
THE MONGE PROBLEM FOR STRICTLY CONVEX NORMS IN R
d

THIERRY CHAMPION AND LUIGI DE PASCALE

Abstra
t. We prove the existen
e of an optimal transport map for the Monge prob-
lem in a 
onvex bounded subset of R

d under the assumptions that the �rst marginal
is absolutely 
ontinuous with respe
t to the Lebesgue measure and that the 
ost is
given by a stri
tly 
onvex norm. We propose a new approa
h whi
h does not use
disintegration of measures.

1. Introdu
tion

The Monge problem has origin in the Mémoire sur la théorie des déblais et remblais

written by G. Monge [23℄, and may be stated as follows:

inf

{
∫

Ω
|x − T (x)|dµ(x) : T ∈ T (µ, ν)

}

, (1.1)

where Ω is the 
losure of a 
onvex open subset of R
d, |·| denotes the usual Eu
lidean norm

of R
d, µ, ν are Borel probabilities on Ω and T (µ, ν) denotes the set of transport maps

from µ to ν, i.e. the 
lass of Borel maps T su
h that T♯µ = ν (i.e. T♯µ(B) := µ(T−1(B))
for ea
h Borel set B).

The main result of this paper is to prove the following existen
e result for a general-

ization of this problem:

Theorem 1.1. Let ‖ · ‖ be a stri
tly 
onvex norm on R
d and assume that µ is absolutely


ontinuous with respe
t to the Lebesgue measure Ld, then the problem

min

{
∫

Ω
‖x − T (x)‖dµ(x) : T ∈ T (µ, ν)

}

(1.2)

has at least one solution.

Before des
ribing the previous results that we know on this problem and our 
ontri-

bution on the subje
t, we make a brief introdu
tion on the Kantorovi
h relaxation for

(1.2). For general probability measures the set of transport maps T (µ, ν) may be empty,

for example if µ = δ0 and ν = 1
2(δ1 + δ−1). But even when T (µ, ν) is non-empty it

may happen that problem (1.1) does not admit a minimizer in T (µ, ν): for example take

µ := H1
⌊{0}×[0,1] and ν := 1

2(H1
⌊{−1}×[0,1] + H1

⌊{1}×[0,1]). Moreover, the obje
tive fun
-

tional of problem (1.2) is non-linear in T and the set T (µ, ν) does not possess the right


ompa
tness properties to deal with the dire
t methods of the Cal
ulus of Variations. A
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suitable relaxation was introdu
ed by Kantorovi
h [21, 22℄ and it proved to be a strong,

de
isive tool to deal with this problem. This relaxation is de�ned as follows. The set of

transport plans from µ to ν is de�ned as

Π(µ, ν) := {γ ∈ P(Ω × Ω) | π1
♯ γ = µ, π2

♯ γ = ν},

where πi denotes the standard proje
tion in the Cartesian produ
t. The set Π(µ, ν) is

always non-empty as it 
ontains at least µ⊗ν. Then Kantorovi
h proposed to study the

problem

min

{
∫

Ω×Ω
‖x − y‖dγ(x, y) : γ ∈ Π(µ, ν)

}

. (1.3)

Problem (1.3) is 
onvex and linear in γ then the existen
e of a minimizer may be obtained

by the dire
t method of the Cal
ulus of Variations. At this point, to obtain the existen
e

of a minimizer for (1.2) it is su�
ient to prove that some solution γ ∈ Π(µ, ν) of (1.3) is
in fa
t indu
ed by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id × T )♯µ.

In [30℄, Sudakov devised an e�
ient strategy to solve (1.2) for a general norm ‖ · ‖
on R

d. However this strategy involved a 
ru
ial step on the disintegration of an optimal

measure γ for (1.3) whi
h was not 
ompleted 
orre
tly at that time. In more re
ent years

the problem (1.1) has been solved �rst by Evans et al. [19℄ with additional regularity

assumptions on µ and ν, and then by Ambrosio [1℄ and Trudinger et al. [31℄ for µ and

ν with integrable density. For C2 uniformly 
onvex norms the problem (1.2) has been

solved by Ca�arelli et al. [11℄ and Ambrosio et al. [3℄, and �nally for 
rystalline norms

in R
d and general norms in R

2 by Ambrosio et al. [2℄. The original proof of Sudakov was

based on the redu
tion of the transport problems to a�ne regions of smaller dimension,

and all the proof we listed above are based on the redu
tion of the problem to a 1-

dimensional problem via a 
hange of variable or area-formula. Let us also mention that

the original approa
h of Sudakov has been partially re
onstru
ted in [12℄.

In this paper, we prove the existen
e of a solution to (1.2) for a general stri
tly 
onvex

norm ‖ · ‖ on R
d, without any regularity assumption on the norm ‖ · ‖. The originality of

our method for the proof of Theorem 1.1 above is that it does not require disintegration

of measures and relies on a simple but powerful regularity result (see Lemma 4.3 below)

whi
h has been used in some transport problem with 
ost fun
tional in non-integral form

[13℄. In se
tion �2 we re
all some well known results on duality and optimality 
onditions

for problem (1.3). In se
tion �3, we introdu
e a se
ondary transport problem in order

to sele
t solutions (1.3) that have a parti
ular regularity property. Se
tion �4 is devoted

to the notion of regular points of a transport γ and in parti
ular to Lemma 4.3, whi
h

states that a transport map γ ∈ Π(µ, ν) is 
on
entrated on a set of regular points. In

the following se
tion �5, we take advantage of this fa
t to prove a regularity result on

the transport set asso
iated to a solution of (1.3). The proof of our main result Theorem

1.1 is �nally derived in �6, while a possible extension to the 
ase of a general norm ‖ · ‖
is dis
ussed in �7.
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2. Preliminary on optimal transportation: duality and ne
essary


onditions

The 
ontent of this se
tion is 
lassi
al (for example see [1, 32℄). Problem (1.3) is 
onvex

and linear, then 
lassi
al 
onvex duality brings useful information on its minimizers. In

parti
ular, the following duality theorem holds (for example we refer to Theorems 3.1.

and 3.3 in [3℄).

Theorem 2.1. The minimum in problem (1.3) is equal to

max

{
∫

Ω
v(x)dµ(x) −

∫

Ω
v(y)dν(y) : v ∈ Lip1(Ω, ‖ · ‖)

}

(2.1)

where Lip1(Ω, ‖ · ‖) is the set of fun
tions v : Ω → R whi
h are 1-Lips
hitz with respe
t

to the norm ‖ · ‖, i.e.

∀x, y ∈ Ω, |v(x) − v(y)| ≤ ‖x − y‖.

Moreover if u ∈ Lip1(Ω, ‖ · ‖) is a maximizer for problem (2.1) then γ ∈ Π(µ, ν) is a

minimizer of problem (1.3) if and only if

∀(x, y) ∈ supp γ, u(x) − u(y) = ‖x − y‖.

In the following, maximizers of (2.1) are referred to as Kantorovi
h transport potentials

for (2.1). If we follow the interpretation of γ as a plan of transport we may dedu
e from

this last theorem that in order to realize an optimal transport the mass should follow

the dire
tion of maximal slope of a Kantorovi
h transport potential u. We give a more

pre
ise statement of this 
lassi
al fa
t in Lemma 2.2 below, and give a short proof to

underline the role of the stri
t 
onvexity of the norm.

Lemma 2.2. Assume that ‖ · ‖ is a stri
tly 
onvex norm. Let γ be an optimal transport

plan for (1.3), let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovit
h potential for (2.1) and let (x, y)
belong to supp(γ) with x 6= y. If u is di�erentiable at x and z ∈ Ω is su
h that u(x) =
u(z) + ‖z − x‖ and z 6= x then

z − x

‖z − x‖
=

y − x

‖y − x‖
.

Remark 2.3. In parti
ular x, y and z are on the same line and z ∈ [x, y] or y ∈ [x, z].

Proof. Without loss of generality we may assume that x = 0. Sin
e u ∈ Lip1(Ω, ‖ · ‖),
we infer that

∀t ∈ [0, 1], u(0) = u(tz) + t ‖z‖.

Sin
e u is di�erentiable at 0, we then get ∇u(0) · z = −‖z‖. On the other hand, for any

z′ 6= 0 one also has ∇u(0) ·z′ ≥ −‖z′‖. As a 
onsequen
e, −∇u(0) belongs to the normal


one of the 
losed 
onvex set K := {z′ : ‖z′‖ ≤ 1} at z
‖z‖ .

Sin
e (x, y) ∈ supp(γ) and u is a Kantorovit
h potential, −∇u(0) also belongs to

the normal 
one of K at
y

‖y‖ . Sin
e K is stri
tly 
onvex and has nonempty interior, the

interse
tion of the normal 
ones to two of its boundary points is {0} unless they 
oin
ide:

as ∇u(0) 6= 0 we get z
‖z‖ = y

‖y‖ . �
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Another 
ru
ial property of optimal transport plans is the 
y
li
al monotoni
ity rel-

ative to the 
ost under 
onsideration: we shall state this in a more general setting to

handle the se
ondary transport problem of the next se
tion.

De�nition 2.4. Let c : Ω2 → [0, +∞]. A transport plan γ ∈ Π(µ, ν) is 
y
li
ally

monotone for the 
ost c (or c-
y
li
ally) monotone if it is 
on
entrated on a set C su
h

that
n

∑

i=1

c(xi, yi) ≤
n

∑

i=1

c(xi, yσ(i))

for all n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ C and any permutation σ of {1, . . . , n}.

The following proposition gives a ne
essary 
ondition for optimality in terms of 
y
li
al

monotoni
ity; for a proof, we refer to Theorem 3.2 in [3℄.

Theorem 2.5. Let c : Ω2 → [0, +∞] be a lower semi
ontinuous 
ost fun
tion, and

assume that the in�mum of the 
orresponding transport problem is �nite:

inf

{
∫

Ω×Ω
c(x, y)dλ : λ ∈ Π(µ, ν)

}

< +∞

If γ is an optimal transport plan for this problem, then there exists a c-
y
li
ally monotone

Borel set C on whi
h c is �nite and γ is 
on
entrated.

Remark 2.6. Duality and su�
ien
y of 
y
li
al monotoni
ity may be pursued in very

general settings [25, 3, 29, 24, 7℄, however for the purpose of this paper duality may be

obtained more easily and we refer the reader to [1, 32℄.

3. Se
ondary transport problem to sele
t monotone transport plans

Following the line of [2℄, we introdu
e a se
ondary transport problem to sele
t optimal

transport plans for (1.3) whi
h have some more regularity: in the next se
tions, we shall

prove that these parti
ular optimal transport plans are indu
ed by transport maps. The

idea that a se
ondary variational problem may help to 
hoose �more regular� or parti
ular

minimizers is the root of the idea of asymptoti
 development by Γ-
onvergen
e (see [4℄

and [5℄) .

We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and �x a Kan-

torovi
h transport potential u, i.e. a maximizer of (2.1). Let us de�ne the new 
ost

fun
tion

β(x, y) :=

{

|x − y|2 if u(x) = u(y) + ‖x − y‖,
+∞ otherwise.

(3.1)

We then 
onsider the following transport problem:

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ Π(µ, ν)

}

. (3.2)

Be
ause of the 
hara
terization of the minimizers for (1.3) given in Theorem 2.1, it

appears that the above problem may be rewritten as

min

{
∫

Ω×Ω
β(x, y)dλ(x, y) : λ ∈ O1(µ, ν)

}

.
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In other words, the problem (3.2) 
onsists in minimizing the new 
ost fun
tional λ 7→
∫

βdλ among the minimizers of problem (1.3), and in this sense it may be 
onsidered as

a se
ondary variational problem.

De�nition 3.1. We shall denote by O2(µ, ν) the minimizers for (3.2).

By Theorem 2.5, the set O2(µ, ν) is non-empty and any of its elements enjoys the

additional property of being 
on
entrated on a set whi
h is also β-
y
li
ally monotone.

This implies the following monotoni
ity, whose proof is derived from that of Lemma 4.1

in [2℄.

Proposition 3.2. Let γ be a minimizer of problem (3.2). Then γ is 
on
entrated on a

σ-�nite set Γ with the following property:

∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x − x′) · (y − y′) ≥ 0 (3.3)

where · denotes the usual s
alar produ
t on R
d.

Proof. Applying Theorem 2.5, we get that γ is 
on
entrated on a β-
y
li
ally monotone

Borel set Γ on whi
h β is �nite. Up to removing a γ-negligible set from Γ, we may

assume that Γ is σ-�nite.

Let (x, y), (x′, y′) ∈ Γ be su
h that x ∈ [x′, y′]. Sin
e γ is optimal for (1.3) and u is a

Kantorovi
h potential for (2.1) we dedu
e that

u(x) = u(y) + ‖x − y‖ and u(x′) = u(y′) + ‖x′ − y′‖.

Sin
e x ∈ [x′, y′] we also have ‖x′ − y′‖ = ‖x − x′‖ + ‖x − y′‖, and then using the fa
t

that u ∈ Lip1(Ω, ‖ · ‖) we have

u(x′) = u(y′) + ‖x − x′‖ + ‖x − y′‖ ≥ u(x) + ‖x − x′‖

and then again sin
e u ∈ Lip1(Ω, ‖ · ‖) we infer that the above inequality is an equality,

so that

u(x) = u(y′) + ‖x − y′‖ and u(x′) = u(x) + ‖x − x′‖.

But then we also have u(x′) = u(y) + ‖x− y‖+ ‖x−x′‖ so that u(x′) = u(y) + ‖y−x′‖.
It then follows that β(x′, y) = |x − y|2 and β(x, y′) = |x − y′|2. Sin
e Γ is β-
y
li
ally

monotone, we 
on
lude

|x − y|2 + |x′ − y′|2 ≤ |x − y′|2 + |x′ − y|2

whi
h is equivalent to (x − x′) · (y − y′) ≥ 0. �

Remark 3.3. In the above proof, we obtain that ‖x − y‖ + ‖x − x′‖ = ‖y − x′‖. If we

assume that the norm ‖ · ‖ is stri
tly 
onvex, then it follows that x ∈ [x′, y], so that

the ve
tors x′, x, y′, y are 
olinear and �ordered� in that way as a 
onsequen
e of this

Proposition.

Remark 3.4. The reason to deal with σ-
ompa
t sets Γ, in the above proposition as well

as in the following, is that the proje
tion π1(Γ) is also σ-
ompa
t, and in parti
ular is a

Borel set.
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4. A property of transport plans

We begin by 
onsidering some general properties of transport plans. This se
tion is

independent of the transport problem (1.3), and the de�nitions and te
hniques detailed

below are re�nements of similar ones whi
h were �rst applied in [13℄ in the framework

of non-
lassi
al transportation problems involving 
ost fun
tionals not in integral form.

De�nition 4.1. Let γ ∈ Π(µ, ν) be a transport plan and Γ a σ-
ompa
t set on whi
h it

is 
on
entrated. For y ∈ Ω and r > 0 we de�ne

Γ−1(B(y, r)) := π1(Γ ∩ (Ω × B(y, r))).

In other words, when given a σ-
ompa
t set Γ on whi
h γ is 
on
entrated, the set

Γ−1(B(y, r)) is the set of those points whose mass (with respe
t to µ) is partially or


ompletely transported to B(y, r) by the restri
tion of γ to Γ. We may justify this slight

abuse of notations by the fa
t that γ should be thought of as a devi
e that transports

mass. Noti
e also that Γ−1(B(y, r)) is a σ-
ompa
t set.

Sin
e this notion is important in the sequel, we re
all that when A is Ld-measurable,

one has

lim
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall 
all su
h a point x a Lebesgue point of A, this

terminology deriving from the fa
t that su
h a point may also be 
onsidered as a Lebesgue

point of χA. In the following, we shall denote by Leb(A) the set of points x ∈ A whi
h

are Lebesgue points of A.

Remark 4.2. In the de�nition of Lebesgue points, one may repla
e the open ball B(x, r)
by the set x + rC, where C is a 
onvex neighborhood of 0.

The following Lemma, although quite simple, is an important step in the proof of

Proposition 5.2 and Theorem 6.1 below. Its proof is a straightforward adaptation of

that of Lemma 5.2 from [13℄ and we detail it for the 
onvenien
e of the reader.

Lemma 4.3. Let γ ∈ Π(µ, ν) and Γ a σ-
ompa
t set on whi
h it is 
on
entrated. If we

assume that µ << Ld, then γ is 
on
entrated on a σ-
ompa
t set R(Γ) su
h that for all

(x, y) ∈ R(Γ) the point x is a Lebesgue point of Γ−1(B(y, r)) for all r > 0.

Proof. Let

A := {(x, y) ∈ Γ : x /∈ Leb(Γ−1(B(y, r))) for some r > 0};

we �rst intend to show that γ(A) = 0. To this end, for ea
h positive integer n we


onsider a �nite 
overing Ω ⊂
⋃

i∈I(n)

B(yn
i , rn) by balls of radius rn := 1

2n
. We noti
e that

if (x, y) ∈ Γ and x is not a Lebesgue point of Γ−1(B(y, r)) for some r > 0, then for any

n ≥ 1
r
and yn

i su
h that |yn
i − y| < rn the point x belongs to Γ−1(B(yn

i , rn)) but is not

a Lebesgue point of this set. Then

π1(A) ⊂
⋃

n≥1

⋃

i∈I(n)

(

Γ−1(B(yn
i , rn)) \ Leb(Γ−1(B(yn

i , rn)))
)

.
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Noti
e that the set on the right hand side has Lebesgue measure 0, and thus µ-measure

0. It follows that γ(A) ≤ γ(π1(A) × Ω) = µ(π1(A)) = 0.
Finally, sin
e Ld(π1(A)) = 0, there exists a sequen
e (Uk)k≥0 of open sets su
h that

∀k ≥ 0, π1(A) ⊂ Uk and lim
k→∞

Ld(Uk) = 0.

Then the set R(Γ) := Γ
⋂

(
⋃

k≥0

(Ω \ Uk) × Ω) has the desired properties. �

The above Lemma yields us to introdu
e the following notion:

De�nition 4.4. The 
ouple (x, y) ∈ Γ is a Γ-regular point if x is a Lebesgue point of

Γ−1(B(y, r)) for any positive r.

Noti
e that any element of the set R(Γ) of Lemma 4.3 is a Γ-regular point. Lemma 4.3

above therefore states that any transport plan Γ is 
on
entrated on a Borel set 
onsisting

of regular points: this regularity property turns out to be a powerful tool in the study

of the support of optimal transport plans for problem (1.3), as the proof of Proposition

5.2 below illustrates.

5. A property of optimal transport plans

In this se
tion, we obtain a regularity result on the transport plans that are optimal for

problem (1.3). Following the formalism of [3℄, we �rst introdu
e the notions of transport

set related to a subset Γ of R
d × R

d.

De�nition 5.1. Let Γ be a subset of R
d × R

d, the transport set T (Γ) of Γ is

{(1 − t)x + ty | (x, y) ∈ Γ, t ∈ (0, 1)}.

Noti
e that if Γ is σ-
ompa
t then T (Γ) is also σ-
ompa
t.

The following Proposition 5.2 gives a regularity property for optimal transport plans

for (1.3) in the 
ase where ‖ · ‖ is a stri
tly 
onvex norm. This property is obtained

using two prin
ipal ingredients. The �rst is the fa
t that an optimal transport plan is


on
entrated on a set of regular points (see Lemma 4.3). The se
ond ingredient relies on

the property of the Kantorovi
h potentials stated in Lemma 2.2 whi
h allow to derive a

density estimate on the transport rays. This estimate is 
lose to that stated in Lemma

5.4 of [6℄ (see also [8℄) for the transport potential of the variational problem studied

therein.

Let us introdu
e some notations: let x, y ∈ R
d with x 6= y, we then denote by Pxy

the orthogonal proje
tion on the line xy passing through x and y with respe
t to the

Eu
lidean norm. For ∆, t1, t2 ∈ R with ∆ > 0 and t1 < t2 we then de�ne the following

portion of 
ylinder with axis xy:

Q(x, y, t1, t2, ∆) :=

{

z ∈ R
d : (Pxy(z) − x) ·

(y − x)

|y − x|
∈ [t1, t2] and |z − Pxy(z)| ≤ ∆

}

.

We 
an now state the following regularity result.
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Proposition 5.2. Assume that ‖ · ‖ is a stri
tly 
onvex norm and µ << Ld. Let also

γ ∈ Π(µ, ν) be an optimal transport plan for problem (1.3) and Γ a σ-
ompa
t set on

whi
h γ is 
on
entrated. Then γ is 
on
entrated on a σ-
ompa
t subset RT (Γ) of R(Γ)
su
h that for any (x, y) ∈ RT (Γ) with x 6= y and for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x, y) × B(y, r)
)

∩ Q+δ,r(x, y)
)

Ld(Q+δ,r(x, y))
> 0 (5.1)

where for any δ > 0 we set

Q−δ,r(x, y) := Q(x, y,−δ,−
δ

2
, rδ) and Q+δ,r(x, y) := Q (x, y, 0, δ, rδ∆) .

with ∆ := 1 + 2
|y−x| .

2rδ∆ 2rδ

δ
2

δ

Q−δ,r(x̃, ỹ)

Q+δ,r(x̃, ỹ)

r

ỹx̃

Figure 1

Proof. Step 1: de�nition of RT (Γ). Let u ∈ Lip1(Ω, ‖ · ‖) be a Kantorovi
h potential for

problem (1.3), and denote by Di�(u) the set of points of di�erentiability of u. By 
on-

sidering Γ∩ suppγ and applying Theorem 2.1, we may assume without loss of generality

that

∀(x, y) ∈ Γ, u(x) − u(y) = ‖x − y‖. (5.2)

Sin
e u is Lips
hitz 
ontinuous in Ω, Di�(u) has full Lebesgue measure in Ω, so that

there exists a sequen
e (Uk)k≥0 of open subsets of Ω su
h that

∀k ≥ 0, (Ω \ Uk) ⊂ Di�(u) and lim
k→∞

Ld(Uk) = 0.

We set

A := R(Γ) ∩
⋃

k≥0

(Ω \ Uk) × Ω.

and noti
e that A is a σ-
ompa
t set whi
h has full measure for γ. In parti
ular, π1(A)
is also σ-
ompa
t and it has full measure for µ. Sin
e Ld(π1(A)\Leb(π1(A))) = 0, there
exists a sequen
e (Vk)k≥0 of open subsets of Ω su
h that

∀k ≥ 0, (π1(A) \ Leb(π1(A))) ⊂ Vk and lim
k→∞

Ld(Vk) = 0.
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We may now de�ne

RT (Γ) := A ∩
⋃

k≥0

(Ω \ Vk) × Ω.

Then RT (Γ) is a σ-
ompa
t set whi
h is in
luded in R(Γ) and has full measure for γ.
Moreover, noti
e that if (x, y) ∈ RT (Γ) then x ∈ Di�(u) and x is a Lebesgue point of

π1(RT (Γ)).
We shall prove that the set RT (Γ) has the desired property.

Step 2: redu
tion of the proof. In the following, (x̃, ỹ) is an element of RT (Γ) with

x̃ 6= ỹ, and we aim to show that for r > 0 small enough it holds

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x̃, ỹ) × B(ỹ, r)
)

∩ Q+δ,r(x̃, ỹ)
)

Ld(Q+δ,r(x̃, ỹ))
> 0 (5.3)

Without loss of generality we may assume that x̃ = 0 and
ỹ−x̃
|ỹ−x̃| = ỹ

|ỹ| = e1 is the �rst

ve
tor of the 
anoni
al Eu
lidean basis of R
d. If for s > 0 we denote by Bd−1(0, s) the


losed ball of R
d−1 of 
enter 0 and radius s, we 
an rewrite

Q−δ,r(x̃, ỹ) = [−δ,−
δ

2
] × Bd−1(0, rδ) and Q+δ,r(x̃, ỹ) = [0, δ] × Bd−1(0, rδ∆)

where we also noti
e that ∆ = 1 + 2
|ỹ| .

Fix r ∈ ]0, 1
3 |ỹ|[ , then for any δ ∈ ]0, r[ it 
omes

inf
{

|y − x| : x ∈ [−δ, δ] × Bd−1(0, rδ∆), y ∈ B(ỹ, r)
}

= |ỹ| − r − δ > 0. (5.4)

Sin
e (0, ỹ) ∈ R(Γ), 0 is a Lebesgue point of Γ−1(B(ỹ, r)). Sin
e 0 is also a Lebesgue

point of π1(RT (Γ)), we infer that it is a Lebesgue point of the σ-
ompa
t set R :=

Γ−1(B(ỹ, r)) ∩ π1(RT (Γ)). It then follows from the Fubini theorem, the de�nition of

Lebesgue points and remark 4.2 that for δ ∈ ]0, r[ small enough one has

L1

({

t ∈ [−δ, δ] : Hd−1(R∩ {t} × Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1

})

≥
8

5
δ

where ωd−1 = Ld−1(Bd−1(0, 1)). We �x su
h a small enough δ ∈ ]0, r[ , and 
hoose

tδ ∈ [−δ,− δ
2 ] su
h that

Hd−1(R∩ {tδ} × Bd−1(0, rδ)) ≥
1

2
(rδ)d−1ωd−1.

We �nally take a 
ompa
t subset Rδ of R ∩ {tδ} × Bd−1(0, rδ) su
h that Hd−1(Rδ) ≥
1
4(rδ)d−1ωd−1 and we shall now obtain a lower bound for

Ld
(

T (Γ ∩Rδ × B(ỹ, r)) ∩ Q+δ,r(0, ỹ)
)

.

Step 3: an approximation for T (Γ ∩ Rδ × B(ỹ, r)) on Q+δ,r(0, ỹ). Let {yk}k≥0 be a

dense sequen
e in B(ỹ, r), then for x ∈ Ω and N ≥ 0 we set

MN (x) :=

{

k ∈ {0, . . . , N} : u(yk) + ‖x − yk‖ = min
0≤j≤N

{u(yj) + ‖x − yj‖}

}

.
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We now 
onsider

Cδ,N :=
N
⋃

k=0

{(x, yk) : x ∈ Rδ and k ∈ MN (x)}.

Noti
e that Cδ,N is a 
ompa
t set and that π1(Cδ,N ) = Rδ. We �nally set

L := Q+δ,r(0, ỹ) ∩
⋂

K≥0

⋃

N≥K

T (Cδ,N )

and we 
laim that L ⊂ T (Γ ∩ Rδ × B(ỹ, r)) ∩ Q+δ,r(0, ỹ). Indeed let x ∈ L, then there

exists x′ ∈ Rδ and z′ ∈ B(ỹ, r) su
h that x ∈ [x′, z′] and

u(z′) + ‖x′ − z′‖ = inf
k≥0

{u(yk) + ‖x′ − yk‖} = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.

Sin
e x′ ∈ Rδ ⊂ Γ−1(B(ỹ, r)), we infer that there exists y′ ∈ B(ỹ, r) su
h that (x′, y′) ∈
Γ. As a 
onsequen
e of (5.2), one has

u(x′) = u(y′) + ‖x′ − y′‖ = min
y∈B(ỹ,r)

{u(y) + ‖x′ − y‖}.

We thus obtain that u(x′) = u(z′) + ‖x′ − z′‖ and we 
on
lude from Rδ ⊂ Di�(u) and

Lemma 2.2 that either z′ ∈ [x′, y′] or y′ ∈ [x′, z′]. Therefore z′ belongs to the line

passing through x′ and y′, and then by (5.4) we get that x belongs to [x′, y′] and thus

to T (Γ ∩Rδ × B(ỹ, r)) ∩ Q+δ,r(0, ỹ).

Step 4: a lower bound on Ld(T (Cδ,N ) ∩ Q+δ,r(0, ỹ)). Fix N ≥ 0, and de�ne for any

k ∈ {0, . . . , N} the Borel set

Dk := {x ∈ Rδ : k = min{j : j ∈ MN (x)}} .

For any k ∈ {0, . . . , N} the 
one T (Dk × {yk}) with basis Dk and vertex yk is in
luded

in T (Cδ,N ). We 
laim that these 
ones do not overlap:

k 6= l ⇒ T (Dk × {yk}) ∩ T (Dl × {yl}) = ∅.

We argue by 
ontradi
tion and assume that for some k < l, xk ∈ Dk and xl ∈ Dl there

exists z ∈ [xk, yk] ∩ [xl, yl]. Then it follows from the de�nitions of Dk that

u(yk) + ‖xk − yk‖ ≤ u(yl) + ‖xk − yl‖

and from k < l and the de�nition of Dl that

u(yl) + ‖xl − yl‖ < u(yk) + ‖xl − yk‖.

We now 
ompute

u(yk) + ‖z − yk‖ = u(yk) + ‖xk − yk‖ − ‖xk − z‖

≤ u(yl) + ‖xk − yl‖ − ‖xk − z‖

≤ u(yl) + ‖z − yl‖ = u(yl) + ‖xl − yl‖ − ‖xl − z‖

< u(yk) + ‖xl − yk‖ − ‖xl − z‖ ≤ u(yk) + ‖z − yk‖

whi
h is a 
ontradi
tion and proves the 
laim.
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We infer from the 
hoi
e of ∆ (see Figure 1) that

T (Dk × {yk}) ∩ [0, δ] × R
d−1 ⊂ Q+δ,r(0, ỹ)

and then we get from (5.4) the following estimate for any k ∈ {0, . . . , N}:

Ld(T (Dk × {yk}) ∩ Q+δ,r(0, ỹ))) ≥ δ
|ỹ| − r − δ

|ỹ| − r + δ
Hd−1(Dk) ≥

δ

2
Hd−1(Dk).

Sin
e the 
ones T (Dk × {yk}) do not overlap, we obtain from the pre
eding that

Ld(T (Cδ,N ) ∩ Q+δ,r(0, ỹ)) ≥
δ

2

N
∑

k=0

Hd−1(Dk) =
δ

2
Hd−1(Rδ)

and thus

Ld(T (Cδ,N ) ∩ Q+δ,r(0, ỹ)) ≥
1

8
rd−1 δd ωd−1. (5.5)

Step 5. We now 
on
lude the proof by noti
ing that

L =
⋂

K≥0

⋃

N≥K

T (Cδ,N ) ∩ Q+δ,r(0, ỹ)

so that

Ld(L) ≥
1

8

1

∆d−1
Ld(Q+δ,r(0, ỹ)).

We then infer from L ⊂ T (Γ ∩Rδ × B(ỹ, r)) ∩ Q+δ,r(0, ỹ) that (5.3) holds. �

Remark 5.3. In the above proof, we only use the stri
t 
onvexity of the norm ‖ · ‖ to

apply Lemma 2.2.

6. Proof of the main theorem

Now we are in position to prove Theorem 1.1 whi
h is, in fa
t, a 
orollary of the

following more pre
ise result.

Theorem 6.1. Assume that the norm ‖ · ‖ is stri
tly 
onvex and µ << Ld. Then for

every γ ∈ Π(µ, ν) ∩ O2(µ, ν) there exists a map Tγ ∈ T (µ, ν) su
h that γ = (id × Tγ)♯µ.
Moreover, the solution γ ∈ Π(µ, ν) ∩ O2(µ, ν) is unique.

Proof. By Proposition 2.1 in [1℄, it is su�
ient to prove that γ is 
on
entrated on a Borel

graph.

It follows from Proposition 3.2 that γ is 
on
entrated on a σ-
ompa
t set Γ satisfying

(3.3). We then apply Proposition 5.2 to get that γ is 
on
entrated on a σ-
ompa
t subset

RT (Γ) of R(Γ) satisfying (5.1).

We 
laim that RT (Γ) is a 
ontained in a graph. To prove this, we show that if (x0, y0)
and (x0, y1) both belong to RT (Γ) then y0 = y1. We argue by 
ontradi
tion, and then

we assume that y1 6= y0. As a 
onsequen
e, one either has (y1 − y0) · (y0 − x0) < 0 or

(y0 − y1) · (y1 − x0) < 0. Without loss of generality, we assume that

(y1 − y0) · (y0 − x0) < 0.

We �x r > 0 small enough so that

∀x ∈ Q+r,r(x0, y0), ∀y′ ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y′) · (y′ − x) < 0. (6.1)
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Sin
e (x0, y1) ∈ RT (Γ), we infer that x0 is a Lebesgue point for Γ−1(B(y1, r)). Moreover,

we also get from (x0, y0) ∈ RT (Γ) and (5.1) that

lim inf
δ→0+

Ld
(

T
(

Γ ∩ Q−δ,r(x0, y0) × B(y0, r)
)

∩ Q+δ,r(x0, y0)
)

Ld(Q+δ,r(x0, y0))
> 0

As a 
onsequen
e, for δ ∈ ]0, r[ small enough there exists (x′, y′) and (x, y) in Γ su
h

that

x′ ∈ Q−δ,r(x0, y0), y′ ∈ B(y0, r), x ∈ [x′, y′] ∩ Q+δ,r(x0, y0) and y ∈ B(y1, r).

It follows from (3.3) applied to (x′, y′) and (x, y) that

(y − y′) · (x − x′) ≥ 0

but sin
e x ∈ [x′, y′] one also has x− x′ = |x−x′|
|y′−x| (y

′ − x) and we get a 
ontradi
tion with

(6.1).

The uniqueness of γ ∈ Π(µ, ν) ∩ O2(µ, ν) is obtained as in Step 5 of the proof of

Theorem B in [2℄: if γ1 and γ2 are two su
h transport plans, then
γ1+γ2

2 also belongs

to Π(µ, ν) ∩ O2(µ, ν). It follows from the pre
eding that these plans are all indu
ed by

transport maps, whi
h then 
oin
ide µ almost everywhere.

�

7. Norms whi
h are not stri
tly 
onvex and further remarks

It is remarkable in the pre
edind proofs that the stri
t 
onvexity assumption on the

norm ‖ · ‖ is only used through Lemma 2.2: as explained in the introdu
tion of [2℄,

the dire
tion of transportation is totally detemined at any point of di�erentiability of a

Kantorovi
h potential u when the the norm ‖ · ‖ is stri
tly 
onvex, and this information

is su�
ient to 
on
lude in the proof of 5.2. Without this assumption, the optimality of

the transport plan γ is not enough to obtain the density property of Proposition 5.2.

This is shown by the following example 
onstru
ted in [2℄:

Theorem 7.1 (Theorem A of [2℄). There exist a Borel set M ⊂ [−1, 1]3 with |M | = 8
and two Borel maps fi : M → [−2, 2] × [−2, 2] for i = 1, 2 su
h that the following holds.

For x ∈ M denote by lx the segment 
onne
ting (f1(x),−2) to (f2(x), 2) then

(1) {x} = lx ∩ M for all x ∈ M ,

(2) lx ∩ ly = ∅ for all x, y ∈ M di�erent.

To give a 
ounterexample to Proposition 5.2 without the assumption of stri
t 
onvexity

of ‖ · ‖, 
onsider the map

T (x) := (f2(x), 2)

and observe that, for the norm ‖(x, y, z)‖ := max{|x|, |y|, 3|z|}, the map T is an optimal

transport map for (1.2) betwen µ = Ld⌊M and ν = T♯µ. However, the open transport

set T (supp((id × T )♯µ)) has density 0 at every point of M .

A signi�
ant quantity related to the transport set is the so 
alled transport density,

i.e. a positive measure σ whi
h solves together with any transport potential the system
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of PDEs
{

−div(σDu) = µ − ν

‖Du‖∗ = 1 σ − a.e..
(7.1)

The relationship between the transport density and the Monge-Kantorovi
h problem is

given by the following formula �rst dis
overed in [9℄. Let γ be an optimal transport plan,

and for ea
h Borel set B ⊂ Ω 
onsider

σγ(B) :=

∫

Ω×Ω
H1(B ∩ [x, y]))dγ(x, y),

then σγ is a solution of (7.1) above. Clearly σγ is supported on the transport set

T (supp(γ)). In pra
ti
al terms the measure σγ(D) of a set D represents the work done

in the set D while transporting µ to ν following the plan γ. A detailed dis
ussion of the

properties of su
h measures is beyond the s
ope of this paper. The transport density

plays a 
ru
ial role in the proof of existen
e given in [19℄ and good estimates from above

are available for σγ [1, 15, 14, 16℄. Proving some estimate from below for σγ 
ould be

interesting for the approa
h of this paper. In fa
t, assume for example that σγ has an

L∞ density aγ (see for example [15, 19℄) and that at a point x one has 0 < aγ(x). Then
the lower density of the transport set T (γ) at x satis�es θ∗(T (supp(γ)), x) > 0 be
ause

aγ(x) = lim
r→0

1

ωdrd

∫

B(x,r)
aγ(y)dy ≤ lim inf

r→0
‖aγ‖∞

|T (supp(γ)) ∩ B(x, r)|

ωdrd
.

Be
ause of the above example, we however 
an not expe
t an estimate from below on σγ

for any solution γ of (1.3), but this may hold for example for an element of O2(µ, ν).
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