35) and then by a standard
comparison principle we obtain wr(t, y) ≥ infy sup|x−x|≤r g(x, y). This implies

ψε
r(t, x, y) ≥ inf

y
sup

|x−x|≤r
g(x, y) +Kr − inf

y
g(x, y) + Cr(T − t) ≥ Kr ∀ x ∈ ∂Br.

Then ψε is a supersolution to (36). For our choice of Kr, we get that V ε is a subsolution to
(36). Moreover both V ε and ψε

r are bounded in [0, T ]×Br×IRm, because of the estimate (15),
of the boundedness of wr and of the regularity of ψr. So, a standard comparison principle for
viscosity solutions gives

V ε(t, x, y) ≤ ψε
r(t, x, y) = wr

(
T − t

ε
, y

)
+ ψr(x) + Cr(T − t)

for every r > 0, ε > 0, (t, x, y) ∈ ([0, T ] × Br × IRm). We compute the upper limit of both
sides of the previous inequality as (ε, t, x, y) → (0, t′, x′, y′) for t′ ∈ (0, T ), x′ ∈ Br, y′ ∈ IRm

and get
V (t′, x′) ≤ gr(x) + ψr(x′) + Cr(T − t′).

Then, taking the upper limit for (t′, x′) → (T, x), we obtain V (T, x) ≤ gr(x), for every r > 0.
This permits to conclude, sending r → 0.

If g does not depend on y, we get that the function ψε
r(t, x, y) = sup|x−x|≤r g(x)+ψr(x)+

Cr(T − t) is a supersolution to (36), and the conclusion easily follows.
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The proof for V is completely analogous, once we replace the Cauchy problem (35) with{
wt − L(y,Dw,D2w) = 0 in (0,+∞)× IRm

w(0, y) = inf{|x−x|≤r} g(x, y) in IRm.

Step 5 (Uniform convergence).
Observe that both V and V satisfy the same quadratic growth condition (30). Moreover we
assume that the Comparison Principle holds for the problem (21), so V ≥ V . Therefore, since
by definition V ≤ V , we conclude V = V =: V . This implies that V is continuous and that,
by the definition of semilimits, V ε converges loc. uniformly to V (see [6, Lemma V.1.9]).

4 Examples and applications

In this section we look for a control problem whose value function is the limit V of the value
functions V ε. It is enough to represent the effective Hamiltonian H as a HJB Hamiltonian,
that is,

H(x, p, P ) = min
ũ∈Ũ

{
−trace(σσT (x, ũ)P )− f(x, ũ) · p− l(x, ũ)

}
, (37)

for some compact set Ũ and continuous f, σ, l, with f, σ Lipschitz in x. Indeed in this case
the uniqueness of the viscosity solution to the Cauchy problem for HJB equations gives the
formula

V (t, x) := sup
ũ.

E
[∫ T

t
l(Xs, ũs)ds+ 〈g〉(XT )

]
,

for Xs solving
dXs = f(Xs, ũs)ds+

√
2σ(Xs, ũs)dWs, Xt = x,

where we used the notation

〈φ〉(x) :=
∫

IRm

φ(x, y) dµx(y), µx invariant measure of the fast subsystem.

Therefore we get an effective control problem which is the variational limit of the two-scale
optimal control problem. If σ ≡ 0 the Hamiltonian is of first order, H = H(x, p), and so the
effective problem is deterministic, namely,

sup
ũ.

(∫ T

t
l(Xs, ũs)ds+ 〈g〉(XT )

)
, Ẋs = f(Xs, ũs).

Note that a HJB representation of the effective Hamiltonian always exists becauseH(x, p,X)
is concave with respect to p and X, by convex duality. However, such an abstract represen-
tation of the effective problem is not very useful and we rather seek an explicit one given
by averaging the data with respect to the invariant measure µx. In the rest of the section
we present various cases where explicit formulas for the effective control problem can be
given. The first leads to the most natural linear averaging of the data, as for the uncontrolled
systems. The others, instead, lead to different kinds of averages.
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4.1 Controls decoupled from the fast variables

In this section we consider slow systems in split form

dXs = [f1(Xs, us) + f2(Xs, Ys)] ds+
√

2 [σ1(Xs, us) + σ2(Xs, Ys)] dWs, (38)

and cost functionals with split running cost

Jε(t, x, y, u) := E
[∫ T

t
(l1(Xs, us) + l2(Xs, Ys)) ds+ g(XT , YT ) | Xt = x, Yt = y

]
. (39)

In other words, in all the data the control us is decoupled from the fast variables Ys. We also
assume that

σ1(x, u)σT
2 (x, y) = 0 for all x, u, y. (40)

This is a condition of uncorrelation of the two diffusion terms σ1dWs and σ2dWs. In fact
it is satisfied if the diffusion term σdWs of the slow system is of the form

σ̃1(Xs, us)dW 1
s + σ̃2(Xs, Ys)dW 2

s with W 1
. and W 2

. independent.

Indeed, in this case

σ(x, y, u) =
(
σ̃1(x, u) 0

0 0

)
+
(

0 0
0 σ̃2(x, y)

)
.

By the decoupling assumption on the data and the uncorrelation condition (40), the
effective Hamiltonian is

H(x, p, P ) :=
∫
H(x, y, p, P, 0) dµx(y)

= min
u∈U

{
−trace[Pσ1σ

T
1 (x, u)]− p · f1(x, u)− l1(x, u)

}
− trace

[
P

∫
σ2σ

T
2 (x, y) dµx(y)

]
− p ·

∫
f2(x, y) dµx(y)−

∫
l2(x, y) dµx(y).

The last condition we assume is the existence of a Lipschitz square root of the matrix 〈σ2σ
T
2 〉,

i.e., a Lipschitz continuous n× r matrix valued function σ2(x) such that

σ2(x)σ2(x)T =
∫

IRm

σ2(x, y)σT
2 (x, y) dµx(y).

Then we have the representation (37) for H with Ũ = U and

σ = σ1 + σ2 = σ1 + 〈σ2σ
T
2 〉1/2, f = f1 + 〈f2〉 = 〈f〉, l = l1 + 〈l2〉 = 〈l〉.

We therefore get the effective optimal control problem governed by the system

dXs = [f1(Xs, us) + 〈f2〉(Xs)] ds+
√

2 [σ1(Xs, us) + σ2(Xs)] dWs, (41)

and with payoff functional

J(t, x, u) := E
[∫ T

t
(l1(Xs, us) + 〈l2〉(Xs)) ds+ 〈g〉(XT ) |Xt = x

]
. (42)
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The convergence of the value functions V ε to the value function V of this limit control
problem was proved by Kushner [35] in the special case of uncontrolled diffusion matrix, that
is, σ1 ≡ 0, and under more stringent assumptions than ours on g and on the fast subsystem
(17). Note that in this case σσT = 〈σσT 〉, so all terms of the effective problem are the
linear average of the corresponding data of the two-scale problem. Kushner used probabilistic
methods completely different from ours. We recover his result under the additional condition
that f and l are bounded, by Theorem 3.2 and point (v) of Proposition 3.2.

Remark 4.1. If the initial system is deterministic for frozen Yt, that is, σ = σ1 + σ2 ≡ 0,
then the effective control problem is deterministic. The effective system is

Ẋs = f1(Xs, us) + 〈f2〉(Xs), Xt = x,

and the effective payoff functional is

J(t, x, u) :=
∫ T

t
[l1(Xs, us) + 〈l2〉(Xs)] ds+ 〈g〉(XT ).

4.2 Optimal economic growth

The most classical model of optimal growth of a one-sector economy goes back to Ramsey,
see [30, 17, 41]. Let Ks denote the capital per worker and us the consumption per worker.
The dynamics is

K̇s = f(Ks)− us, for s > t, Kt = k.

The running cost depends only on the control, l = l(u), with the utility function l strictly
increasing and concave, and we take a Hyperbolic Absolute Risk Aversion (HARA) function

l(u) = θ
uγ

γ
, θ > 0, 0 < γ < 1. (43)

The payoff functional is

J(t, k, u.) =
∫ T

t
e−λ(T−s)θ

uγ
s

γ
ds+ e−λ(T−t)g(KT ), λ ≥ 0.

The constraint on the control depends in general on the state

0 ≤ us ≤ R(Ks), R > 0,

and often it is taken R(Ks) = f(Ks) + δKs, where δ is the rate of depreciation of the capital.
The Hamiltonian is

H(k, p) = min
0≤u≤R(k)

{
up− θ

uγ

γ

}
− f(k)p.

The min is always attained in the interior of U = [0, R(k)] or at the right endpoint, and the
two cases give

H(k, p) =


θ

1
1−γ γ−1

γ p
γ

γ−1 − f(k)p, p ≥ θR(k)γ−1,

R(k)p− θR(k)γ

γ − f(k)p, p < θR(k)γ−1.
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The two-scale problem and its limit. Now we consider the problem with random
parameters {

K̇s = f(Ks, Ys)− us, Kt = k,

dYs = 1
εb(Ys)ds+

√
2
ετ(Ys)dWs Yt = y,

Jε(t, k, y, u.) = E
[∫ T

t
e−λ(T−s)θ(Ys)

uγ
s

γ
ds+ e−λ(T−t)g(KT , YT )

]
,

assuming for simplicity that the dynamics of Ys does not depend on the capital. Then µ is
independent of k and we denote 〈φ〉(k) :=

∫
IRm φ(k, y) dµ(y). To fit in the assumptions of the

previous sections we assume R =constant, although the theory could be extended to cover
the case of R(·) Lipschitz and bounded. By averaging H(k, y, p) with respect to µ(y) we get
the effective Hamiltonian

H(k, p) = h(p)− 〈f〉(k)p,

where

h(p) :=
γ − 1
γ

p
γ

γ−1

∫
{y : θ(y)≤pR1−γ}

θ(y)
1

1−γ dµ(y) +
∫
{y : θ(y)>pR1−γ}

[
Rp− θ(y)

Rγ

γ

]
dµ(y).

This corresponds to an effective control problem with linearly averaged dynamics

K̇s = 〈f〉(Ks)− us, us ≥ 0,

and the effective payoff

J(t, k, u.) =
∫ T

t
e−λ(T−s)l(us)ds+ e−λ(T−t)〈g〉(KT ),

where the effective utility function l is the Legendre-Fenchel conjugate of h, i.e.,

l(u) := inf
u≥0

{
up− h(p)

}
.

Note that, for any p ”not too small”, in the sense that µ{y : θ(y) ≤ pR1−γ} = 1, the
effective Hamiltonian takes the much simpler form

H(k, p) = 〈θ
1

1−γ 〉γ − 1
γ

p
γ

γ−1 − 〈f〉(k)p,

which is the same as in the constant coefficients case, but the effective parameter θ is the
generalized harmonic nonlinear power-like average

θ = 〈θ
1

1−γ 〉1−γ ,

different from the preceding Section 4.1.

A remark on the limit of the optimal control. The behavior of the optimal controls
of the problem with random parameters as ε → 0 is much harder to understand than the
convergence of the Hamiltonians and value function. To illustrate what can be expected we
propose some formal calculations on a special case of the economic growth model.
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We consider l as in (43) with γ = 1/2 and assume that also the terminal cost is a HARA
function of k, whereas f is linear in k

g(k, y) = a(y)2k1/2, f(k, y) = r(y)k, a(y) ≥ ao > 0.

We allow all locally integrable controls us ≥ 0 (i.e., R = +∞), and we impose the natural
state constraint

Ks ≥ 0 for all s.

This is equivalent to stopping the process when the capital reaches 0 and getting a null
terminal cost. In this case we can exhibit an explicit solution of the effective Cauchy problem.
However the model problem does not fit into the assumptions of the previous sections for
two reasons. One is that the HJB equation holds only for k > 0 and there is a boundary
condition at k = 0 (either of state-constrained or Dirichlet, see [6]). This requires an additional
argument in the convergence analysis, see [7] for a different example. The second difficulty is
the unboudedness of the control set, leading to different growth conditions on the Hamiltonian
and the value functions. We believe the convergence result is still true under suitable coercivity
assumptions on the costs, but the proof would require some nontrivial variants to the one
presented here.

The HJB equation for V ε under the current assumptions is

−V ε
t + min

u≥0

{
uV ε

k − 2θ(y)
√
u
}
− r(y)kV ε

k + λV =
1
ε
L(y,DyV

ε, D2
yyV

ε)

and the nonlinear term in the Hamiltonian is

min
u≥0

{
up− 2θ(y)

√
u
}

= −θ(y)
2

p
,

the min being attained at (p/θ)−2. The effective HJB equation suggested by the previous
sections is

−Vt −
〈θ2〉
Vk

− 〈r〉kVk + λV = 0

with the terminal condition V (T, k) = 〈a〉2k1/2. It is natural to look for a solution of the
HARA form V (t, k) = 2k1/2v(t). Then we get the ODE

−2v̇ − 〈θ2〉
v

− 〈r〉v + 2λv = 0.

The sign of the singular term ensures the existence in (−∞, T ] of a solution satisfying v(T ) =
〈a〉 > 0. Moreover, the control where the min is attained in the Hamiltonian is

u∗(t, k) =
(
Vk(t, k)

θ

)−2

=
〈θ2〉
v(t)2

k,

and this is therefore the optimal (feedback) control of the effective problem. Next we guess
that also V ε has the HARA form V ε(t, k, y) = 2k1/2vε(t, y). If it is so, then the optimal
feedback control for the problem with random parameters is

u∗ε(t, k, y) =
(
V ε

k (t, k, y)
θ(y)

)−2

=
θ(y)2

vε(t, y)2
k.
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Motivated by the previous sections we conjecture that V ε → V (say, pointwise) and therefore

lim
ε→0

u∗ε(t, k, y) =
θ(y)2

v(t)2
k.

Note that this limit is different from the optimal control u∗ of the limit problem (if θ is not
constant...). However, u∗ is the average of the limit of the u∗ε as well as the limit of the
averages:

u∗(t, k) =
∫

IRm

lim
ε→0

u∗ε(t, k, y) dµ(y) = lim
ε→0

∫
IRm

u∗ε(t, k, y) dµ(y).

A similar result was proved in [7] (see also [26]) for the Merton problem of optimizing the
investment in a portfolio containing a riskless bond and a risky stock with fast stochastic
volatility.

4.3 An advertising model

The most classical model of optimal advertising is due to Vidale and Wolfe. In a market with
total sales M > 0 the sales of a given firm are Ss and 0 ≤ us ≤ R is the advertising effort.
The dynamics is

Ṡs = γ(M − Ss)us − δSs, for s > t, St = S

where γ > 0 measures the effectiveness of the advertising (which acts on the unsold portion
of the market) and δ > 0 measures the loss due to forgetting (which acts on the sold portion
of the market). Note that the set [0,M ] is invariant for this control system.

The firm wants to maximize its total revenue net of advertising costs. We assume the
income proportional to the sales and the advertising cost quadratic in u, and so the payoff
functional is

J(t, S, u.) =
∫ T

t

(
rSs − θu2

s

)
ds,

with θ, r > 0, see [41, 33]. The Hamiltonian is

H(S, p) = min
0≤u≤R

{
θu2 − γ(M − S)up

}
+ δSp− rS.

We expect that the value function V (t, S) := supu.
J(t, S, u.) be nondecreasing with respect

to the initial sales S. Then VS ≥ 0, and for p ≥ 0 we compute

H(S, p) =


−γ2

4θ (M − S)2p2 + δSp− rS, 0 ≤ p ≤ 2θR
γ(M−S) ,

θR2 − γ(M − S)Rp+ δSp− rS, p > 2θR
γ(M−S) .

The two-scale problem and the effective Hamiltonian. Now we consider the prob-
lem with random parameters

Ṡs = γ(Ys)(M(Ys)− Ss)us − δ(Ys)Ss, St = S,

dYs = 1
εb(Ys)ds+

√
2
ετ(Ys)dWs Yt = y,

Jε(t, S, y, u.) = E
[∫ T

t

(
r(Ys)Ss − θ(Ys)u2

s

)
ds

]
,
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assuming for simplicity that the dynamics of Ys does not depend on the sales. Then µ is
independent of S and we denote 〈φ〉 :=

∫
IRm φ(S, y) dµ(y). By averaging H(S, y, p) with

respect to µ(y) we get the following effective Hamiltonian for the limit as ε→ 0:

H(S, p) = h(S, p) + 〈δ〉Sp− 〈r〉S, (44)

where

h(S, p) := −p2

∫
{y : pγ(M−S)≤2θR}

γ(y)2

4θ(y)
(M(y)− S)2 dµ(y)+∫

{y : pγ(M−S)>2θR}

[
θ(y)R2 − γ(y)(M(y)− S)Rp

]
dµ(y). (45)

Note that, for any p ”not too large”, in the sense that µ{y : pγ(y)(M(y)−S) ≤ 2θ(y)R} = 1,
the effective Hamiltonian takes the much simpler form

H(S, p) = −〈γ
2

4θ
(M − S)2〉p2 + 〈δ〉Sp− 〈r〉S. (46)

In some cases this form is the same as in the constant coefficients case, with suitable effective
parameters θ and γ. For instance, if γ and M are constants independent of Ys the first term
is

h(S, p) = −γ
2

4θ
(M − S)2p2 for θ = 〈1

θ
〉−1,

i.e., the effective coefficient θ is the harmonic average of θ(y), instead of the linear averages
that appeared in Section 4.1. Similarly, if M and θ do not depend on the random parameters
Ys the first term is

h(S, p) = −γ
2

4θ
(M − S)2p2 for γ =

√
〈γ2〉,

i.e., the effective γ is a nonlinear power-like average of γ(y).
The effective control problem and its interpretation. We can find an explicit

effective control problem letting the upper bound R of the control go to +∞ in the case of
M constant. Let HR denote the Hamiltonian given by (44) and (45) and H

∞ the one given
by (46) for all S ∈ [0,M ], p ≥ 0. Let V R be the viscosity solution of the effective Cauchy
problem

−V R
t +H

R(S, V R
S ) = 0 in (0, T )× (0,M), V R(T, S) = 0,

whose uniqueness, despite the lack of boundary conditions at S = 0,M , follows from the
invariance of the interval [0,M ] (see Proposition 3.1 in [7]). Now define

V∞(t, S) := sup
u.∈L∞([0,T ],[0,+∞))

∫ T

t

(
〈r〉Ss − u2

s

)
ds, (47)

where Ss is the state of the system

Ṡs = 〈γ
2

θ
〉

1
2 (M − Ss)us − 〈δ〉Ss for s > t, St = S. (48)
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Then, by standard methods as in [8], V∞ is Lipschitz in S and 1
2 -Hölder continuous in t and

it is the unique viscosity solution Lipschitz in S of the Cauchy problem

−V∞
t +H

∞(S, V∞
S ) = 0 in (0, T )× (0,M), V∞(T, S) = 0, (49)

as well as the minimal supersolution. We claim that V∞ = supR>0 V
R = limR→∞ V R. In

fact, HR ≥ H
∞ and the Comparison Principle imply supR>0 V

R ≤ V∞. On the other hand,
H

R converges locally uniformly to H∞. Then a standard argument in the theory of viscosity
solutions (see, e.g., Chapter V of [6]) implies that supR>0 V

R is a supersolution of (49),
therefore it is ≥ V∞, which completes the proof of the claim.

Observe that the limit control problem (47) (48) with value function V∞ is a Vidale -
Wolfe problem with constant (effective) parameters, although some effective coefficients are
obtained by a nonlinear average, as remarked above. In particular, if θ is also constant, the
effective control problem can be written as

Ṡs =
√
〈γ2〉(M − Ss)us − 〈δ〉Ss, J(t, S, u.) =

∫ T

t

(
〈r〉Ss − θu2

s

)
ds,

whereas for γ constant it becomes

Ṡs = γ(M − Ss)us − 〈δ〉Ss, J(t, S, u.) =
∫ T

t

(
〈r〉Ss − 〈1

θ
〉−1u2

s

)
ds.

Finally we note that, if γ and θ are constant but M does depend on Ys, the Hamiltonian
H
∞ in (46) can be formally associated to the following control problem

Ṡs = γ
√
〈M2〉 − 2〈M〉Ss + S2

s us − 〈δ〉Ss, J(t, S, u.) =
∫ T

t

(
〈r〉Ss − θu2

s

)
ds.

which is not a Vidale - Wolfe problem.
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