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Sunto. – We present two comparison principles for viscosity sub- and supersolutions
of Monge-Ampère-type equations associated to a family of vector fields. In partic-
ular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for
the equation of prescribed horizontal Gauss curvature in a Carnot group.

Introduction

We consider fully nonlinear partial differential equations of the form

− det(D2
Xu) + H(x, u, DXu) = 0, in Ω, (0.1)

where Ω ⊆ IRn is open and bounded, DXu denotes the gradient of u with respect to
a given family of C1,1 vector fields X1, ..., Xm, DXu := (X1u, ..., Xmu), D2

Xu denotes
the symmetrized Hessian matrix of u with respect to the same vector fields

(D2
Xu)ij := (XiXju + XjXiu) /2,

and H is a given Hamiltonian, at least continuous and nondecreasing in u. Our main
examples are the vector fields that generate the homogeneous Carnot groups [4, 7],
and in that case DXu and D2

Xu are called, respectively, the horizontal gradient and
the horizontal Hessian.

A theory of fully nonlinear subelliptic equations was started recently by Bieske
[5, 6] and Manfredi [17, 3], and Monge-Ampère equations of the form (0.1) with
H = f(x) are listed among the main examples. For such equations on the Heisen-
berg group Gutierrez and Montanari [12] proved, among other things, a comparison
principle among smooth sub- and supersolutions (see also [11] for related results).
An example that motivates the dependence on the gradient DXu in H is the pre-
scribed horizontal Gauss curvature equation in Carnot groups, as defined by Danielli,
Garofalo and Nhieu [10],

− det(D2
Xu) + k(x)

(
1 + |DXu|2

)m+2
2 = 0, in Ω, (0.2)

for a given continuous k : Ω →]0, +∞[.
In this paper we begin a study of the subelliptic Monge-Ampère-type equations

(0.1) within the theory of viscosity solutions. We present two comparison results that
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extend to the subelliptic setting a theorem of H. Ishii and P.-L. Lions for euclidean
Monge-Ampère equations [13] (i.e., the case when the vector fields are the canonical
basis of Rn). For the large literature on this case we refer to the recent surveys
[8, 19] and the references therein. The new difficulties we encounter are three.

1. The PDE (0.1) is degenerate elliptic only on functions that are convex with
respect to the vector fields X1, ..., Xm, briefly X -convex. Following Lu, Manfredi,
and Stroffolini [15] such a function is an u.s.c. u : Ω → R such that −D2

Xu ≤ 0 in
Ω in viscosity sense, that is,

D2
Xϕ(x) ≥ 0 ∀ ϕ ∈ C2(Ω), x ∈ argmax(u− ϕ). (0.3)

We refer to the survey in [7] for the recent literature on the notions of convexity in
Carnot groups. Since X -convex functions are not Lipschitz continuous, in general,
we get better results in Carnot groups, where they are Lipschitz with respect to the
intrinsic metric [15, 10, 16, 18, 14].

2. The operator in (0.1) does not satisfy in general the standard structure con-
ditions in viscosity theory. Therefore we consider equations of the form

− log det(D2
Xu) + K(x, u, Du, D2u) = 0, in Ω, (0.4)

that verify the Lipschitz-type condition with respect to x of [9] for uniformly X -
convex subsolutions. Our first main results states the comparison among semicon-
tinuous sub- and supersolutions of this equation provided that either K is strictly
increasing in u or that the subsolution is strict. Here K is any degenerate elliptic
operator satisfying the structure conditions of [9].

3. To cover the case of H not strictly increasing in u, which is the most frequent in
applications, we need to perturb a X -convex subsolution to a uniformly X -convex
strict subsolution. In the case of vector fields that generate a Carnot group we
adapt the method of [13] and [1] to get the following Comparison Principle, under
essentially the same assumptions as the euclidean result of Ishii and Lions [13].

Theorem 0.1 Assume H : Ω×R×Rm →]0, +∞[ is continuous, nondecreasing in
the second entry, and for all R > 0 there is LR such that

|H1/m(x, r, q + q1)−H1/m(x, r, q)| ≤ LR|q1| ∀ x ∈ Ω, |r| ≤ R, |q| ≤ R, |q1| ≤ 1.
(0.5)

Suppose the vector fields X1, ..., Xm are the generators of a Carnot group on Rn.
Let u : Ω → R be a bounded, X -convex, u.s.c. subsolution of (0.1) and v : Ω → R
be a bounded l.s.c. supersolution of (0.1). Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v)+. (0.6)

In particular, there is at most one X -convex viscosity solution of (0.1) with pre-
scribed continuous boundary data.

Note that it applies to the prescribed horizontal Gauss curvature equation (0.2).
In Section 1 we state the Comparison Principle for the equation (0.4) with the

main lemma needed for its proof. Section 2 is devoted to recalling the definition of
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generators of a Carnot group and stating a few facts about them. Finally, in Section
3 we outline the construction of the strict subsolution and the rest of the proof of
Theorem 0.1. Our paper [2] contains the full proofs of these results, some extensions
and variants, the existence of solutions to the Dirichlet problem via the Perron-Ishii
method, and further examples and bibliography.

1. – Definitions and comparison with strict subsolutions

Let σ be the n×m matrix-valued function whose columns σj are the coefficients
of the vector fields X1, ..., Xm, j = 1, · · · , m. We assume σj

i = σij ∈ C1,1(Ω) for all
i, j. Observe that, for a smooth function u, DXu(x) = σ(x)T Du(x) and

D2
Xu(x) = σT (x)D2u(x) σ(x) + Q(x, Du), Qij(x, p) :=

[
Dσj σi + Dσi σj

]
(x) · p

2
.

Therefore we rewrite (0.1) and (0.4) in the form G(x, u, Du,D2u) = 0 with G proper
in the sense of [9].

We say that a continuous function F : Ω × IR × IRn × Sn → IR satisfies the
structure conditions (of viscosity theory) on a given set of admissible symmetric
matrices M ⊆ Sn if it is nondecreasing in the second entry, nonincreasing in the
last entry for matrices in M, and for some modulus ω

F

(
y, r,

x− y

ε
, Y

)
− F

(
x, r,

x− y

ε
, X

)
≤ ω

(
|x− y|

(
1 +

|x− y|
ε

))
for all ε > 0, x, y ∈ Ω, r ∈ R, X,Y ∈M satisfying

−3

ε

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3

ε

(
I −I
−I I

)
. (1.1)

We say that u : Ω → R u.s.c. is uniformly X -convex if for some γ > 0

D2
Xϕ ≥ γI, ∀ ϕ ∈ C2(Ω), x ∈ argmax(u− ϕ), (1.2)

where I denotes the identity matrix. In other words, with the notations of [9],
(p, X) ∈ J 2,+u(x) satisfies σT (x)X σ(x) + Q(x, p) ≥ γI, and this inequality defines
the set of admissible matrices M = M(p, γ).

The main ingredient for the results of this section is the following.

Lemma 1.1 For each γ > 0 the function F (x, p,X) := − log det(σT (x)X σ(x) +
Q(x, p)) satisfies the structure conditions on M(p, γ).

The proof relies on a representation of F as a maximum of operators that satisfy
the structure conditions, via the following formula, holding for A ∈ Sm, A ≥ γ I,

log det(A) = min{m log a−m+tr(AM) : a > 0, M ∈ Sm, 0 ≤ M ≤ 1

γ
I, det M = a−m}.

The next two Comparison Principles can now be proved by standard methods
in viscosity theory [9], see [2] for the details. In the definition of supersolution v of
(0.1) and (0.4) we restrict to X -convex test functions. E.g., for (0.4) we require that

− log det(D2
Xϕ) + K(x, v, Dϕ,D2ϕ) ≥ 0 ∀x ∈ arg min(v − ϕ),

for any ϕ ∈ C2(Ω) such that D2
Xϕ(x) is positive definite, cf. [13], Section V.3.
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Theorem 1.1 Assume K : Ω×IR×IRn×Sn → IR satisfies the structure conditions
on Sn. Let u : Ω → R be bounded, uniformly X -convex, and for all open Ω1 with
Ω1 ⊆ Ω there is γ1 > 0 such that u is subsolution of

− log det(D2
Xu) + K(x, u, Du,D2u) ≤ −γ1, in Ω1. (1.3)

Let v : Ω → R be a bounded l.s.c. supersolution of (0.4). Then

sup
Ω

(u− v) ≤ max
∂Ω

(u− v)+.

Theorem 1.2 The conclusion of the previous theorem remains true if u is a subso-
lution of (0.4), not necessarily strict, provided that, for some C > 0,

K(x, r, p, X)−K(x, s, p, X) ≥ C(r−s), −M ≤ s ≤ r ≤ M, M := max{‖u‖∞, ‖v‖∞}.

Under this condition there is at most one uniformly X -convex viscosity solution of
(0.4) with prescribed continuous boundary data.

2. – Generators of Carnot groups

We begin with recalling some well-known definitions. We adopt the terminology
and notations of the recent book [7]. Consider a group operation ◦ on Rn = Rn1 ×
... × Rnr with identity 0, such that (x, y) 7→ y−1 ◦ x is smooth, and the dilation
δλ : Rn → Rn

δλ(x) = δλ(x
(1), ..., x(r)) := (λx(1), λ2x(2), ..., λrx(r)), x(i) ∈ Rni .

If δλ is an automorphism of the group (Rn, ◦) for all λ > 0, (Rn, ◦, δλ) is a homoge-
neous Lie group on Rn. We say that m = n1 smooth vector fields X1, ..., Xm on Rn

generate (Rn, ◦, δλ), and that this is a (homogeneous) Carnot group, if X1, ..., Xm

are invariant with respect to the left translations on Rn τα(x) := α◦x for all α ∈ Rn,
Xi(0) = ∂/∂xi, i = 1, ...,m, and the rank of the Lie algebra generated by X1, ..., Xm

is n at every point x ∈ Rn. We refer, e.g., to [4, 7] for the connections of this
definition with the classical one in the context of abstract Lie groups and for the
properties of the generators. We will use only the following property, and refer to
Remark 1.4.6, p. 59 of [7] for more precise informations.

Proposition 2.1 If X1, ..., Xm are generators of a Carnot group, then

Xj(x) =
∂

∂xj

+
n∑

i=m+1

σij(x)
∂

∂xi

with σij(x) = σij(x1, ..., xi−1) homogeneous polynomials of a degree ≤ n−m.

For generators of Carnot groups the Lipschitz continuity of X -convex functions with
respect to the intrinsic metric and bounds on the horizontal gradient in the sense of
distributions were studied in [15, 10, 16, 18, 14]. We deduce the following gradient
bound in viscosity sense.

Proposition 2.2 Let u be convex in Ω with respect to the generators of a Carnot
group. Then, for every open Ω1 with Ω1 ⊆ Ω, there exists a constant C such that u
is a viscosity subsolution of |σT (x) Du| ≤ C in Ω1.
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3. – Outline of proof of the Comparison Principle

In this section we outline the proof of Theorem 0.1. The definition of viscosity
supersolution of (0.1) uses only X -convex test functions as in Section 1 and in [13].
Given the X -convex subsolution u we consider

uε,µ(x) := u(x) + εeµ
Pm

i=1 |xi|
2

2 ,

for positive ε, µ. A calculation using Proposition 2.1 shows that uε,µ is uniformly
X -convex with γ = εµ.

Lemma 3.1 For any open Ω1 with Ω1 ⊆ Ω there are positive constants µ, indepen-
dent of ε, and γ2 such that, for µ ≥ µ, uε,µ is a subsolution of

−det1/m(D2
Xu) + H1/m(x, u, DXu) ≤ −γ2, in Ω1.

The proof of the lemma relies on the Minkowski inequality for det1/m(A + B) with
A, B positive definite, and the identity det(I + qqT ) = 1+ |q|2 for any column vector
q ∈ Rm. Moreover, by the boundedness of u and DXu, Proposition 2.2, we can
assume the Lipschitz property (0.5) with a uniform constant LR. The rest of the
proof goes along the lines of [1].

Next, we exploit again the boundedness of DXu in viscosity sense to see that
uε,µ satisfies (1.3) for K = log H and a suitable γ1 > 0. Then Theorem 1.1 applies
and gives supΩ(uε,µ − v) ≤ max∂Ω(uε,µ − v)+. Letting ε → 0 gives the conclusion.
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