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Abstract. The aim of this work is to prove a chain rule and an L1-lower semicontinuity theorems
for integral functional defined on BV (Ω). Moreover we apply this result in order to obtain new
relaxation and Γ-convergence result without any coerciveness and any continuity assumption of the
integrand f(x, s, p) with respect to the variable s.

Sunto. L’obiettivo di questo lavoro é quello di dimostrare una nuova regola di derivazione per fun-
zioni composte e un teorema di semicontinuitá inferiore rispetto alla topologia L1 per un funzionale
integrale definito su su BV (Ω). Si applica poi quest’ultimo risultato per ottenere nuovi risultati
di rilassamento e Γ-convergenza in assenza di coercivitá e in assenza di continuitá della funzione
integranda f(x, s, p) nella variabile s.
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1 Introduction

The L1-lower semicontinuity of an integral functional of the type:

(1.1) F (u) =
∫

Ω
f(x, u,∇u)dx

where Ω is a bounded open subset of RN and u ∈ W 1,1(Ω) has been extensively studied, in order
to find the minimal assumption on integrand f that ensure its L1-lower semicontinuity on W 1,1(Ω),
and to obtain an integral representation for its relaxed functional in the larger space BV (Ω).

The most of recent studies on this subject moves from the celebrated result by Serrin. In [22]
the author establishes the lower semicontinuity of (1.1) with respect to the L1-topology by requiring
that f is continuous in all its variables, convex in the last variable and by assuming on the integrand
one of the following conditions: f is coercive; f is strictly convex in the gradient variable; the
derivatives fx(x, s, p), fp(x, s, p), fxp(x, s, p) exist and are continuous (for further improvements see,
among others, also [11, 13, 19, 20]).
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It is well known that a natural extension of (1.1) to the larger space BV (Ω) is given by the
functional

(1.2) F(u) =
∫

Ω
f(x, u,∇u)dx +

∫

Ω
f∞(x, ũ,

Dcu

|Dc(u)|)d|D
cu|+

∫

Ju

[ ∫ u+

u−
f∞(x, s, νu)ds

]
dHN−1.

Indeed, in [5] it is proved, by assuming continuity and coerciveness on integrand f , that F coincides
with the relaxed functional of F on BV (Ω). Also for this functional, in the literature there exist
several L1-lower semicontinuity results. Among others we recall [9, 10, 16, 17] and the reference
therein.

In this paper, we are interested, in particular, to weaken the regularity assumptions on the
integrand, with respect to s. In this direction, after Serrin’s theorem, many authors extended his
result by assuming weaker conditions. We recall, for instance, a classical result due to De Giorgi-
Buttazzo-Dal Maso (see [13]), where they proved that for autonomous functionals the continuity of
s is not necessary in order to obtain the L1-lower semicontinuity of (1.1). A similar result for the
functional (1.2) was proven by De Cicco in [9]. In this last paper the lower semicontinuity is stated
with respect to the weak∗ convergence of BV (Ω), instead of the L1-convergence and then extended
to non autonomous functionals in [8].

Here, we generalize both the result of De Giorgi-Buttazzo-Dal Maso and of De Cicco, by proving
the lower semicontinuity for the functional (1.2) with respect to the L1-convergence on BV (Ω) (see
Theorem 4.2). This theorem is stated by only requiring that the integrand f is W 1,1 in x with
a uniform control of the weak gradient (see hypothesis (4.1)) and continuous in x (not uniformly
with respect to the other variables). Our result improves also the lower semicontinuity theorem of
Fonseca-Leoni (see [16]), since they assume a continuous dependance of integrand f in x uniformly
with respect to the other variables (see [18] for the consequence of this assumption). Moreover, we
generalize also the lower semicontinuity result of Fusco-Giannetti-Verde (see [17]), where they assume
the continuity of f in all its variables. Finally our result is an extension of the lower semicontinuity
theorem of De Cicco-Leoni (see [11]), since they deal only with the space W 1,1.

The main tools of the proof of the lower semicontinuity theorem are a new chain rule formula for
the function x → ∫ u(x)

0 b(x, t)dt (see Theorem 3.1) and an approximation result for convex functions
due to De Giorgi.

Moreover,we generalize a relaxation result stated in [16] (where no coerciveness assumption and
continuity with respect to s are assumed), by removing also the uniform continuity of x with respect
to the other variables.

Finally, we apply this result in order to obtain a Γ-convergence result for a sequence of functionals
whose integrals pointwise converge. This last result generalizes an analogous theorem proven in [5],
since here no continuity with respect to s and no coerciveness condition are required.

The paper is organized as follows: Section 2 is devoted to notations, defintions and preliminaries.
In Section 3 we state the new chain rule formula. In Section 4 we establish the lower semicontinuity
theorem and we give an improved version of this result. In the last section we state and prove the
relaxation formula and Γ-convergence theorem.

Acknowledgments: I would like to thank Micol Amar and Virginia De Cicco, for suggesting me

2



this research work and for many useful discussions.

2 Definitions and Preliminary Results

2.1 BV-functions

In this section we give basic definitions and we collect some technical results on BV (Ω).
Let Ω be a bounded open subset of RN and u ∈ L1

loc(Ω).
We say that u has an approximate limit in x if there exists ũ(x) ∈ R such that

lim
r→0

−
∫

Br(x)
|u(y)− ũ(x)|dy = 0.

The set Cu of all points where u has an approximate limit is a Borel set.
The function ũ : Cu → R, called precise representative of u, is a Borel function. We say that u is
approximately continuous at x if x ∈ Cu and ũ(x) = u(x).

We say that a point x /∈ Cu is an approximate jump point if there exist u+(x), u−(x) ∈ R with
u−(x) < u+(x) and νu(x) ∈ SN−1 such that

lim
r→0

−
∫

B+
r (x;νu(x))

|u(y)− u+(x)|dy = 0, lim
r→0

−
∫

B−r (x;νu(x))
|u(y)− u−(x)|dy = 0,

where B+
r (x; νu(x)) = {y ∈ Br(x) : 〈x, νu(x)〉 > 0} and B−

r (x; νu(x)) is defined analogously. Also
the set Ju = {x ∈ Ω : u−(x) < u+(x)} of all approximate jump points of u is a Borel set and the
function (u+(x), u−(x), νu(x)) : Ju → R× R× SN−1 is a Borel function.

Let x ∈ Cu. We say that u is approximately differentiable at x if there exists ∇u(x) ∈ RN such
that

lim
r→0

−
∫

Br

|u(y)− ũ(x)− 〈∇u(x), y − x〉|dy = 0.

The set Du of all points where u is approximately differentiable is a Borel set and the map ∇u(x) :
Du → RN is a Borel map.
We recall that, if u ∈ BV (Ω), we have HN−1(Ω \ (Cu ∪ Ju)) = 0 and we can split the measure Du
in the following way

Du = Dau + Dsu = Dau + Dcu + Dju

where

(2.1) Dau = ∇uLNbDu, Dcu = Dub(Cu \Du), Dju = (u+ − u−)⊗ νuHN−1bJu,

where ∇u ∈ L1(Ω) and HN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN (see
Proposition 3.92 pag. 184 of [2]).

For every u ∈ BV (Ω) we define the subgraph of u given by

(2.2) S(u) = {(x, s) ∈ Ω× R : s < u+(x)}.
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We recall (see Theorem 3.2.23 of [21]) that S(u) is a set with locally finite perimeter in Ω× R, i.e.
χS(u) ∈ BVloc(Ω × R). We indicate by α(u) = (α1(u), .., αn+1(u)) the distributional derivative of
χS(u).

We recall also the following results

Proposition 2.1 (see [2], Proposition 3.64 pag.160) Let u : RN → R and {ϕε} be a mollifying
sequence. Then, if u is approximately continuous at x ∈ RN ,

(ϕε ∗ u)(x) → u(x) for ε → 0.

Proposition 2.2 (see Appendix of [7]) Let u ∈ BV (Ω). Let M ⊂ R such that L1(M) = 0 and
let E = Cu ∩ (ũ)−1(M). Then |Du|(E) = 0.

2.2 Preliminary Lemmas

Lemma 2.1 (see [11], Proposition 2.5) Let E be an open subset of RN and G a Borel subset of
Rd. Let g : E × G → R be a Borel function in L∞loc(E × G) such that for LN almost every x ∈ E
the function g(x, ·) is continuous in G. Then there exists a set M ⊂ RN with LN (M) = 0 such that
for every t ∈ G the function g(·, t) is approximately continuous in E \M .

Lemma 2.2 ([9], Lemma 7) Let µ be a positive Radon measure on Ω×R and let {fκ} be a sequence
of nonnegative functions of L1(Ω × R; dµ). Set f := sup

κ∈N
fκ ≥ 0. Then for every open subset A of

Ω× R we have ∫

A
fdµ = sup

D

∑

i∈I

∫

A
fκi(x, s)ϕi(x)ψi(s)dµ,

where D is the set of all families (κi, ϕi, ψi)i∈I with I finite, κi ∈ N, ϕi ∈ C∞
0 (Ω), ψi ∈ C∞

0 (R),
ϕi ≥ 0, ψi ≥ 0,

∑
i∈I ϕi ⊗ ψi ≤ 1 and supp(ϕi)× supp(ψi) ⊂ A.

2.3 Functionals and their properties

If f is a Borel function such that the map p → f(x, s, p) is convex on RN for every (x, s) ∈ Ω × R,
we consider the following functionals defined on the space BV (Ω):

(2.3) F (u) =





∫

Ω
f(x, u,∇u)dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV (Ω) \W 1,1(Ω);

(2.4) F(u) =
∫

Ω
f(x, u,∇u)dx +

∫

Ω
f∞(x, ũ,

Dcu

|Dc(u)|)d|D
cu|+

∫

Ju

[ ∫ u+

u−
f∞(x, s, νu)ds

]
dHN−1,

where f∞(x, s, p) is the recession function, defined by

f∞(x, s, p) = lim
t→+∞

f(x, s, pt)
t

.
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We define also

(2.5) f̂(x, s, p, t) =

{
f(x, s, p

t )t t > 0,

f∞(x, s, p) t = 0.

It is easy to verify that f̂ is a Borel function and that for each (x, s) ∈ Ω × R the map (p, t) →
f̂(x, s, p, t) is convex and positively homogeneous of degree 1.

We assume, for any Borel function, the following convention:

(2.6) −
∫ b

a
h(t)dt =





1
b−a

∫ b

a
h(t)dt a 6= b,

h(a) a = b.

.

We notice also that, taking into account (2.6), the functional (2.4) can be rewritten as

(2.7) F(u) =
∫

Ω
f(x, u,∇u)dx +

∫

Ω

[
−
∫ u+

u−
f∞(x, s,

Dsu

|Ds(u)|)ds
]
d|Dsu|.

Let us recall the following result:

Lemma 2.3 ([5], Lemma 2.2) Let f : Ω × R × RN → [0,∞) be a Borel function such that, for
each (x, s) ∈ Ω× R, the map p → f(x, s, p) is convex on RN . Then

F(u) =
∫

Ω×R
f̂(x, s,

α(u)
|α(u)|)d|α(u)|(x, s).

2.4 Approximation of convex functions

One of the main tool in order to prove the lower semicontinuity of the functional (2.4) is an approx-
imation result for convex functions due to De Giorgi.
This result states that any convex function f : RN → R can be approximated by mean of a sequence
of affine functions aα + 〈bα, p〉, where

aα :=
∫

Rn

f(p)
(
(n + 1)α(p) + 〈∇α(p), z〉)dp(2.8)

bα := −
∫

Rn

f(p)∇α(p)dp,(2.9)

with α ∈ C1
0 (RN ) a nonnegative function and

∫
RN α(p)dp = 1. The main feature of De Giorgi’s

theorem is that the coefficients aα and bα explicitly depend on f . When f depends also on x, s the
explicit formulas permit to deduce regularity properties of De Giorgi’s coefficients from hypotheses
satisfied by f . We recall therefore De Giorgi’s theorem.

Theorem 2.1 (see [12]) Let f : RN → R be a convex function and aα, bα be defined as in (2.8)
and (2.9) then:

(i) f(p) ≥ aα + 〈bα, p〉 for any p ∈ RN ;
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(ii) f(p) = sup
β∈B

[aβ + 〈bβ, p〉] for p ∈ RN ,

where B := {β : β(z) := κNα(κ(q − z)), κ ∈ N, q ∈ QNz ∈ RN};
(iii) f(p) = lim

j→∞
fj(p) for any p ∈ RN , where fj(p) := sup

i≤j
{aβi + 〈bβi , p〉} for any p ∈ RN , where βi

is an ordering of the class B.

2.5 Relaxation and Γ-convergence

Let F be the functional defined in (2.3). For every u ∈ BV (Ω), we can define the relaxed functional
F of F , with respect the L1-topology, given by

(2.10) F (u) = inf{lim inf
n→∞ F (uh) : un ∈ W 1,1(Ω), un → u in L1(Ω)}.

We recall that F is the greatest lower semicontinuous functional not greater than F .

We recall also the defintion of Γ−convergence for a sequence {Fh} of functionals defined on
BV (Ω) of the type (2.3), with respect to the L1(Ω)-topology. We recall that the functional FΓ :=
Γ− lim Fh, if it exists, is characterized by the following two inequalities:
for every u ∈ BV (Ω) and every {uh} ∈ W 1,1(Ω), such that uh → u strongly in L1(Ω),

(2.11) FΓ(u) ≤ lim inf
h→∞

Fh(uh),

for every u ∈ BV (Ω) there exists {uh} ∈ W 1,1(Ω), such that uh → u strongly in L1(Ω),

(2.12) FΓ(u) = lim
h→∞

Fh(uh).

We recall that FΓ is L1-lower semicontinuous functional on BV (Ω). If Fh ≡ F for every h ∈ N, then
FΓ = F and from every sequence of functionals, it is possible to find a Γ-convergent subsequence.
For further properties of the relaxation and Γ-convergence we refere to [3, 6, 14, 15].

3 Chain rule

In this section we improve both the chain rule of [11] and of [17]. Indeed with respect to [11] we
deal with the space BV (Ω), and with respect to [17] we do not require continuity with respect to t.

Theorem 3.1 Let b : Ω × R → R be a bounded Borel function with compact support in Ω × R,
satisfying the following properties

(i) b(·, t) ∈ W 1,1(Ω) ∩ C(Ω) for almost every t ∈ R,

(ii) ∇xb ∈ L1(Ω× R).
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Then for every ϕ ∈ C1
0 (Ω) and for every u ∈ BV (Ω) we have:

−
∫

Ω

(∫ u(x)

0
b(x, t)dt

)
∇ϕdx =

∫

Ω
b(x, u)ϕ∇udx

(3.1)

+
∫

Ω

(
−
∫ u+

u−
b(x, t)dt

)
ϕdDsu +

∫

Ω

(∫ u(x)

0
∇xb(x, t)dt

)
ϕdx.

Proof.
Let {ψδ}δ>0 be a mollifying sequence in R. Let us define bδ(x, t) =

∫
R ψδ(t− s)b(x, s)ds. We claim

that, for evey δ > 0, bδ(x, t) is a continuous function in Ω×R. In order to prove this, we notice the
following properties: for every δ ∈ R, the function ψδ(·− s)b(·, s) is continuous in Ω for almost every
s ∈ R thanks to the hypothesis (i) and to the regularity properties of mollifiers. Furthermore, since
b has compact support, there exist two compact sets K ⊂ Ω and Λ ⊂ R such that the support of b is
contained in K ×Λ and the support of the function b(x, ·) is contained in Λ for every x ∈ K. Hence
we have that, for almost every s ∈ R, |ψδ(t − s)b(x, s)| ≤ ‖b‖∞‖ψδ‖∞χΛ(s) ∈ L1(R). It follows, by
the dominated convergence theorem, that bδ(x, t) is continuous in Ω×R. Let us show that, for every
δ > 0, bδ(·, t) ∈ W 1,1(Ω) for every t ∈ R. Indeed using Tonelli’s theorem we get:

∫

Ω
|bδ(x, t)|dx ≤

∫

Ω
dx

∫

R
|ψδ(t− s)b(x, s)|ds =

∫

Ω×R
|ψδ(t− s)||b(x, s)|dxds

=
∫

K×Λ
|ψδ(t− s)||b(x, s)|dxds ≤ LN (K)‖b‖∞

∫

R
|ψδ(t− s)|ds ≤ C,

so that bδ(·, t) ∈ L1(Ω) for every t ∈ R. Furthermore the following equality holds in the weak sense
for almost every x ∈ Ω and for every t ∈ R,

(3.2) ∇x(
∫

R
ψδ(t− s)b(x, s)ds) =

∫

R
ψδ(t− s)∇xb(x, s)ds.

In fact, let S be the set of s ∈ R such that b(·, s) /∈ W 1,1(Ω). By hypothesis (i), L1(S) = 0.
Multiplying by ϕ ∈ C1

0 (Ω;RN ) the righthand side of (3.2), integrating over Ω, and applying Fubini’s
theorem (taking into account hyphotesis (ii)), we get

∫

Ω
ϕdx

∫

R
ψδ(t− s)∇xb(x, s)ds = −

∫

R\S
ψδ(t− s)ds

∫

Ω
b(x, s)divxϕ

= −
∫

Ω
divxϕdx

∫

R
ψδ(t− s)b(x, s)ds

and (3.2) is proved.
It remains to show that ∇xbδ(·, t) ∈ L1(Ω) uniformly with respect to t ∈ R. From (3.2) and
hypothesis (ii) we have:

∫

Ω
|∇xbδ(x, t)|dx ≤

∫

Ω
dx

∫

R\ S
|ψδ(t− s)||∇xb(x, s)|ds

=
∫

R\S
ψδ(t− s)ds

∫

Ω
|∇xb(x, s)|dx ≤ ‖ψδ‖∞

∫

Ω×R
|∇xb(x, s)|dxds ≤ C.
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This implies that bδ(x, t) satisfies all the hypotheses of Lemma 2.4 of [17] and so (3.1) holds for
bδ(x, t), i.e.

−
∫

Ω

(∫ u(x)

0
bδ(x, t)dt

)
∇ϕdx =

∫

Ω
bδ(x, u)ϕ∇udx

(3.3)

+
∫

Ω

(
−
∫ u+

u−
bδ(x, t)dt

)
ϕdDsu +

∫

Ω

(∫ u(x)

0
∇xbδ(x, t)dt

)
ϕdx,

for evey ϕ ∈ C1
0 . Now we pass to the limit as δ → 0.

Let us consider the first term in (3.3). We remark that bδ(x, t) is continuous in Ω×R and there
exists M ⊂ R with L1(M) = 0, such that by Lemma 2.1, b(x, ·) is approximately continuous in R\M
for every x ∈ Ω. Then, by Proposition 2.1, bδ(x, t) → b(x, t) for every x ∈ Ω and every t ∈ R \M .
It is not difficult to prove that

∣∣∣
∫

Ω

(∫ u(x)

0
bδ(x, t)dt

)
∇ϕdx−

∫

Ω

(∫ u(x)

0
b(x, t)dt

)
∇ϕdx

∣∣∣

≤
∫

Ω

(∫

R\M
χ[0,u(x)]|bδ(x, t)− b(x, t)|dt

)
|∇ϕ|dx → 0,

since

(3.4) χ[0,u]|bδ(x, t)− b(x, t)||∇ϕ| ≤ (‖bδ‖∞ + ‖b‖∞)|∇ϕ|χH ≤ 2‖b‖∞|∇ϕ|χH ∈ L1(Ω× R),

for a proper compact set H ⊂ Ω× R and independent of δ.
Let us consider the second term of (3.3). As we have already remarked bδ(x, t) → b(x, t) for

every x ∈ Ω and every t ∈ R \M . Moreover, reasoning as in (3.4), it follows

(3.5) |bδ(x, t)− b(x, t)||ϕ‖∇u| ≤ 2‖b‖∞|ϕ||∇u| ∈ L1(Ω),

for every δ > 0.
Hence by Proposition 2.2, we get
∣∣∣
∫

Ω
bδ(x, u)ϕ∇udx−

∫

Ω
b(x, u)ϕ∇udx

∣∣∣ =
∣∣∣
∫

Ω\(ũ)−1(M)
bδ(x, u)ϕ∇udx−

∫

Ω\(ũ)−1(M)
b(x, u)ϕ∇udx

∣∣∣,

and, letting δ → 0,
∣∣∣
∫

Ω\(ũ)−1(M)
bδ(x, u)ϕ∇udx−

∫

Ω\(ũ)−1(M)
b(x, u)ϕ∇udx

∣∣∣ → 0,

as a consequence of (3.5) and the dominated convergence theorem.
Let us consider the third term of (3.3). Thanks to (2.1) and (2.6), we can rewrite this term as

(3.6)
∫

Ω∩Ju

(
−
∫ u+

u−
bδ(x, t)dt

)
ϕdDj(u) +

∫

Ω∩Cu

bδ(x, ũ(x))ϕdDcu.
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Clearly for every x ∈ Ω ∩ Ju we have

−
∫ u+

u−
|bδ(x, t)− b(x, t)|dt → 0, as δ → 0.

Furthermore, the function gδ(x) = |ϕ(x)|−
∫ u+

u−
|bδ(x, t)− b(x, t)|dt satisfies the following estimate

0 ≤ gδ(x) ≤ 2‖b‖∞‖ϕ‖∞ ∈ L1(Ω ∩ Ju, |Dju|)

so that, letting δ → 0, we get

∣∣∣
∫

Ω∩Ju

(
−
∫ u+

u−
bδ(x, t)dt

)
ϕdDj(u)−

∫

Ω∩Ju

(
−
∫ u+

u−
b(x, t)dt

)
ϕdDj(u)

∣∣∣ → 0.

As far as the second term of (3.6), for every t ∈ R and for every x ∈ Ω ∩ Cu \ (ũ)−1(M), we have

(3.7) |bδ(x, t)− b(x, t)||ϕ| ≤ 2‖b‖∞|ϕ| ∈ L1(Ω ∩ Cu, |Dcu|),

so that, by the dominated convergence theorem and Lemma 2.2, we obtain
∫

Ω∩Cu

bδ(x, ũ(x))ϕdDcu →
∫

Ω∩Cu

b(x, ũ(x))ϕdDcu,

so that ∫

Ω

(
−
∫ u+

u−
bδ(x, t)dt

)
ϕdDsu →

∫

Ω

(
−
∫ u+

u−
b(x, t)dt

)
ϕdDsu.

Let us consider the last term of (3.3). Thanks to the hypothesis (ii), we have that for LN -almost
every x ∈ Ω the function ∇xb(x, ·) ∈ L1(R). Therefore, from (3.2), it follows that for LN -almost
every x ∈ Ω,

∇xbδ(x, ·) = ψδ ∗ ∇xb(x, ·) → ∇xb(x, ·) in L1(R),

as δ → 0. This implies that, for LN -almost every x ∈ Ω, we obtain

lim
δ→0

∫ u(x)

0
|∇xbδ(x, t)−∇xb(x, t)|dt = 0.

In order to conclude, we note that, thanks to the hypothesis (ii),

|ϕ(x)|
∫ u(x)

0
|∇xbδ(x, t)| ≤ ‖ϕ‖∞

∫

R
dt

∫

R
ψδ(t− s)|∇xb(x, s)|ds

=
∫

R
|∇xb(x, s)|ds

∫

R
ψδ(t− s)dt =

∫

R
|∇xb(x, s)|ds ∈ L1(Ω),

for a.e. x ∈ Ω and hence
∫

Ω

( ∫ u(x)

0
∇xbδ(x, t)dt

)
ϕdx →

∫

Ω

(∫ u(x)

0
∇xb(x, t)dt

)
ϕdx,
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as δ → 0. The proof is now complete. ¥

We establish a refinement of previous result, which will be useful in the next section.

Theorem 3.2 Let Ω ⊂ RN be a bounded open set. Let b : Ω× R→ RN be a Borel function with a
compact support in Ω× R satisfying the following properties

(i) there exists g ∈ L1(R) such that |b(x, t)| ≤ g(t) for every x ∈ Ω and for every t ∈ R;

(ii) b(·, t) ∈ W 1,1(Ω;RN ) ∩ C(Ω;RN ) for almost every t ∈ R,

(iii) ∇xb ∈ L1(Ω× R).

Then for every u ∈ BV (Ω) such that
∫

Ω
〈b(x, u),∇u〉+dx < +∞;

∫

Ω

(−
∫ u+

u−
〈b(x, t),

Dsu

|Dsu| 〉
+dt

)
d|Dsu| < +∞.

and for every ϕ ∈ C1
0 (Ω) we have

∫

Ω
〈b(x, u),∇u〉ϕdx +

∫

Ω

(−
∫ u+

u−
〈b(x, t),

Dsu

|Dsu| 〉dt
)
ϕd|Dsu|

(3.8)

= −
∫

Ω
〈
∫ u(x)

0
b(x, t)dt,∇ϕ〉dx−

∫

Ω

( ∫ u(x)

0
divxb(x, t)dt

)
ϕdx.

Proof.
Let us define

bh(x, t) = b(x, t)χAh
(t) where Ah = {t ∈ R : g(t) ≤ h}.

Clearly bh ∈ L∞(Ω × R) for every h ∈ N and bh(x, t) → b(x, t) for a.e. x ∈ Ω and for a.e t ∈ R
Therefore (3.8) holds for bh, i.e.

∫

Ω
〈bh(x, u),∇u〉ϕdx +

∫

Ω

(−
∫ u+

u−
〈bh(x, t),

Dsu

|Dsu| 〉dt
)
ϕd|Dsu|

(3.9)

= −
∫

Ω
〈
∫ u(x)

0
bh(x, t)dt,∇ϕ〉dx−

∫

Ω

( ∫ u(x)

0
divxbh(x, t)dt

)
ϕdx,

for every ϕ ∈ C1
0 (Ω) Moreover, divxbh(x, t) = χAh

(t)divxb(x, t) → divxb(x, t) for a.e. (x, t) ∈ Ω×R.
Since |divxbh(x, t)| ≤ |∇xb(x, t)| for a.e (x, t) ∈ Ω × R, and, by (iii), |∇xb(x, ·)| ∈ L1(R) for a.e.
x ∈ Ω, we get a.e.

ϕ(x)
∫ u(x)

0
divxbh(x, t)dt → ϕ(x)

∫ u(x)

0
divxb(x, t)dt.

10



Using again (iii), it follows

∣∣∣ϕ
∫ u(x)

0
divxbh(x, t)dt

∣∣∣ ≤ |ϕ|
∫

R
|∇xb(x, t)|dt ∈ L1(Ω),

and hence ∫

Ω

(∫ u(x)

0
divxbh(x, t)dt

)
ϕdx →

∫

Ω

(∫ u(x)

0
divxb(x, t)dt

)
ϕdx.

Let us consider the lefthand side of (3.9) Since 〈bh(x, s), p〉+ and 〈bh(x, s), p〉− are increasing se-
quences which converge to 〈b(x, s), p〉+ and 〈b(x, s), p〉− respectively, from Beppo Levi’s theorem
and hypothesis (ii), we obtain that

lim
h→+∞

∫

Ω
〈bh(x, u),∇u〉ϕdx =

∫

Ω
〈b(x, u),∇u〉ϕdx.

Analogously, using again hypothesis (ii), we get

lim
h→+∞

∫

Ω

(−
∫ u+

u−
〈bh(x, t),

Dsu

|Dsu| 〉dt
)
ϕd|Dsu| =

∫

Ω

(−
∫ u+

u−
〈b(x, t),

Dsu

|Dsu| 〉dt
)
ϕd|Dsu|.

Therefore passing to the limit, as h → +∞, in (3.9) we get (3.8). The thesis is achieved. ¥

4 Lower semicontinuity

In the same spirit of [11] and [17], but on the space BV (Ω) and without continuity with respect to the
variable s, we obtain, by using Theorem 3.1, a lower semicontinuity result with respect L1-topology
for the functional (2.4).

Let f : Ω× R× RN → [0,∞) be a Borel function such that:

(4.1)





(i) f(x, s, ·) is convex on RN for every (x, s) ∈ Ω× R;

(ii) f(·, s, p) ∈ C(Ω) ∩W 1,1
loc (Ω) for almost every s ∈ R and for every p ∈ RN ;

(iii) for every bounded set B ⊂ R× RN , there exists a costant L(B) such that∫

Ω
|∇xf(x, s, p)|dx ≤ L(B) for every (s, p) ∈ B.

Theorem 4.1 Let f : Ω × R × RN → [0,∞) be a locally bounded Borel function, satisfying (4.1),
such that

(4.2) f(x, s, 0) = 0 ∀(x, s) ∈ Ω× R.

Then the functional (2.4) is lower semicontinuous on BV (Ω) with respect to the L1-topology.
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Proof.
By Theorem 2.1 there exists a sequence {ακ} ⊂ C∞

0 (Ω) with ακ ≥ 0 and
∫
RN ακdx = 1 such that

for any (x, s, p) ∈ Ω× R× RN we have

f(x, s, p) = sup
κ∈N

(aκ(x, s) + 〈bκ(x, s), p〉)+

and
f∞(x, s, p) = sup

κ∈N
〈bκ(x, s), p〉+,

where, recalling (2.8) and (2.9),

aκ(x, s) =
∫

Rn

f(x, s, p)
(
(n + 1)ακ(p) + 〈∇ακ(p), p〉)dp

(4.3)

bκ(x, s) = −
∫

Rn

f(x, s, p)∇ακ(p)dp.

Hence, if we set fκ(x, s, p) = (aκ(x, s) + 〈bκ(x, s), p〉)+, we obtain f̂(x, s, p, t) = sup
κ

f̂κ(x, s, p, t).

Therefore, applying Lemma 2.2 with f , fk and µ replaced by f̂ , f̂k and |α(u)| respectively, we obtain

F(u) =
∫

Ω×R
f̂(x, s,

α(u)
|α(u)|)d|α(u)|(x, s) = sup

D

∑

i∈I

∫

Ω×R
f̂κi(x, s,

α(u)
|α(u)|)ϕi(x)ψi(u)d|α(u)|(x, s)

= sup
D

∑

i∈I

{∫

Ω
ψi(u)

(
aκi(x, u) + 〈bκi(x, u),∇u〉)+

ϕi(x)dx(4.4)

+
∫

Ω

(
−
∫ u+

u−
ψi(s)〈bκi(x, s),

Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|

}
,

where the first and the last equality are due to Lemma 2.3 and we used the notation in (2.7). Let
us define

Gi(u) :=
∫

Ω
ψi(u)

(
aκi(x, u) + 〈bκi(x, u),∇u〉)+

ϕi(x)dx

(4.5)

+
∫

Ω

(
−
∫ u+

u−
ψi(s)〈bκi(x, s),

Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|.

We remark that, by (ii) of (4.1) and (4.3), aκi(·, s) is continuous for almost every s ∈ R. By Scorza-
Dragoni theorem it is possible to find an increasing sequence Kh of compact subsets of R such that,
if we set E :=

⋃
h∈NKh, L1(R \ E) = 0, and for every κi ∈ N aκi ∈ C0(Ω ×Kh). We remark that,
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by hypothesis (4.2), we have aκi ≤ 0, hence, by Lemma 2.2 it follows that

Gi(u) =
∫

Ω
χE(u)ψi(u)

(
aκi(x, u) + 〈bκi(x, u),∇u〉)+

ϕi(x)dx

+
∫

Ω

(
−
∫ u+

u−
χE(s)ψi(s)〈bκi(x, s),

Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|

= sup
h∈N

{∫

Ω
χKh

(u)ψi(u)
(
aκi(x, u) + 〈bκi(x, u),∇u〉)+

ϕi(x)dx

+
∫

Ω

(
−
∫ u+

u−
χKh

(s)ψi(s)〈bκi(x, s),
Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|

}
.

As Ln and |Dsu| are mutually singular measures,

Gi(u) = sup
h∈N

sup
0≤η≤1

{∫

Ω
χKh

(u)ψi(u)(aκi(x, u)η(x)ϕi(x)dx

+
∫

Ω
χKh

(u)〈ψi(u)bκi(x, u),∇u〉η(x)ϕi(x)dx(4.6)

+
∫

Ω

(
−
∫ u+

u−
χKh

(t)η(x)〈ψi(t)bκi(x, s),
Dsu

|Dsu| 〉ds
)
ϕi(x)d|Dsu|

}
;

where η ∈ C∞
0 (Ω). Since aκi ∈ C0(Ω ×Kh) and aκi ≤ 0, the function χKh

(s)ψi(s)aκi(x, s) is lower
semicontinuous with respect to s ∈ R. Therefore, as a consequence of Fatou’s lemma, the first
term in (4.6) is lower semicontinuous with respect to the L1-topology. Now we prove the lower
semicontinuity with respect to the L1-topology of the last two terms of (4.6). Since un → u strongly
in L1(Ω), without loss of generality, we may assume that un → u almost everywhere in Ω. Let us
define

H(un) :=
∫

Ω
χKh

(un)〈ψi(u)bκi(x, un),∇un〉η(x)ϕi(x)dx

+
∫

Ω

(
−
∫ u+

n

u−n
χKh

(s)η(x)〈ψi(s)bκi(x, s),
Dsun

|Dsun| 〉ds
)
ϕi(x)d|Dsun|.

We claim that the scalar function η(x)ψ(s)bj
κi(x, s) satisfies for 1 ≤ j ≤ n all the hypotheses of

theorem 3.1. Indeed η(x)ψi(s)b
j
κi(x, s) has compact support in Ω × R and it is bounded in Ω × R,

since f ∈ L∞loc(Ω × R × Rn). Moreover, by (ii) of (4.1) and the dominated convergence theorem, it
follows that η(·)ψi(s)b

j
κi(·, s) is continuous for almost every s ∈ R. Finally by (ii) and (iii) of (4.1),

we have that η(·)ψ(s)bj
κi(·, s) belongs to W 1,1(Ω) with ∇x

(
η(x)ψi(s)b

j
κi(x, s)

) ∈ L1(Ω× R).
Therefore, by applying Theorem 3.1, we get

lim inf
n→+∞ H(un) = lim

n→+∞

{
−

∫

Ω

( ∫ un(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds
)
ϕidx

−
∫

Ω
〈
∫ un(x)

0
bκi(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx
}

.
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From (iii) of (4.1) and from the absolute continuity of the integral it follows that as n → +∞

lim
n→+∞

∫ un(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds =
∫ u(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x)ds.

Moreover,

∣∣∣ϕi(x)
∫ un(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds
∣∣∣

(4.7)

≤ ‖ϕi‖∞
∫

R
|divx(bki(x, s)χKh

(s)ψi(s)η(x))|ds ∈ L1(Ω),

so that

lim
n→∞

∫

Ω
ϕi(x)

∫ un(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds = ϕi(x)
∫ u(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds.

Analogously we get

lim
n→+∞

∫

Ω
〈
∫ un(x)

0
bκi(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx =
∫

Ω
〈
∫ u(x)

0
bκi(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx.

Therefore letting n → +∞ in (4.7) we obtain

lim inf
n→+∞ H(un) = −

∫

Ω

( ∫ u(x)

0
divx(bki(x, s)χKh

(s)ψi(s)η(x))ds
)
ϕidx

(4.8)

−
∫

Ω
〈
∫ u(x)

0
bκi(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx.

Hence, applying Theorem 3.1 to (4.8), we obtain the lower semicontinuity of the second and the
third term of (4.6). This implies that Gi, being the supremum of lower semicontinuous functions is
lower semicontinuous itself, so that, by (4.4) and (4.5), F is lower semicontinuous too.
The thesis is then achieved. ¥.

Remark 4.1 It is not very difficult to verify that Theorem 4.1 continues to hold under a weaker
assumption than (iii) of (4.1), which is the following

(4.9) ∇xf ∈ L1
loc(Ω× R× Rn).

In the same spirit of De Giorgi-Buttazzo-Dal Maso (see [13]) we give a further lower semicontinuity
result, where assumption (4.2) is replaced by a weaker one.

Theorem 4.2 Let f : Ω × R × RN → [0,∞) be a locally bounded Borel function satisfying (4.1)
such that:
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(a) f(x, ·, 0) is lower semicontinuous on R for LN a.e x ∈ Ω

(b) there exists a Borel function
λ : Ω× R→ RN ,

with λ(x, s) ∈ ∂pf(x, s, 0) for every (x, s) ∈ Ω× R, such that

(i) g(s) = sup
x∈Ω

|λ(x, s)| ∈ L1
loc(R)

(ii) λ(·, s) ∈ C(Ω;RN ) for L1 a.e s ∈ R
(iii) λ(·, s) ∈ W 1,1

loc (Ω;RN ) for L1 a.e s ∈ R with ∇xλ ∈ L1
loc(Ω× R).

Then the functional (2.4) is lower semicontinuous in BV (Ω) with respect to the strong L1-topology.

Proof.
Without loss of generality, we may suppose that there exists a constant C > 0 such that f(x, s, p) = 0
for every (x, s, p) ∈ Ω× RN × R, with |s| ≥ C. Indeed, in the general case, we can write

f(x, s, p) = sup
k∈N

f(x, s, p)χ(−k,k)(s).

Moreover since λ(x, s) ∈ ∂pf(x, s, 0) and that f ≥ 0, it follows that f(x, s, p) ≥ 〈λ(x, s), p〉+ for
every (x, s, p) ∈ Ω×R×RN . Hence we may assume that λ(x, s) = 0 for every x ∈ Ω and s ∈ R, with
|s| ≥ C. Besides, since f is locally bounded, λ is locally bounded, too. Let g : Ω×R×RN → [0, +∞]
be defined by

g(x, s, p) = f(x, s, p)− f(x, s, 0)− 〈λ(x, s), p〉.
Then for every ϕ ∈ C∞

0 (Ω) and for every open set A ⊂⊂ Ω we have

(4.10) FA(f, u, ϕ) = FA(g, u, ϕ) + GA(f, u, ϕ) + HA(λ, u, ϕ),

where

FA(f, u, ϕ) =
∫

A
f(x, u,∇u)ϕdx +

∫

A

[
−
∫ u+

u−
f∞(x, s,

Dsu

|Ds(u)|)ds
]
ϕd|Dsu|,

GA(f, u, ϕ) =
∫

A
f(x, u, 0)ϕdx

HA(λ, u, ϕ) =
∫

A
〈λ(x, u),∇u〉ϕdx +

∫

A

[
−
∫ u+

u−
〈λ(x, s),

Dsu

|Ds(u)| 〉ds
]
ϕd|Dsu|.

Let un → u ∈ BV (Ω) strongly in L1(Ω). Without loss of generality, we may suppose that un → u
almost everywhere in Ω and that F (un) ≤ M , for every n ∈ N. Since the function gϕ satifies all the
hypotheses of Theorem 4.1 we obtain that

(4.11) FA(g, u, ϕ) ≤ lim inf
n→+∞ FA(g, un, ϕ).

Moreover, by hypothesis (a) and Fatou’s lemma it follows that

(4.12) GA(f, u, ϕ) ≤ lim inf
n→+∞ GA(f, un, ϕ).
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Since f(x, s, p) ≥ 〈λ(x, s), p〉+ we have, for every n ∈ N,

(4.13)
∫

A
〈λ(x, un),∇un〉+dx ≤ F (un) ≤ M

and

(4.14)
∫

A

[
−
∫ un

+

un
−
〈λ(x, s),

Dsun

|Dsun| 〉
+ds

]
d|Dsun| ≤ F (un) ≤ M.

We remark that, since λ is locally bounded, we have

(4.15)
∫

A
〈λ(x, u),∇u〉+dx ≤ M

and

(4.16)
∫

A

[
−
∫ u+

u−
〈λ(x, s),

Dsu

|Dsu| 〉
+ds

]
d|Dsu| ≤ M.

Furthermore, if we define

(4.17) λ̃(x, s) =

{
λ(x, s) (x, s) ∈ suppϕ× [−C, C],
0 (x, s) /∈ suppϕ× [−C, C].

The function λ̃ satifsfies all the hypotheses of Lemma 3.2. Then using, by (4.13) and (4.14), Lemma
3.2, we get

lim inf
n→+∞ HA(λ, un, ϕ) = lim

n→+∞

{
−

∫

Ω
〈
∫ un(x)

0
λ(x, s)ds,∇ϕ〉dx−

∫

Ω

( ∫ un(x)

0
divxλ(x, s)ds

)
ϕdx

}
;

so that, by (4.15) and (4.16), using again Lemma 3.2

lim
n→+∞HA(λ, un, ϕ) = −

∫

Ω
〈
∫ u(x)

0
λ(x, s)ds,∇ϕ〉dx−

∫

Ω

( ∫ u(x)

0
divxλ(x, s)ds

)
ϕdx

(4.18)
= HA(λ, u, ϕ).

Therefore from (4.10) (4.11), (4.12) and (4.18) we have

FA(f, u, ϕ) ≤ lim inf
n→+∞ FA(f, un, ϕ) ≤ lim inf

n→+∞ FΩ(f, un, ϕ).

Then, since A is arbitrary, the functional u → FΩ(f, u, ϕ) is lower semicontinuous. The conclusion
follows by

F(u) = sup{FΩ(f, u, ϕ) : ϕ ∈ C∞
0 (Ω), 0 ≤ ϕ ≤ 1}. ¥
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5 Applications

In this section, as a consequence of the result in §4, we give first an integral representation theorem
for the relaxed functional (2.10), then we prove Γ -limit result for a sequence of functionals {Fh} of
the type (2.3).

5.1 Relaxation

Here we will show that for every u ∈ BV (Ω) the following representation holds

(5.1) F(u) = F (u),

where F (u) is defined in (2.10) and F(u) in (2.4). In order to get (5.1) we need a result due to
Fonseca and Leoni (see [16], Theorem 1.6). We will assume that f : Ω × R × RN → [0, +∞) is a
Borel function such that

(5.2) 0 ≤ f(x, s, p) ≤ C(1 + |p|) for all (x, s, p) ∈ Ω× R× RN .

Proposition 5.1 Let f : Ω × R × RN → [0,∞) be a Borel function convex with respect to p for
every (x, s) ∈ Ω × R, and continuous with respect to x for every (s, p) ∈ R × RN . Assume that f
satisfies (5.2), and f∞(·, s, p) is upper semicontinuous in Ω for every (s, p) ∈ R× RN . Then

F (u) ≤ F(u).

Remark 5.1 Following the proof in [16], it is not difficult to see that the Proposition 5.1 holds even
if the hypothesis that f is continuous with respect to x for every (s, p) ∈ R× RN , is replaced by

|f(x, s1, 0)− f(x, s2, 0)| ≤ Cρ(s1 − s2),

for every x ∈ Ω and s1, s2 ∈ R, where ρ is a modulus of continuity, i.e. a nonnegative, increasing
and continuous function ρ such that ρ(0) = 0, or by the assumption that for every s ∈ R exists
N ⊂ Ω such that HN−1(N) = 0 and f(·, s, 0) is approximately continuous in Ω\N (these conditions
are in particular implied by f(x, s, 0) = 0).

Theorem 5.1 Let f : Ω×R×RN → [0,∞) be a Borel function, which satisfies hypotheses (4.1),(5.2)
and (a), (b) of Theorem 4.2. Assume that f∞(·, s, p) is upper semicontinuous in Ω for every (s, p) ∈
R× RN . Then F(u) = F (u).

Proof.
Since F is the greatest lower semicontinuous functional not greater than F , F ≤ F and, by Theorem
4.2, F is L1-lower semicontinuous, it follows that

F(u) ≤ F (u).

The opposite inequality is stated in Proposition 5.1. ¥
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5.2 Γ-convergence

In this subsection, in the same spirit of [1, 5], we state a Γ-convergence result for a sequence of
integral functionals of the type (2.3), whose integrands pointwise converge to an integrand, which is
not necessarily continuous with respect to s nor coercive.

Theorem 5.2 Let fh : Ω× R× RN → [0, +∞) be a sequence of Borel functions such that

(5.3) 0 ≤ fh(x, s, p) ≤ Λ(1 + |p|) for every (x, s, p) ∈ Ω× R× RN ,

where 0 < Λ < +∞ is a fixed costant. For every u ∈ BV (Ω) we define

(5.4) Fh(u) =





∫

Ω
fh(x, u(x),∇u(x))dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV (Ω) \W 1,1(Ω).

Assume that {fh} converges pointwise to a locally bounded Borel function f : Ω×R×RN → [0, +∞)
satsfying all the hypotheses of Theorem 5.1.
Finally, let {εh} be an infinitesimal sequence, such that

(5.5) (1 + εh)fh(x, s, p) ≥ f(x, s, p)− εh for every (x, s, p) ∈ Ω× R× RN , ∀h ∈ N.

Then for every u ∈ BV (Ω), we have

FΓ(u) := Γ− lim Fh(u) = F(u).

Proof.
By the compactness of Γ- convergence, we may assume that, up to a subsequence, there exists
Γ− limFh. Firstly, we will prove that Γ− lim Fh ≥ F . Given u ∈ BV (Ω), by (5.5), for every h ∈ N
we obtain that Fh(u) ≥ F (u)− εh[LN (Ω) + Fh(u)], where F is defined in (2.3). By (2.12), we have
that for every u ∈ BV (Ω), there exists uh → u strongly in L1(Ω), such that

(Γ− lim
h→∞

Fh)(u) = lim
h→∞

Fh(uh).

We may assume that the previous limit is finite (otherwise the conclusion is trivial). Therefore,
taking into account Theorem 5.1, it follows

(Γ− lim
h→∞

Fh)(u) = lim
h→∞

Fh(uh) ≥ lim inf
h→∞

F (uh)− lim
h→∞

εh[Ln(Ω) + Fh(uh)] ≥ F (u) = F(u).

In order to prove the opposite inequality, we note that, by dominated convergence theorem, we have

lim
h→∞

Fh(u) = F (u) for every u ∈ W 1,1(Ω).

Hence, by (2.11)
(Γ− lim

h→∞
Fh)(u) ≤ F (u) for every u ∈ BV (Ω).

So that, by the lower semicontinuity of the Γ− lim and Theorem 5.1, it follows

(Γ− lim
h→∞

Fh)(u) ≤ F (u) = F(u) for every u ∈ BV (Ω).

Since this in independent from the subsequence, we obtain that the whole sequence Fh Γ- converges
to F . Then the thesis is achieved. ¥
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[7] G.Dal Maso, P.G.Le Floch, F.Murat. Definition and weak stability of nonconservative product.
J. Math. Pures Appl., 74 (1995), 483-548.

[8] V.De Cicco. A lower semicontinuity result for functionals defined on BV (Ω). Ricerche di Mat.
39 (1990), 293-325.

[9] V.De Cicco. Lower semicontinuity result for certain functionals defined on BV (Ω). Boll. U.M.I
5-B (1991), 291-313.

[10] V.De Cicco, N.Fusco, A.Verde. A chain rule formula in BV (Ω) and application to lower semi-
continuity. Preprint.

[11] V.De Cicco, G.Leoni. A chain rule in L1(div; Ω) and its applications to lower semicontinuity.
Calc. Var. 19 (2004), 23-51.
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