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Introduction

The controlled system

ẋs = f(xs, ys, zs, αs), x0 = x,

εẏs = g(xs, ys, zs, αs), y0 = y,

ε2żs = r(xs, ys, zs, αs), z0 = z,

where α is the control and ε > 0 a small parameter, is a model of systems
whose state variables evolve on three different time scales. Consider the
cost functional

P ε(t, x, y, z, α.) :=
∫ t

0

l(xs, ys, zs, αs) ds+ h(xt, yt, zt)

and the value function

uε(t, x, y, z) := inf
α.

P ε(t, x, y, z, α.).

The analysis of the convergence of uε as ε → 0 gives informations on the
optimization problem after a sufficiently large time, namely, when the fast
variables y and z have reached their regime behaviour.

For two time scales, i.e. r ≡ 0, the problem has a large mathematical and
engineering literature, see the books by Kokotović et al.1 and Bensoussan,2

the references therein, and the more recent contributions by Artstein and
Gaitsgory3 and the authors.4–7 For more than two time scales Gaitsgory
and Nguyen8 extended the method of limit occupational measures. In this
paper we follow a method based on the Hamilton–Jacobi–Bellman equation
satisfied by the value function, that is

∂tu
ε + max

α

{
−f ·Dxu

ε − g · Dyu
ε

ε
− r · Dzu

ε

ε2
− l

}
= 0

in (0, T )× Rn × Rm × Rp.

It is based on the theory of viscosity solutions (for an overview, see the
book9) and was used for two-scale problems by the first and the second
named authors.4,5 They also developed it further to stochastic systems
and differential games.6 In a companion paper7 the authors extended the
method to stochastic problems with three and n scales; in those cases the
value functions solve some 2nd order degenerate parabolic equation. In the
present paper, we show how to apply our method7 to deterministic control
problems and 1st order H-J-B equations with a finite number of scales.



July 27, 2007 17:56 WSPC - Proceedings Trim Size: 9in x 6in ABM-procs

3

An important advantage of our PDE approach is that it applies natu-
rally in the generality of differential games, namely, problems governed by
two conflicting players, α and β, acting on the system

ẋs = f(xs, ys, zs, αs, βs),

εẏs = g(xs, ys, zs, αs, βs),

ε2żs = r(xs, ys, zs, αs, βs).

If the game is 0-sum, i.e., the second player’s goal is the maximization of
the cost P ε, the (lower) value function of the game satisfies the Cauchy
problem for the Isaacs PDE

∂tu
ε + min

β
max

α

{
−f ·Dxu

ε − g · Dyuε

ε − r · Dzuε

ε2 − l
}

= 0

in (0, T )× Rn × Rm × Rp,

uε(0, x, y, z) = h(x, y, z).

Throughout this paper, in fact, we will never assume the Hamiltonian be
of the Bellman form, that is, convex in the gradient variables. Therefore,
our results apply, for instance, to the robust optimal control of systems
with bounded unknown disturbances. Our goal is proving that the value
functions uε converge locally uniformly to the viscosity solution of a new
Cauchy problem (called the effective problem){

∂tu+H(x,Dxu) = 0 in (0, T )× Rn

u(0, x) = h(x) on Rn.
(HJ)

For the two-scale case, the effective Hamiltonian H and the effective ini-
tial condition h are obtained, respectively, as the ergodic constant of a
stationary problem and by the time-asymptotic limit of the solution to a
related Cauchy problem. For the multiscale case, this construction must be
done iteratively. Moreover, owing to this procedure and to the coercivity
assumption, the effective (and the intermediate) operators inherit several
properties of the starting ones, in particular those ensuring the Comparison
Principle (we refer the reader to7 for the case of intermediate or effective
operators lacking these properties). An interesting issue is to represent the
effective solution u as the value function of some new control problem. In
some special cases, we shall prove that the effective PDE is associated to a
limit control problem whose dynamics and effective costs can be described
explicitely. An example of Hamilton-Jacobi equation that fits within our
theory is

∂tu
ε + F (x, y, z,Dxu

ε) + ϕ1(x, y, z)
|Dyu

ε|
ε

+ ϕ2(x, y, z)
|Dzu

ε|
ε2

= 0 (1)
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in (0, T )×Rn ×Rm ×Rp, where F is a standard Bellman-Isaacs operator,
and, for some ν > 0, ϕ1 ≥ ν and ϕ2 ≥ ν. In this special case we can
compute the effective Cauchy problem, which is{

∂tu+ maxy,z F (x, y, z,Dxu) = 0 in (0, T )× Rn

u(0, x) = miny,z h(x, y, z) on Rn.
(HJ)

An important byproduct of the previous theory is the homogenization
of systems in highly heterogeneous media with more than two space scales.
Now the system is

ẋs = f
(
xs,

xs

ε
,
xs

ε2
, αs, βs

)
and the cost

P ε(t, x, α, β) :=
∫ t

0

l
(
xs,

xs

ε
,
xs

ε2
, αs, βs

)
ds+ h

(
xt,

xt

ε
,
xt

ε2

)
.

In this case, the value function vε satisfies (in the viscosity sense) the
Cauchy problem

∂tv
ε + min

β
max

α

{
−f
(
x, x

ε ,
x
ε2 , α, β

)
·Dxv

ε − l(x, x
ε ,

x
ε2 , α, β)

}
= 0

in (0, T )× Rn,

vε(0, x) = h
(
x, x

ε ,
x
ε2

)
.

Here the oscillations are in space. By setting y = x/ε, z = x/ε2 this problem
can be written as a singular perturbation one. Motivated by this, we will
call throughout the paper x the macroscopic variables, y the mesoscopic
ones, and z the microscopic variables. Under an assumption of coercivity
of the Hamiltonian in the gradient variables we prove that the solution vε

converge locally uniformly to the solution of an effective problem (HJ), for
a suitable construction of the effective operator and initial data. Our result
applies to the homogenization of the eikonal equation

∂tv
ε + ϕ

(
x,
x

ε
,
x

ε2

)
|Dxv

ε| = l
(
x,
x

ε
,
x

ε2

)
(2)

with ϕ ≥ ν > 0.
In the framework of viscosity solutions, the study of the two-scale ho-

mogenization, initiated by Lions, Papanicolaou, Varadhan10 and improved
by Evans,11,12 has been extended to related questions: see, e.g., Capuzzo–
Dolcetta and Ishii13 for the rate of convergence, Horie and Ishii14 and the
first author15,16 for periodic homogenization in perforated domains, Ishii,17

Arisawa,18 and Birindelli, Wigniolle19 for non–periodic homogenization,
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Rezakhanlou and Tarver,20 Souganidis,21 Lions, Souganidis22,23 for stochas-
tic homogenization, the book,9 Artstein, Gaitsgory,3 the first two authors,4

and the references therein for singular perturbations in optimal control.
Let us stress that all the aforementioned papers consider only two scales

and that, as far as we know, fully nonlinear problems with multiple scales
have been attacked for the first time in our paper;7 in fact, iterated homoge-
nization was addressed only in the variational setting, starting with the pio-
neering work of Bensoussan, J.L. Lions and Papanicolaou24 for linear equa-
tions and, afterwards, for semilinear equations, using the Γ–convergence
approach25,26 (see also and references therein) or G–convergence tech-
niques.27–29

The plan of the paper is as follows. The standing assumptions are listed
in Section 1. Section 2 recalls the notions of ergodicity and stabilization
for a Hamiltonian. Section 3 is devoted to the regular perturbations of
two-scale problems because they are of independent interest and for later
use. We address the multiscale singular perturbations and the multiscale
homogenization respectively in Section 4 and in Section 5. Some examples
arising from deterministic optimal control theory and differential games are
collected in Section 6. One of them replaces the coercivity of the Hamilto-
nian with a non-resonance condition and allows to show that exchanging
the roles of ε and ε2 may produce a different effective PDE.

1. Standing assumptions

We consider Bellman–Isaacs Hamiltonians

H(x, y, px, py) := min
β∈B

max
α∈A

Lα,β(x, y, px, py),

for the family of linear operators

Lα,β(x, y, px, py) := −px · f(x, y, α, β)− py · g(x, y, α, β)− l(x, y, α, β).

The following assumptions will hold in Sections 2 and 3:

– The control sets A and B are compact metric spaces.
– The functions f , g and l are bounded continuous functions in Rn×

Rm ×A×B with values, respectively, in Rn, Rm and R.
– The drift vectors f and g are Lipschitz continuous in (x, y), uni-

formly in (α, β).
– The running cost l is uniformly continuous in (x, y), uniformly in

(α, β).
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– The initial condition h is bounded and uniformly continuous.
– The functions f , g, h and l are Zm-periodic in the fast variables y.
– H is coercive in py: there exist ν, C ∈ R+ such that:

H(x, y, px, py) ≥ ν|py| − C (1 + |px|) for every x, y, px, py.

Let us observe that the last assumption holds provided that:

Bm(0, ν) ⊂ conv{g(x, y, α, β) | α ∈ A} ∀x, y, β

where Bm(0, ν) is the ball centered in 0 with radius ν in the space Rm.
In the deterministic control theory, this relation entails a strong form

of small-time controllability of the deterministic fast subsystem, i.e. any
two points can be reached from one another by the player acting on α,
whatever the second player does, and within a time proportional to the
distance between the points.

We introduce the recession function (or homogeneous part) of H in py

by

H ′(x, y, py) := min
β∈B

max
α∈A

{−py · g(x, y, α, β)}.

We note that H ′ is positively 1-homogeneous in py, namely H ′(x, y, λpy) =
λH ′(x, y, py) for λ ≥ 0 and that, for every x, px ∈ Rn, there is a constant
C so that

|H(x, y, px, py)−H ′(x, y, py)| ≤ C ∀ (y, py) ∈ Rm × Rm, (3)

for every (x, px) in a neighborhood of (x, px).

In the case of three scales, treated in Section 4.1, the Hamiltonian de-
pends also on z and pz. Then the linear operators Lα,β have the additional
term −pz · r(x, y, z, α, β), whereas f, g, and l may depend on z as well. We
make the same assumptions on the dependence of the data from z as from
y, namely, periodicity, Lipschitz continuity of f, g, r, and uniform continuity
of l. The obvious analogous assumptions are made in the general case of
j + 1 scales studied in Section 4.2.

2. Ergodicity, stabilization and the effective problem

The aim of this Section is to recall from6,7 the notions of ergodicity and of
stabilization that are crucial in the definition of the effective problem (HJ).
We establish some properties of the effective operators and in some cases
we provide their explicit formulas.
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2.1. Ergodicity and the effective Hamiltonian

This Subsection is devoted to recall the definition of ergodicity introduced
in.5 For (x, px) fixed, by the standard viscosity solution theory, the cell
δ-problem

δwδ +H(x, y, px, Dywδ) = 0 in Rm, wδ periodic, (CPδ)

has a unique solution. We denote the solution by wδ(y;x, px) so as to display
its dependence on the frozen slow variables. We say that the Hamiltonian
is ergodic in the fast variable at (x, px) if

δwδ(y;x, px) → const as δ → 0, uniformly in y.

In this case, we define

H(x, px) := − lim
δ→0

δwδ(y;x, px);

the function H is called effective Hamiltonian. We say that H is ergodic
if it is ergodic at every (x, px). In the next Proposition we collect some
properties of H and, in some special cases, also its explicit formula.

Proposition 2.1. Under the standing assumptions there holds

(a) the Hamiltonian H is ergodic.
(b) H is regular: there are C ∈ R and a modulus of continuity ω such that:

|H(x1, p)−H(x2, p)| ≤ C|x1 − x2|(1 + |p|) + ω(|x1 − x2|) ∀xi, p ∈ Rn;

|H(x, p1)−H(x, p2)| ≤ C(|p1 − p2|) ∀x, pi ∈ Rn;

in particular, the Comparison Principle holds for the effective problem
(HJ).

(c) if

H(x, y, px, py) ≥ H(x, y, px, 0) ∀y, py ∈ Rm, (4)

then H has the explicit formula:

H(x, px) = max
y

H(x, y, px, 0).

Proof The proofs of (a) and (b) are slight adaptations of the arguments
used in [5, Proposition 9], [4, Proposition 12] and [12, Lemma 2.2] so we
omit them.

(c) The Comparison Principle for the cell δ-problem (CPδ) entails:
δwδ ≥ − supy H(x, y, px, 0); as δ → 0, we infer:

H(x, px) ≤ sup
y
H(x, y, px, 0).
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In order to prove the reverse inequality, we shall argue by contradiction,
assuming: H(x, px) < H(x, y, px, 0) in a open set U . Therefore, the cell
δ-problem reads

δwδ +H0(y,Dywδ) +H(x, y, px, 0) = 0

where H0(y, q) := H(x, y, px, q) − H(x, y, px, 0). The ergodicity of H and
the relation (4) entail

0 ≤ H(x, px)−H(x, y, px, 0) +O(δ) inU.

As δ → 0, we obtain the desired contradiction. �

Remark 2.1. Let us observe that condition (4) is satisfied if the control α
splits into (α1, α2), where αi belongs to the compact Ai (i = 1, 2), the drift f
and the running cost l do not depend on α2, while the drift g = g(x, y, α2, β)
fulfills:

Bm(0, ν) ⊂ conv{g(x, y, α2, β) | α2 ∈ A2} ∀x, y, β.

2.2. Stabilization and the effective initial data

The stabilization to a constant for degenerate eqs. was introduced by the
first two authors.5 For x fixed, the cell Cauchy problem for the homogeneous
Hamiltonian H ′

∂tw+H ′(x, y,Dyw) = 0 in (0,+∞)×Rm, w(0, y) = h(x, y) on Rm

(CP′)
has a unique bounded viscosity solution w(t, y;x). Observe that by the
positive homogeneity of H ′, the constants ‖h(x, ·)‖∞ and -‖h(x, ·)‖∞ are
respectively a super- and a subsolution. Furthermore, the Comparison Prin-
ciple yields the uniform bound: ‖w(t, ·)‖∞ ≤ ‖h(x, ·)‖∞ for all t ≥ 0.

We say that the pair (H,h) is stabilizing (to a constant) at x if

w(t, y;x) → const as t→ +∞, uniformly in y. (5)

In this case, we define

h(x) := lim
t→+∞

w(t, y;x). (6)

We say that the pair (H,h) is stabilizing if it is stabilizing at every x ∈ Rn.
The function h is called the effective initial data.
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Proposition 2.2. Under the standing assumptions, the pair (H,h) is sta-
bilizing. Moreover, the effective initial datum h is continuous and has the
form:

h(x) = min
y
h(x, y).

The proof is a slight adaptation of the arguments used in [5, Proposition
10] and in [4, Theorem 8] and we shall omit it.

3. Regular perturbation of singular perturbation problems

This Section is devoted to a convergence result for the regular perturbation
of a singular perturbation problem{

∂tu
ε +Hε

(
x, y,Dxu

ε,
Dyuε

ε

)
= 0 in (0, T )× Rn × Rm

uε(0, x, y) = hε(x, y) on Rn × Rm.
(HJε)

Regular perturbation means that Hε → H and hε → h as ε→ 0 uniformly
on all compact sets and that H, h and every Hε, hε satisfy the standard
assumptions of Sec. 1. For example, we have a regular perturbation when
the control sets A and B are independent of ε and the functions fε, gε and
lε converge locally uniformly to f , g and l. We suppose also that

|Hε(x, y, 0, 0)| ≤ C ∀(x, y), (7)

for some constant C independent of ε small (this assumption is satisfied
for instance if the running costs lε are equibounded). Let us note that the
problem (HJε) has a unique bounded solution (that is also periodic in y)
and fulfills the Comparison Principle.4,5

The next result and the arguments of its proof will be used extensively
in the next Sections.

Theorem 3.1. Assume that Hε and hε converge respectively to H and to
h uniformly on the compact sets and that the equiboundedness condition (7)
holds. Then, uε converges uniformly on the compact subsets of (0, T )×Rn

to the unique viscosity solution of (HJ) where the effective Hamiltonian H

and the effective initial datum h are defined respectively in Subsec. 2.1 and
2.2.

Proof The proof of this Theorem relies on [7, Corollary 1] (see also [5,
Theorem 1]) and on the ergodicity and stabilization results stated in Propo-
sition 2.1 and in Proposition 2.2. For the sake of completeness, let us sketch
the main features of the argument. The family {uε} is equibounded; indeed,
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the Comparison Principle gives: ‖uε(t, ·)‖∞ ≤ supε ‖hε‖∞ + Ct. We can
therefore define the upper semilimit u of uε as follows

u(t, x) := lim sup
ε→0, (t′,x′)→(t,x)

sup
y
uε(t′, x′, y) if t > 0,

u(0, x) := lim sup
(t′,x′)→(0,x), t′>0

u(t′, x′) if t = 0.

We define analogously the lower semilimit u by replacing limsup with liminf
and sup with inf. The two-steps definition of the semilimit for t = 0 is
needed to avoid a possible initial layer.

Let us notice that, under our hypotheses, the effective problem (HJ)
satisfies the Comparison Principle and admits exactly one bounded solution
u. If u and u are respectively a super- and a subsolution to (HJ) then the
proof is accomplished. Actually, the Comparison Principle ensures: u ≤ u ≤
u. On the other hand the reverse inequality u ≤ u is always true. Whence,
we have u = u = u and, by standard arguments, we deduce: uε → u locally
uniformly as ε→ 0.

Let us now ascertain that u is a subsolution to (HJ); being similar, the
other proof is omitted. We proceed by contradiction assuming that there
are a point (t, x) ∈ (0, T ) × Rn and a smooth test function ϕ such that:
u(t, x) = ϕ(t, x), (t, x) is a strict maximum point of u− ϕ and there holds

∂tϕ(t, x) +H(x,Dxϕ(t, x)) ≥ 3η

for some η > 0. For every r > 0, we define

Hε
r (y, py) := min{Hε(x, y,Dxϕ(t, x), py) | |t− t| ≤ r, |x− x| ≤ r}.

We put H := H(x, px) with px = Dxϕ(t, x) and we fix r0 > 0 so that

|∂tϕ(t, x)− ∂tϕ(t, x)| ≤ η as |t− t| < r0, |x− x| ≤ r0.

Now we want to prove that, for every r > 0 small enough, there is a pa-
rameter ε′ > 0 and an equibounded family of functions {χε | 0 < ε < ε′}
(called approximated correctors) so that

Hε
r (y,Dyχ

ε) ≥ H − 2η in Rm. (8)

To this aim, taking into account the ergodicity of H, we fix a parameter
δ > 0 so that the solution wδ to the cell δ-problem (CPδ) fulfills:

‖δwδ +H‖∞ ≤ η.

Since Hε
r (y, py) → H(x, y, px, py) as (ε, r) → (0, 0) uniformly on the

compact sets, the stability property entails that the solution wε
δ,r of

δwε
δ,r +Hε

r (y,Dyw
ε
δ,r) = 0 in Rm, wε

δ,r periodic,
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converges uniformly to wδ as (ε, r) → (0, 0). In particular, for ε′ > 0 and
0 < r′ < min{r0, t}, we get

‖δwε
δ,r +H‖∞ ≤ 2η when 0 < ε < ε′and 0 < r < r′.

The function χε = wε
δ,r is a supersolution of (8). Moreover, by

the Comparison Principle, the family {χε} is equibounded: ‖χε‖∞ ≤
δ−1 sup{|Hε

r (y, 0, 0)| | y ∈ Rm, 0 < ε < ε′}. Hence, our claim is proved.
We consider the perturbed test function

ψε(t, x, y) := ϕ(t, x) + εχε(y).

In the cylinder Qr =]t−r, t+r[×Br(x)×Rm, ψε is a supersolution of (HJε)
(see5 for the rigourous proof). Since {ψε} converges uniformly to ϕ on Qr,
we obtain

lim sup
ε→0, t′→t, x′→x

sup
y

(uε − ψε)(t′, x′, y) = u(t, x)− ϕ(t, x).

But (t, x) is a strict maximum point of u − ϕ, so the above relaxed upper
limit is negative on ∂Qr. By compactness, one can find η′ > 0 so that
uε − ψε ≤ −η′ on ∂Qr for ε small. Since ψε is a supersolution in Qr, we
deduce from the Comparison Principle that ψε ≥ uε + η′ in Qr for ε small.
Taking the upper semi-limit, we get ϕ ≥ u + η′ in (t − r, t + r) × B(x, r).
This is impossible, for ϕ(t, x) = u(t, x). Thus, we have reached the desired
contradiction.

We now check that u satisfies the initial condition, that is u ≤ h. Let
wε

r be the unique solution of the following Cauchy problem{
∂tw

ε
r +Hε,′

r (y,Dyw
ε
r) = 0 in (0,+∞)× Rm,

wε
r(0, y) = hε

r(y) on Rm, wε
r periodic in y

where the Hamiltonian Hε,′
r and the initial datum hε

r are given by

Hε,′
r (y, py) := min{Hε,′(x, y, py) | |x− x| ≤ r},

hε
r(y) := max{hε(x, y) | |x− x| ≤ r}.

Let us claim that

lim sup
r→0, ε→0, t→∞

sup
y
|wε

r(t, y)− h(x)| = 0. (9)

Fix η > 0. The stabilization ensures that the solution w to the cell Cauchy
problem (CP′) fulfills

‖w(T, ·)− h(x)‖∞ ≤ η
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for some T > 0. Letting (ε, r) → (0, 0), we have Hε,′
r → H ′(x, ·) and

hε
r → h(x, ·) uniformly on the compact sets; therefore, by the stability

properties of viscosity solutions, we know that wε
r → w′ locally uniformly.

Whence, there are ε′ and r′ so that

‖wε
r(T, ·)− h(x)‖∞ ≤ 2η for all 0 < ε < ε′, 0 < r < r′.

Since Hε,′
r (·, 0) ≡ 0, the Comparison Principle entails that

‖wε
r(t, ·)− h(x)‖∞ ≤ 2η for all t ≥ T , 0 < ε < ε′, 0 < r < r′.

This gives (9).
Let r > 0, ε′ > 0 and T > 0 be such that the last inequality is satified.

For Q+
r (x) := (0, r) × Br(x) × Rm, we fix M so that M ≥ ‖uε‖L∞(Q+

r (x))

for all ε < ε′ and we construct a bump function ψ0 that is nonnegative,
smooth, with ψ0(x) = 0 and ψ0 ≥ 2M on ∂Br(x). Finally, we choose the
constant C > 0 given by (3) so that

|Hε(x, y,Dxψ0(x), py)−Hε,′(x, y, py)| ≤ C

for every (y, py), x ∈ Br(x), 0 < ε < ε′. We introduce the function

ψε(t, x, y) := wε
r(ε

−1t, y) + ψ0(x) + Ct

and we observe that it is a supersolution of

∂tψ
ε +Hε(x, y,Dxψ

ε, ε−1Dyψ
ε) = 0 in Q+

r (x)

ψε = hε on {0} ×Br(x)× Rm, ψε = M on [0, r)× ∂Br(x)× Rm.

By the Comparison Principle, we deduce that

uε(t, x, y) ≤ ψε(t, x, y) = wε
r(ε

−1t, y) + ψ0(x) + Ct in Q+
r (x).

Taking the supremum over y and sending ε→ 0, we obtain the inequality

u(t, x) ≤ h(x) + 2η + ψ0(x) + Ct for all t > 0, x ∈ Br(x).

Sending t→ 0+, x→ x, we get u(0, x) ≤ h(x) + η. Taking into account the
arbitrariness of η, one can easily accomplish the proof. �

Remark 3.1. Let us stress that the coercivity assumption has been used
only for establishing the following properties: i) the starting Hamiltonian
H is ergodic, ii) the pair (H,h) is stabilizing, iii) the effective Hamiltonian
H is sufficiently regular to fulfill the Comparison Principle.

It is worth to recall that there exist non-coercive Hamiltonians that
enjoy properties (i)–(iii) (e.g., see Sec. 6 below). It is obvious that Theorem
3.1 applies also to these Hamiltonians.
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4. Singular perturbations with multiple scales

This Section is devoted to the study of singular perturbation problems
having a finite number of scales. For the sake of simplicity, in the first
Subsection we shall focus our attention on the three scales case, which is the
simplest one, providing a detailed proof of our result. After, in the second
Subsection we shall briefly give the result for a wider class of problems.

4.1. The three scale case

We consider the problems:{
∂tu

ε +Hε
(
x, y, z,Dxu

ε,
Dyuε

ε , Dzuε

ε2

)
= 0 in (0, T )× Rn × Rm × Rp

uε(0, x, y, z) = hε(x, y, z) on Rn × Rm × Rp

(10)
where Hε and hε are 1-periodic in y and z. Each variable corresponds to a
certain scale of the problem: x is the macroscopic (or the slow) variable, y is
the mesoscopic (or the not so fast variable) variable and z is the microscopic
(or the fast) variable.

Roughly speaking, we shall attack this problem iteratively: by virtue of
the different powers of ε, one first considers both x and y as slow variables,
freezing them and homogenizing with respect to z and after, still with x

frozen, one shall homogenizes with respect to y. In other words, in a first
approximation, problem (10) is a singular perturbation problem only in the
variable z; under adequate assumptions of ergodicity and stabilization with
respect to z, we shall achieve a mesoscopic effective Hamiltonian H1 and
uε(t, x, y, z) should converge to the solution vε(t, x, y) of the mesoscopic
problem{

∂tv
ε +H1

(
x, y,Dxv

ε,
Dyvε

ε

)
= 0 in (0, T )× Rn × Rm

vε(0, x, y) = h1(x, y) on Rn × Rm.

This problem falls within the theory of Sec. 3 (see also5); vε will converge
to the solution u of the limit problem (HJ) provided that H1 is ergodic
and (H1, h1) is stabilizing. In conclusion, we expect that uε(t, x, y, z) will
converge to u(t, x) where the effective quantities are defined inductively.

For the sake of simplicity, we shall assume as before that the operator
H is given by

H(x, y, z, px, py, pz) := min
β∈B

max
α∈A

Lα,β(x, y, z, px, py, pz),
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for the family of linear operators

Lα,β(x, y, z, px, py, pz) := −px · f(x, y, z, α, β)− py · g(x, y, z, α, β)

− pz · r(x, y, z, α, β)− l(x, y, z, α, β).

We shall require the following assumptions:

– Hε → H and hε → h as ε→ 0 uniformly on the compact sets. We also
suppose that H, h and every Hε, hε satisfy the standard assumptions
of Sec. 1, i.e. they are 1-periodic in (y, z) and Hε, H are HJI operators
with the regularity in the coefficients suitably extended to the additional
variable z.

– The Hamiltonians are equibounded: |Hε(x, y, z, 0, 0, 0)| ≤ C, for every
x, y, z and ε.

– Microscopic coercivity The Hamiltonian H is coercive in pz: there are
ν, C ∈ R+, such that

H(x, y, z, px, py, pz) ≥ ν|pz| − C(1 + |px|+ |py|) ∀x, y, z, px, py, pz.

– Mesoscopic coercivity For some ν, C ∈ R+, there holds

H(x, y, z, px, py, 0) ≥ ν|py| − C(1 + |px|) ∀x, y, z, px, py.

It is worth to observe that the first two assumptions ensure that problem
(10) admits exactly one continuous bounded solution uε that is periodic in
(y, z). For instance, the second assumption is guaranteed by the equibound-
edness of the running costs while the last two assumptions are satisfied if
there is ν > 0 such that, for every (x, y, z, β), there holds

Bm(0, ν) ⊂ conv{g(x, y, z, α, β) | α ∈ A}, (11)

Bp(0, ν) ⊂ conv{r(x, y, z, α, β) | α ∈ A}. (12)

We denote by H ′ the recession function of H with respect to the vari-
ables (y, z):

H ′(x, y, z, py, pz) := min
β∈B

max
α∈A

{−py · g(x, y, z, α, β)− pz · r(x, y, z, α, β)} .

The functionH ′ is positively 1-homogeneous in (py, pz) and for every (x, px)
there is a constant C such that

|H(x, y, z, px, py, pz)−H ′(x, y, z, py, pz)| ≤ C ∀y, py ∈ Rm, z, pz ∈ Rp

(13)
for every (x, px) in a neighborhood of (x, px). We introduce also the reces-
sion function with respect to z for x and y frozen:

H ′′(x, y, z, pz) := H ′(x, y, z, 0, pz) = min
β∈B

max
α∈A

{−pz · r(x, y, z, α, β)} .
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We observe that H ′′ is positively 1-homogeneous in pz and for every
(x, y, px, py) there is a constant C such that

|H(x, y, z, px, py, pz)−H ′′(x, y, z, pz)| ≤ C ∀z, pz ∈ Rp (14)

for every (x, y, px, py) in a neighborhood of (x, y, px, py).
Let us now state some results on the construction of the effective Hamil-

tonian H and the effective initial datum h. For some special cases, explicit
formulas are also provided.

Proposition 4.1. Under the above assumptions, we have:

(a) The Hamiltonian H is ergodic in the microscopic variable z. The effec-
tive Hamitonian H1 = H1(x, y, px, py) is regular: there are C ∈ R and
a modulus of continuity ω such that:

|H1(x1, y1, p, q)−H1(x2, y2, p, q)| ≤ ω(|x1 − x2|+ |y1 − y2|)
+ C(|x1 − x2|+ |y1 − y2|)(1 + |p|+ |q|)

|H1(x, y, p1, q1)−H1(x, y, p2, q2)| ≤ C(|p1 − p2|+ |q1 − q2|)

for every xi, pi ∈ Rn, yi, qi ∈ Rm.
(b) H1 is coercive in py; moreover, it is ergodic in y and its effective Hamil-

tonian H fulfills the Comparison Principle.
(c) Assume that for each (y, py) there holds

H(x, y, z, px, py, pz)−H(x, y, z, px, py, 0) ≥ 0 ∀z, pz ∈ Rp, (15)

and

H(x, y, z, px, py, 0)−H(x, y, z, px, 0, 0) ≥ 0 ∀y, py ∈ Rm, ∀z ∈ Rp.

(16)
Then, H(x, px) can be written as

H(x, px) = max
y,z

H(x, y, z, px, 0, 0).

(d) [7, Lemma 2] The recession function H ′ is ergodic in the microscopic
variable z; its effective Hamiltonian is the recession function H ′

1 of H1.

Proof a) By virtue of the microscopic coercivity and Proposition 2.1-
(a), H is ergodic in z with an effective Hamiltonian H1. The regularity
of H1 is an immediate consequence of Proposition 2.1-(b) (with x and px

replaced respectively by (x, y) and (px, py)).
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b) In order to prove that H1 is coercive in py, we first observe
that the solution wδ to the microscopic δ-cell problem satisfies: δwδ ≤
− infz H(x, y, z, px, py, 0). As δ → 0, we get:

inf
z
H(x, y, z, px, py, 0) ≤ H1(x, y, px, py)

and, by the mesoscopic coercivity, we deduce that H1 is coercive in py.
Applying Proposition 2.1, one obtains the second part of the statement.

c) Proposition 2.1-(c) yields:H1(x, y, px, py) = maxz H(x, y, z, px, py, 0).
For each (x, px), relation (16) ensures:

H1(x, y, px, py)−H1(x, y, px, 0) ≥ 0 ∀y, py ∈ Rm.

Applying again Proposition 2.1-(c), we obtain the statement.
d) For the sake of completeness, let us recall the arguments of [7,

Lemma 2]. Arguing as in (a), one can prove that Hλ(x, y, z, py, pz) :=
λ−1H(x, y, z, 0, λpy, λpz) is ergodic in z with the effective Hamiltonian
Hλ(x, y, py) := λ−1H1(x, y, 0, λpy). Since Hλ → H ′ as λ→ +∞ uniformly
(for x bounded), by the Comparison Principle on the cell δ-problem, one
obtains that H ′ is ergodic in z with H ′

1 := limλ→+∞ λ−1H1(x, y, 0, λpy) as
effective Hamiltonian.

Let us now check that H ′
1 is the recession function of H1. We first note

that the positive 1-homogeneity of H ′ entails the one of H ′
1. By estimate

(13), the Comparison Principle yields:

|H1(x, y, px, py)−H ′
1(x, y, py)| ≤ C ∀y, py ∈ Rm

for every (x, px) in a neighborhood of (x, px), namely H ′
1 is the recession

function of H1. �

Proposition 4.2. Under our assumptions, the pair (H ′′, h) is stabilizing
at (x, y) to minz h(x, y, z) =: h1(x, y). Moreover, the pair (H1, h1) is stabi-
lizing at x to miny,z h(x, y, z) =: h(x).

The proof of this Proposition relies on the iterative application of Propo-
sition 2.2 and we shall omit it.

Theorem 4.1. Under the above assumptions, the solution uε to problem
(10) converges uniformly on the compact subsets of (0, T )×Rn to the unique
viscosity solution of (HJ) where the effective Hamiltonian H and the effec-
tive initial datum h are defined respectively in Proposition 4.1 and 4.2.
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Proof The proof of this Theorem is based on [7, Theorem 2] and on the
properties of ergodicity and stabilization established in Proposition 4.1 and
4.2. For the sake of completeness, let us just stress the crucial parts. We
shall argue as in the proof of Theorem 3.1: we set

u(t, x) := lim sup
ε→0, (t′,x′)→(t,x)

sup
y,z

uε(t′, x′, y, z) if t > 0,

u(0, x) := lim sup
(t′,x′)→(0,x), t′>0

u(t′, x′) if t = 0.

and we want to show that u is a subsolution to (HJ). As before, it suffices
to prove that, for every r > 0 small enough, there is a parameter ε′ > 0
and an equibounded family of continuous correctors {χε | 0 < ε < ε′} so
that

Hε(x, y, z,Dxϕ(t, x), Dyχ
ε,
Dzχ

ε

ε
) ≥ H − 2η

in Qr(t, x) := (t− r, t+ r)×Br(x)×Rm×Rp, for every ε < ε′. To this aim,
we consider the mesoscopic δ-cell problem

δwδ +H1(x, y, px, Dywδ) = 0 (17)

with px := Dxϕ(t, x). For δ > 0 sufficiently small, the ergodicity of H1

(established in Proposition 4.1-(b)) ensures

‖δwδ +H‖∞ ≤ η (18)

where H is defined as before. For every ε > 0 and r > 0, we consider the
problem

δwε
δ,r +Hε

r (y, z,Dyw
ε
δ,r,

Dzw
ε
δ,r

ε
) = 0

withHε
r (y, z, py, pz) := minx∈Br(x)H

ε(x, y, z,Dxϕ(x), py, pz). We note that
Hε

r (y, z, py, pz) → H(x, y, z, px, py, pz) locally uniformly as (ε, r) → (0, 0)
and that the limit Hamiltonian H is ergodic in z with effective Hamiltonian
H1. Hence, applying Theorem 3.1 for the stationary eq., we obtain that
{wε

δ,r} uniformly converge to wδ as (ε, r) → (0, 0). By (18), we deduce that
there are small ε′ and r′ so that

‖δwε
δ,r +H‖∞ ≤ 2η for all 0 < ε < ε′, 0 < r < r′.

Finally, as in Theorem 3.1, it suffices to define χε(y, z) := wε
δ,r(y, z) (for

0 < r < r′ fixed).
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Now, let us check that u(0, x) ≤ h(x). We introduce the following nota-
tions:

Hε,′
r (y, z, py, pz) := min

|x−x|≤r
Hε,′(x, y, z, py, pz),

hε
r(y, z) := max

|x−x|≤r
hε(x, y, z).

It can be easily checked that, as (ε, r) → (0, 0), Hε,′
r and hε

r converge lo-
cally uniformly respectively to H ′(x, ·) and to h(x, ·). Let wε

r be the unique
solution of the Cauchy problem

∂tw
ε
r +Hε,′

r (y, z,Dyw
ε
r , ε

−1Dzw
ε
r) = 0 in (0,+∞)× Rm × Rp

wε
r(0, y, z) = hε

r(y, z), on Rm × Rp, wε
r periodic in y and in z.

By Proposition 2.1-(d) and Proposition 4.2, the limit Hamiltonian
H ′(x, ·) is ergodic with effective Hamiltonian H ′

1 and the pair (H ′′, h) stabi-
lizes with respect to the microscopic variable z. Thus, Theorem 3.1 ensures
that, as (ε, r) → (0, 0), the solution wε

r converges locally uniformly to the
one of the mesoscopic cell Cauchy problem

∂tw +H ′
1(x, y,Dyw) = 0 in (0,+∞)× Rm,

w(0, y) = h1(x, y) on Rm, w periodic in y.

Since (H ′
1, h1) is stabilizing (still by Proposition 4.2), for every η > 0, there

exists T > 0 such that ‖w(T, ·)− h(x)‖∞ ≤ η. Hence, for every η > 0 and
for T sufficiently large, there exist ε′ and r′ so small that

‖wε
r(T, ·, ·)− h(x)‖∞ ≤ 2η for every ε ≤ ε′, r ≤ r′.

Therefore, by the Comparison Principle, we obtain:

‖wε
r(t, ·, ·)− h(x)‖∞ ≤ η for every ε ≤ ε′, r ≤ r′, t ≥ T

and we conclude as before. �

Remark 4.1. This Theorem also applies to non coercive Hamiltonian that
are microscopically stabilizing and ergodic with a mesoscopic Hamiltonian
that fulfills the Comparison Principle, stabilizes, and is ergodic with an
effective Hamiltonian that also fulfills the Comparison Principle (e.g., see
Sec. 6 below). We refer the reader to the paper7 for the case when the
Comparison Principle fails either for the mesoscopic Hamiltonian or for the
effective one.
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4.2. The general case

We consider the problem having j + 1 scales:
∂tu

ε +Hε
(
x, y1, . . . , yj , Dxu

ε, ε−1Dy1u
ε, . . . , ε−jDyju

ε
)

= 0
(0, T )× Rn × Rm1 × . . .× Rmj

uε(0, x, y1, . . . , yj) = hε(x, y1, . . . , yj) Rn × Rm1 × . . .× Rmj .

(19)

We assume the following hypotheses:

– Hε → H and hε → h locally uniformly as ε → 0; these functions are
periodic in (y1, . . . , yj);

– the initial data hε and h are BUC;
– the Hε are equibounded: |Hε(x, y1, . . . , yj , 0, 0, . . . , 0)| ≤ C;
– iterated coercivity: there are ν, C ∈ R+, such that, for every k = j, . . . , 1,

there holds

H(x, y1, . . . , yj , px, py1 , . . . , pyk
, 0, . . . , 0) ≥ ν|pyk

|

− C

(
1 + |px|+

k−1∑
i=1

|pyi
|

)
for every x, y1, . . . , yj , px, py1 , . . . , pyk

;
– there exists a recession function Hε,′ = Hε,′(x, y1, . . . , yj , py1 , . . . , pyj

),
positively 1-homogeneous in (py1 , . . . , pyj ), which satisfies, for some con-
stant C > 0∣∣Hε(x, y1, . . . , yj , px, py1 , . . . , pyj

)−Hε,′(x, y1, . . . , yj , py1 , . . . , pyj
)
∣∣ ≤ C

for every yi, pyi ∈ Rmi (i = 1, . . . , j), for every (x, px) in a neighborhood
of (x, px) and for every ε.

Let us observe that the equiboundedness of the running costs ensures
the third assumptions; furthermore, the Hamiltonian

H(x, y1, . . . , yj , px, py1 , . . . , pyj ) = min
β

max
α

{
−f · px −

j∑
i=1

gi · pyi − l

}
is iteratively coercive whenever there holds

Bmi
(0, ν) ⊂ conv{gi(x, y1, . . . , yj , α, β) | α ∈ A}

for every x, y1, . . . , yj , β (i = 1, . . . , j).
We write Hj = H and hj = h. For each i = j, . . . , 1, Hi fulfills the

Comparison Principle and is ergodic with respect to yi. We denote by Hi−1

its effective Hamiltonian. We set H := H0.
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As before, one can prove that the Hamiltonian H has a recession func-
tion H ′ which is the uniform limit on the compact sets of Hε,′ as ε → 0.
Moreover, as in Proposition 4.1-(d), we obtain that Hi has a recession func-
tion H ′

i, that every H ′
i is ergodic and that its effective Hamiltonian is H ′

i−1

(for every i = j, . . . , 1).
For H ′′

i := H ′
i(x, y1, . . . , yi, 0, . . . , 0, pi), the pair (H ′′

i , hi) is stabilizing
with respect to yi at each point (x, y1, . . . , yi−1) (for i = j, . . . , 1). We denote
by hi−1 its effective initial data and we put h = h0.

Theorem 4.2. Under the above assumptions, uε converges uniformly on
the compact subsets of (0, T )×Rn to the unique viscosity solution of (HJ).

We shall omit the proof if this Theorem: actually, it can be easily ob-
tained by using iteratively the arguments followed in Theorem 4.1.

Remark 4.2. This result can be immediately extended to pde with non
power-like scales:

∂tu
ε +Hε(x, y1, . . . , yj , Dxu

ε, ε−1
1 Dy1u

ε, . . . , ε−1
j Dyj

uε) = 0,

with ε1 → 0 and εi/εi−1 → 0 (i = 2, . . . , j). The above eq. encompasses
(19) for εi = εi.

5. Iterated homogenization for coercive equations

In this Section we address the study of the iterated homogenization of first
order equations with multiple scales. For the sake of simplicity, we shall
focus our attention on the three-scale case:{

∂tv
ε + F ε

(
x, x

ε ,
x
ε2 , Dxv

ε
)

= 0 in (0, T )× Rn

vε(0, x) = hε(x, x
ε ,

x
ε2 ) on Rn.

(20)

The operator F ε = F ε(x, y, z, p) and the function hε = hε(x, y, z) are
periodic in y and in z; moreover, they are respectively a regular perturbation
of F and h, namely, F ε → F and hε → h locally uniformly as ε → 0. We
assume that F is a HJI operator

F (x, y, z, px) := min
β∈B

max
α∈A

{−px · f(x, y, z, α, β)− l(x, y, z, α, β)}

where the drift f and the costs l and h fulfill the requirements stated in
Sec. 1. We assume also that F is coercive with respect to p: for ν, C ∈ R+

there holds

F (x, y, z, p) ≥ ν|p| − C ∀x, y, z, p; (21)
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(for instance, this condition holds if Bn(0, ν) ⊂ conv{f(x, y, z, α, β) | α ∈
A} for every (x, y, β)).

Let us emphasize that problem (20) encompasses the problem studied
by Lions, Papanicolaou and Varadhan.10 Actually, we extend the previous
literature in two directions: we consider regular perturbations F ε and hε of
F and of h and, mainly, we address the three-scale problem both for the
HJI eq. and for the initial condition.

Our purpose is to apply Theorem 4.1 by proving that (20) is a particular
case of (10). To this aim, we introduce the shadow variables y = x/ε and z =
x/ε2 and consider the solution uε(t, x, y, z) of (10) with the Hamiltonian
H given by

H(x, y, z, px, py, pz) = F (x, y, z, px + py + pz).

The Hamiltonian H clearly satisfies the assumptions of Sec. 4. By
uniqueness, one sees immediately that

vε(t, x) = uε(t, x, x/ε, x/ε2).

By the periodicity in y, Theorem 4.1 ensures that uε converges uniformly
on compact subsets to the unique solution of (HJ). Therefore, the following
result holds:

Corollary 5.1. Under the above assumptions, vε converges uniformly on
the compact subsets of (0, T )×Rn to the unique viscosity solution of (HJ).

Remark 5.1. Arguing as in the Subsec. 4.2, one can easily extend this
result to the homogenization with an arbitrary number of scales.

6. Examples

In this Section we discuss some examples arising in the optimal control
theory and in deterministic games. For simplicity, we shall only address
three-scale problems.

The first Subsection is devoted to a singular perturbation of a determin-
istic game; in some special cases, the effective problem is still a deterministic
game and we shall provide the explicit formulas for the effective quantities
(dynamics, pay-off, etc.). The second Subsection concerns the homogeniza-
tion of a deterministic optimal control problem. In the third Subsection the
coercivity of the Hamiltonian is replaced by a non-resonance condition in-
troduced by Arisawa and Lions.30 Here we show that the effective problem
may change if the roles of ε and ε2 are exchanged.
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6.1. Singular perturbation of a differential game

Fix T > 0 and, for each ε > 0, consider the dynamics

ẋs = f(xs, ys, zs, αs, βs), x0 = x,

εẏs = g(xs, ys, zs, αs, βs), y0 = y,

ε2żs = r(xs, ys, zs, αs, βs), z0 = z.

for 0 ≤ s ≤ T . The admissible controls αs and βs are measurable function
with value respectively in the compact sets A and B. They are governed
by two different players. We consider the cost functional

P ε(t, x, y, z, α, β) :=
∫ t

0

l(xs, ys, zs, αs, βs) ds+ h(xt, yt, zt).

The goal of the first player controlling α is to minimize P ε, wheras the
second player wishes to maximize P ε by controlling β.

Consider the upper value function

uε(t, x, y, z) := sup
β∈B(t)

inf
α∈A(t)

P ε(t, x, y, z, α, β[α]),

where A(t) denotes the set of admissible controls of the first player in the
interval [0, t] and B(t) denotes the set of admissible strategies of the second
player in the same interval (i.e., nonanticipating maps from A(t) into the
admissible controls of the second player; see31 for the precise definition).

Under the assumptions of Sec. 1 the upper value function is the unique
viscosity solution of the HJI eq. (10) with31

Hε = H(x, y, z, px, py, pz) = max
α∈A

min
β∈B

{−px · f − py · g − pz · r − l} .

Let us assume (11)–(12), so the Hamitonian H is microscopically and meso-
scopically coercive. Suppose in addition thatH has the properties (15)–(16).
By Theorem 4.1, the upper value uε converge locally uniformly to the so-
lution u to the effective problem∂tu+ max

y,z,α
min

β
{−Dxu · f(x, y, z, α, β)− l(x, y, z, α, β)} = 0,

u(0, x) = min
y,z

{h(x, y, z)}.

Using again the theory of Evans and Souganidis,31 one can see that u is the
upper value of the following effective deterministic differential game. The
effective dynamics are

ẋs = f(xs, ys, zs, αs, βs), x0 = x,
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where y and z are new controls, while the effective cost is

P (t, x, y, z, α, β) :=
∫ t

0

l(xs, ys, zs, αs, βs) ds+ min
y,z

h(xt, y, z).

In the effective game the first player wants to minimize P by choosing the
controls y, z, α, and the second player wants to maximize P by choosing β.

We end this Subsection by giving a simple condition on the control
system that implies (15)–(16). Suppose the controls of the first player are
in the separated form α =

(
αS , αF , αV

)
∈ AS ×AF ×AV , where αS is the

control of the slow variables x, αF of the fast variables y, and αV is the
control of the very fast variables z. More precisely

f = f
(
x, y, z, αS , β

)
, l = l

(
x, y, z, αS , β

)
,

g = g
(
x, y, z, αF , β

)
, r = r

(
x, y, z, αV , β

)
.

In this case the conditions (11)–(12) become

Bm(0, ν) ⊂ conv{g(x, y, z, αF , β) | αF ∈ AF },
Bp(0, ν) ⊂ conv{r(x, y, z, αV , β) | αV ∈ AV }

for every x, y, z, β. Then it is easy to check that (15)–(16) hold, and the
effective Hamiltonian is

H(x, px) = max
(y,z)∈[0.1]2

max
αS∈AS

min
β∈B

{
−px · f

(
x, y, z, αS , β

)
− l
(
x, y, z, αS , β

)}
.

Note that in the further special case

g = ϕ1(x, y, z)αF , AF = Bm(0, 1), ϕ1(x, y, z) ≥ ν > 0,

r = ϕ2(x, y, z)αV , AV = Bp(0, 1), ϕ2(x, y, z) ≥ ν > 0,

the PDE in (10) becomes the model problem (1) presented in the Introduc-
tion.

6.2. Homogenization of a deterministic optimal control

problem

For each ε > 0, we consider dynamics having the form

ẋs = f
(
xs,

xs

ε
,
xs

ε2
, αs

)
, x0 = x

for 0 ≤ s ≤ T . The admissible controls α· are measurable function with
value in the compact A. We denote by A(t) the set of admissible controls
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on the interval (0, t). Our goal is to choose the control in order to minimize
the payoff functional:

P ε(t, x, α) :=
∫ t

0

l
(
xs,

xs

ε
,
xs

ε2
, αs

)
ds+ h

(
xt,

xt

ε
,
xt

ε2

)
.

By standard theory9 the value function

vε(t, x) := inf
α∈A(t)

P ε(t, x, y, α),

is the unique viscosity solution of the HJ eq. (20), provided that f , l and h
fulfill the assumptions of Sec. 1. Moreover, let us recall that the Hamitonian
F is coercive provided that

Bn(0, ν) ⊂ conv{f(x, y, z, α) | α ∈ A} for all (x, y, z).

Under these assumptions, Corollary 5.1 ensures that vε converges locally
uniformly to the solution of problem (HJ). Here h(x) = miny,z h(xt, y, z),
but H does not have an explicit representation.

Note that the eikonal equation (2) is a special case of this example. It
is enough to take

A = Bn(0, 1), f(x, y, z, α) = ϕ(x, y, z)α, ϕ(x, y, z) ≥ ν > 0.

6.3. Multiscale singular perturbation under a nonresonance

condition

This Subsection is devoted to the case of a nonresonance condition, intro-
duced by Arisawa and Lions30 (see also the first two authors6), that ensures
the ergodicity for a class of non-coercive Hamiltonian with an effective op-
erator that fulfills the Comparison Principle and can be written explicitly.

As a byproduct, we show that the roles of ε and ε2 can not be exchanged
in general. To this aim, we first consider a three scales perturbation problem
that is nonresonant in the microscopic variable z and coercive in the meso-
scopic variable y, and then a problem that is coercive in z and nonresonant
in y. The two effective Hamiltonians are different.

1st case: For each ε > 0, consider the dynamics

ẋs = f(xs, ys, zs, α
S
s ), ẏs =

1
ε
g(xs, ys, α

F
s ), żs =

1
ε2
r(xs, ys)

for 0 ≤ s ≤ T with initial conditions

x0 = x, y0 = y, z0 = z.
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The admissible control α = (αS , αF ) splits in two control: one for the slow
and one for the fast variable (the superscript recall this fact). Furthermore,
αS

s and αF
s are measurable functions with value respectively in the compacts

AS and AF . By the choice of α, one wants to minimize the payoff functional:

P ε(t, x, y, z, α) :=
∫ t

0

l(xs, ys, zs, α
S
s ) ds+ h(xt, yt).

Then the value function uε solves the Cauchy problem:
∂tu

ε + max
αS∈AS

{−Dxu
ε · f(x, y, z, αS)− l(x, y, z, αS)}+

max
αF∈AF

{− 1
εDyu

ε · g(x, y, αF )} − 1
ε2 r(x, y) ·Dzu

ε = 0

uε(0, x, y, z) = h(x, y)

We require that the microscopic dynamic is nonresonant and that the
mesoscopic one is coercive, namely:

r(x, y) · k 6= 0 ∀k ∈ Zp \ {0}, Bm(0, ν) ⊂ conv{g(x, y, αF ) | αF ∈ AF }

for every (x, y). The Hamiltonian H is ergodic in the fast variable6,30 and
the mesoscopic Hamiltonian H1 has the form:

H1(x, y, px, py) =
∫

(0,1)p

max
αS∈AS

{−px · f(x, y, z, αS)− l(x, y, z, αS)} dz

+ max
αF∈AF

{−py · g(x, y, αF )}.

One can easily check that H1 fulfills the Comparison Principle, is ergodic
with respect to y and satisfies (4). Therefore Theorem 4.1 ensures that
uε converge locally uniformly to the solution of problem (HJ) where the
effective quantities are given by:

H(x, px) = max
y

∫
(0,1)p

max
αS∈AS

{−px · f(x, y, z, αS)− l(x, y, z, αS)} dz

h(x) = min
y
h(x, y).

2nd case: For each ε > 0, consider the dynamics

ẋs = f(xs, ys, zs, αs), ẏs =
1
ε
g(xs), żs =

1
ε2
r(xs, ys, zs, αs)

for 0 ≤ s ≤ T with initial conditions

x0 = x, y0 = y, z0 = z.
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The control α is a measurable function with value in the compact A. As
before, by the choice of α, one wants to minimize the payoff:

P ε(t, x, y, z, α) :=
∫ t

0

l(xs, ys, zs, αs) ds+ h(xt, zt).

The value function uε is the viscosity solution of the following Cauchy
problem:
∂tu

ε + max
α∈A

{−Dxu
ε · f(x, y, z, α)− 1

ε2Dzu
ε · r(x, y, z, α)− l(x, y, z, α)}

− 1
εDyu

ε · g(x) = 0
uε(0, x, y, z) = h(x, z)

Assume that the dynamics are microscopically coercive and mesoscopically
nonresonant:

g(x) · k 6= 0 ∀k ∈ Zm \ {0}, Bp(0, ν) ⊂ conv{r(x, y, z, α) | α ∈ A}

for every (x, y, z). We require also that condition (15) is satisfied. Hence,
H is microscopically ergodic and stabilizing and the mesoscopic quantities
are given by:

H1(x, y, px, py) = max
α,z

{−px · f(x, y, z, α)− l(x, y, z, α)} − py · g(x)

h1(x, y) = min
z
h(x, z).

Arguing as before, one can prove that the H1 is ergodic, stabilizes, and ful-
fills the Comparison Principle. Whence, by Theorem 4.1, the value function
uε converge locally uniformly to the solution of (HJ) with:

H(x, px) =
∫

(0,1)m

max
α,z

{−px · f(x, y, z, α)− l(x, y, z, α)} dy

h(x) = min
z
h(x, z).
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