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Abstract

Functions of bounded variation in Hilbert spaces endowed with a Gaussian measure
γ are studied, mainly in connection with Ornstein-Uhlenbeck semigroups for which γ
is invariant.
AMS Subject Classification: 26A45, 28C20, 46E35, 60H07.

1 Introduction

Functions of bounded variation, whose introduction in [13] was based on the heat semigroup,
are by now a well-established tool in Euclidean spaces, and more generally in metric spaces
endowed with a doubling measure, see e.g. [6] and the references there. Applications run
from variational problems with possibly discontinuous solutions along surfaces and geometric
measure theory (see [3] and the references there) to renormalized solutions of ODEs without
uniqueness (see [1]). More recently, the theory has been extended to infinite dimensional
settings (see [16, 17, 4, 5], aiming to apply the theory to variational problems (see [14, 18]),
infinite dimensional geometric measure theory (see [15]), ODEs (see [2] for the Sobolev case),
as well as stochastic differential equations (see [11, 12]).

If the ambient space is a Hilbert space X endowed with a Gaussian measure γ, then,
beside the Malliavin calculus, on which the above quoted papers are based, an approach
based on the infinite dimensional analysis as presented in [10] is possible. As in the case
of Sobolev spaces, this approach turns out to be similar but not equivalent to the other,
and a smaller class of BV functions is obtained. The aim of this paper is to deepen this
analysis, mainly in connection with the Ornstein-Uhlenbeck semigroup Rt studied in [10]
whose invariant measure is γ, which enjoys stronger regularizing properties compared to the
operator Pt of the Malliavin calculus. We prove that, for u ∈ L1(X, γ), the property of hav-
ing measure derivatives in a weak sense (i.e., of being BV ) is equivalent to the boundedness
of a (slightly enforced) Sobolev norm of the gradient of Rtu. This regularity result on Rtu,
for u ∈ BV , is used as a tool, but can be interesting on its own.
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2 Notation and preliminaries

Let X be a separable real Hilbert space with inner product 〈·, ·〉 and norm | · |, and let us
denote by B(X) the Borel σ-algebra and by Bb(X) the space of bounded Borel functions;
since X is separable, B(X) is generated by the cylindrical sets, that is by the sets of the
form E = Π−1

m B with B ∈ B(Rm), where Πm : X → Rm is orthogonal (see [19, Theorem
I.2.2]). The symbol Ckb (X) denotes the space of k times continuously Fréchet differentiable
functions with bounded derivatives up to the order k, and the symbol FCkb (X) that of
cylindrical Ckb (X) functions, that is, u ∈ FCkb (X) if u(x) = v(Πmx) for some v ∈ Ckb (Rm).
We also denote by M (X,Y ) the set of countably additive measures on X with finite total
variation with values in a separable Hilbert space Y , M (X) if Y = R. We denote by |µ|
the total variation measure of µ, defined by

(2.1) |µ|(B) := sup

{ ∞∑
h=1

|µ(Bh)|Y : B =
∞⋃
h=1

Bh

}
,

for every B ∈ B(X), where the supremum runs along all the countable disjoint unions.
Notice that, using the polar decomposition, there is a unit |µ|-measurable vector field σ :
X → Y such that µ = σ|µ|, and then the equality

|µ|(X) = sup
{∫

X

〈σ, φ〉d|µ|, φ ∈ Cb(X,Y ), |φ(x)|Y ≤ 1 ∀x ∈ X
}

holds. Note that, by the Stone-Weierstrass theorem, the algebra FC1
b (X) of C1 cylindrical

functions is dense in C(K) in sup norm, since it separates points, for all compact sets K ⊂ X.
Since |µ| is tight, it follows that FC1

b (X) is dense in L1(X, |µ|). Arguing componentwise, it
follows that also the space FC1

b (X,Y ) of cylindrical functions with a finite-dimensional range
is dense in L1(X, |µ|, Y ). As a consequence, σ can be approximated in L1(X, |µ|, Y ) by a
uniformly bounded sequence of functions in FC1

b (X,Y ), and we may restrict the supremum
above to these functions only to get

(2.2) |µ|(X) = sup
{∫

X

〈σ, φ〉d|µ|, φ ∈ FC1
b (X,Y ), |φ(x)|Y ≤ 1 ∀x ∈ X

}
.

We recall the following well-known result (see for instance [5]): given a sequence of real
measures (µj) on X and an orthonormal basis (ej), if if

(2.3) sup
m
|(µ1, . . . , µm)|(X) <∞.

then the measure µ =
∑
j µjej belongs to M (X,X).

Let us come to a description of the differential structure in X. We refer to [10] for more
details and the missing proofs. By Na,Q we denote a non degenerate Gaussian measure on
(X,B(X)) of mean a and trace class covariance operator Q (we also use the simpler notation
NQ = N0,Q). Let us fix γ = NQ, and let (ek) be an orthonormal basis in X such that

Qek = λkek, ∀ k ≥ 1,

with λk a nonincreasing sequence of strictly positive numbers such that
∑
k λk < ∞. Set

xk = 〈x, ek〉 and for all k ≥ 1, f ∈ Cb(X), define the partial derivatives

(2.4) Dkf(x) = lim
t→0

f(x+ tek)− f(x)
t
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(provided that the limit exists) and, by linearity, the gradient operator D : FC1
b (X) →

FCb(X,X). The gradient turns out to be a closable operator with respect to the topologies
Lp(X, γ) and Lp(X, γ,X) for every p ≥ 1, and we denote by W 1,p(X, γ) the domain of the
closure in Lp(X, γ), endowed with the norm

‖u‖1,p =
(∫

X

|u(x)|pdγ +
∫
X

( ∞∑
k=1

|Dku(x)|2
)p/2

dγ
)1/p

,

where we keep the notation Dk also for the closure of the partial derivative operator. For
all ϕ, ψ ∈ C1

b (X) we have∫
X

ψDkϕdγ = −
∫
X

ϕDkψdγ +
1
λk

∫
X

xkϕψdγ.

and this formula, setting D∗kϕ = Dkϕ− xk

λk
ϕ, reads

(2.5)
∫
X

ψDkϕdγ = −
∫
X

ϕD∗kψdγ.

Notice that Q1/2 is still a compact operator on X, and define the Cameron-Martin space

H = Q1/2X =
{
x ∈ X : ∃y ∈ X with x = Q1/2y

}
=
{
x ∈ X :

∞∑
k=1

|xk|2

λk
<∞

}
,

endowed with the orthonormal basis εk = λ
1/2
k ek relative to the norm |x|H := (

∑
k
|xk|2
λk

)1/2.
The Malliavin derivative of f ∈ C1

b (X) is defined by

(2.6) ∂εk
f(x) = lim

t→0

f(x+ tεk)− f(x)
t

(provided that the limit exists) and turns out to be a closable operator as well (see [7] or
apply (2.8) below) with respect to the topology Lp(X, γ) for every p ≥ 1. We denote by
∇Hf the gradient and by D1,p(X, γ) the domain of its closure in Lp(X, γ), endowed with
the obvious norm. As a consequence of the relation εk = λ

1/2
k ek we have also

(2.7) ∂εk
= λ

1/2
k Dk,

so that W 1,p(X, γ) ⊂ D1,p(X, γ), since |∇Hf |H = (
∑
k λk|Dkf |2)1/2. By (2.7) and (2.5) the

integration by parts formula corresponding to the Malliavin calculus reads

(2.8)
∫
X

ψ∂kϕdγ = −
∫
X

ϕ∂kψdγ +
∫
X

1√
λk
xkϕψdγ.

There exist infinitely many Ornstein-Uhlenbeck semigroups having γ as invariant measure.
Let us choose the one corresponding to the stochastic evolution equation

(2.9) dX = AXdt+ dW (t), X(0) = x ∈ X

where A := − 1
2 Q
−1 is selfadjoint and

〈W (t), z〉 =
∞∑
k=1

Wk(t)zk, z ∈ X,
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with (Wk)k∈N sequence of independent real Brownian motions. We have Aek = −αkek,
where

αk =
1

2λk
.

The transition semigroup corresponding to (2.9) is given by

(2.10) Rtf(x) =
∫
X

f(y)dNetAx,Qt
(y) =

∫
X

f(etAx+ y)dNQt
(y), f ∈ Bb(X),

where

Qt =
∫ t

0

e2sAds = −1
2
A−1(1− e2tA).

Therefore NQt
→ NQ = γ weakly as t → ∞, so that γ is invariant for Rt. Moreover, for

every k ≥ 1, v ∈ C1
b (X), from (2.10) we get

DkRtv(x) = e−αkt

∫
X

Dkv(etAx+ y)dNQt
(y) = e−αktRtDkv(x),

whence, since Rt is symmetric, we deduce that for every u ∈ L1(X, γ) and ϕ ∈ FC1
b (X) the

equality

(2.11)
∫
X

RtuD
∗
kϕdγ = e−αkt

∫
X

uD∗kRtϕdγ

holds. In fact, if u is bounded, by [10, Theorem 8.16] we know that Rtu ∈ C∞b (X) for every
t > 0, and then for every ϕ ∈ C1

b (X) we have∫
X

RtuD
∗
kϕdγ = −

∫
Dk(Rtu)ϕdγ = −e−αkt

∫
X

RtDkuϕdγ

= −e−αkt

∫
X

DkuRtϕdγ = e−αkt

∫
X

uD∗kRtϕdγ.

In the general case u ∈ L1(X, γ) we use the density of C1
b (X) in L1(X, γ), as both sides in

(2.11) are continuous with respect to L1(X, γ) convergence in u.
By a standard duality argument we can define a linear contraction operator R∗t : M (X)→
L1(X, γ) characterized by:

(2.12)
∫
X

R∗tµϕdγ =
∫
X

Rtϕdµ, ϕ ∈ Bb(X).

To see that this is a good definition, using Hahn decomposition we may assume with no loss
of generality that µ is nonnegative. Under this assumption, we notice that (ϕi) ⊂ Bb(X)
equibounded and ϕi ↑ ϕ, with ϕ ∈ Bb(X), implies

∫
X
Rtϕidµ ↑

∫
X
Rtϕdµ, hence Daniell’s

theorem (see e.g. [8, Theorem 7.8.1]) shows that ϕ 7→
∫
X
Rtϕdµ is the restriction to Bb(X)

of ϕ 7→
∫
X
ϕdµ∗ for a suitable (unique) nonnegative µ∗ ∈ M (X). In order to show that

R∗tµ� γ, take a Borel set B with γ(B) = 0. Then

(R∗t )µ(B) =
∫
X

χBdR
∗
tµ =

∫
X

RtχBdµ,

but RtχB(x) = NetAx,Qt
(B) and since NetAx,Qt

� γ (see [12, Lemma 10.3.3]) we have
RtχB(x) = 0 for all x and the claim follows. Finally, since Rt1 = 1 we obtain that µ∗(X) =
µ(X), hence R∗t is a contraction. It is also useful to notice that R∗t is contractive on vector
measures as well. In fact, Rt is a contraction in Cb, hence |〈R∗tµ, φ〉| = |〈µ,Rtφ〉| ≤ 〈|µ|, |φ|〉
for every ϕ ∈ Cb(X). Since for every vector measure ν the minimal positive measure σ such
that |〈ν, φ〉| ≤ 〈σ, |φ|〉 for all ϕ is |ν|, taking ν = R∗tµ we conclude.
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3 Functions of bounded variation

In the present context it is possible to define functions of bounded variation, as it has been
done, using the Malliavin derivative, in [16], [17] and [4], [5], and to relate BV functions
to the Ornstein-Uhlenbeck semigroup Rt. According to [5], in order to distinguish the two
notions of BV functions, we keep the notation BV (X, γ) for the functions coming from the
∇H operator and use the notation BVX(X, γ) for those coming from D.

Definition 3.1. A function u ∈ L1(X, γ) belongs to BVX(X, γ) if there exists νu ∈
M (X,X) such that for any k ≥ 1 we have∫

X

u(x)Dkϕ(x)dγ = −
∫
X

ϕ(x)dνuk +
1
λk

∫
X

xku(x)ϕ(x)dγ, ϕ ∈ FC1
b (X),

with νuk = 〈νu, ek〉X . If u ∈ BVX(X, γ), we denote by Du the measure νu, and by |Du| its
total variation.

According to (2.2), for u ∈ BVX(X, γ) the total variation of Du is given by

(3.1) |Du|(X) = sup
{∫

X

u
[∑
k

D∗kφk

]
dγ, φ ∈ FC1

b (X,X), |φ(x)| ≤ 1 ∀x ∈ X
}
.

Obviously, if u ∈W 1,1(X, γ) then u ∈ BVX(X, γ) and |Du|(X) =
∫
X
|Du|dγ.

Recalling that u ∈ BV (X, γ) if there is a finite measure Dγu = (Dk
γu)k ∈M (X,X) such

that∫
X

u(x)∂kϕ(x)dγ = −
∫
X

ϕ(x)dDk
γu+

1√
λk

∫
X

xku(x)ϕ(x)dγ, ϕ ∈ FC1
b (X), k ≥ 1,

it is immediate to check that BVX(X, γ) is contained in BV (X, γ) and that

(3.2) Dk
γu = λ

1/2
k νuk , ∀k ≥ 1.

The next proposition provides a simple criterion, analogous to the finite-dimensional
one, for the verification of the BVX property.

Proposition 3.2. Let u ∈ L1(X, γ) and let us assume that

(3.3) R(u) := sup
m

sup
{∫

X

m∑
k=1

uD∗kϕkdγ : ϕk ∈ C1
b (X),

m∑
i=1

ϕ2
k ≤ 1

}
<∞.

Then u ∈ BVX(X, γ) and |Du|(X) ≤ R(u).

Proof. Fix k ≥ 1, set Xk = {x ∈ X : x = sek, s ∈ R}, X⊥k = {x ∈ X : 〈x, ek〉 = 0},
and define

Vk(u) := sup
{∫

X

u
(
∂kφ−

1√
λk
φ
)
dγ : φ ∈ C1

c (X), |φ(x)| ≤ 1 ∀x ∈ X
}
,

Vk(u) := sup
{∫

X

u
(
Dkφ−

1
λk
φ
)
dγ : φ ∈ C1

c (X), |φ(x)| ≤ 1 ∀x ∈ X
}
.

For y ∈ X⊥k , define the function uy(s) = u(y + sek), s ∈ R, and notice that Vk(u) =√
λkVk(u), so that by [5, Theorem 3.10] we have

Vk(u) =
∫
X⊥k

V (uy) dγ⊥(y),
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where V denotes the 1-dimensional variation of uy and we have used the factorization
γ = γ1 ⊗ γ⊥ induced by the orthogonal decomposition X = Xk ⊕X⊥k .

Since Vk(u) ≤ R(u) we have ∫
X⊥k

V (uy)dγ⊥(y) <∞.

It follows that for γ⊥-a.e. y ∈ X⊥k the function uy has bounded variation in R. By a Fubini
argument, based on the factorization γ = γ1 ⊗ γ⊥, the 1-dimensional integration by parts
formula yields that the measure Dku coincides with Duy ⊗ γ⊥, i.e.,

Dku(A) =
∫
X⊥k

Duy(Ay)dγ⊥(y)

(where Ay := {s : y+sek ∈ A} is the y-section of a Borel set A) provides the derivative of u
along ek. Notice that Dku is well defined, since we have just proved that

∫
X⊥k
|Duy|(R)dγ⊥

is finite.
Now, setting µk = Dku, by the implication stated in (2.3) we obtain that |Du|(X) ≤

R(u).
The next theorem characterizes the BV class in terms of the semigroup Rt: notice that

the functions Rtu, for u ∈ BV (X, γ), turn out to be slightly better than W 1,1(X, γ), since
not only |DRtu|, but also |e−tADRtu| is integrable.

Theorem 3.3. Let u ∈ L1(X, γ). Then, u ∈ BVX(X, γ) if and only if Rtu ∈ W 1,1(X, γ),
|e−tADRtu| ∈ L1(X, γ) for all t > 0 and

(3.4) lim inf
t↓0

∫
X

|e−tADRtu|dγ <∞.

Moreover, if u ∈ BVX(X, γ) we have DRtu = e−tAR∗tDu,

(3.5)
∫
X

|e−tADRtu|dγ ≤ |Du|(X), ∀t > 0

and

(3.6) lim
t↓0

∫
X

|e−tADRtu|dγ = |Du|(X).

Proof. Let u ∈ BVX(X, γ). We use (2.11) to deduce∫
X

RtuD
∗
kϕdγ = −e−αkt

∫
X

RtϕdDku ∀ϕ ∈ FC1
b (X), t > 0.

According to (2.12), this implies that DkRtu = e−αktR∗tDku ∈ L1(X, γ). Therefore, as R∗t
is a contractive semigroup also on vector measures,∫

X

|e−tADRtu|dγ =
∫
X

|R∗tDu|dγ ≤ |Du|(X)

for every t > 0 and (3.5) follows.
Conversely, let us assume that Rtu ∈W 1,1(X, γ) for all t > 0 and that the lim inf in (3.4) is
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finite. We shall denote by Πm : X → Rm the canonical projection on the first m coordinates
and we shall actually prove that u ∈ BVX(X, γ) and

(3.7) |Du|(X) ≤ sup
m

lim inf
t↓0

∫
X

|ΠmDRtu|dγ

under the only assumption that the right hand side of (3.7) is finite. Indeed, fix an integer
m and notice that an integration by parts gives

sup
{∫

X

m∑
k=1

RtuD
∗
kϕkdγ : ϕk ∈ C1

b (X),
m∑
i=1

ϕ2
k ≤ 1

}
≤
∫
X

|ΠmDRtu|dγ,

so that passing to the limit as t ↓ 0 and taking the supremum over m we obtain

R(u) ≤ sup
m

lim inf
t↓0

∫
X

|ΠmDRtu|dγ,

with R defined as in (3.3). Therefore we obtain the inequality (3.7) by Proposition 3.2.
Finally (3.6) follows combining (3.5) with (3.7).

Remark 3.4. (1) Notice that the inclusion BVX(X, γ) ⊂ BV (X, γ) allows us to exploit
the results in [5] in order to prove one implication in the above theorem, while the other
one uses the strong regularizing properties of the semigroup Rt. Anyway, we have tried
to keep the use of the results in the above quoted paper to a minimum, and in fact only
Theorem 3.10 in [5] has been used in the proof of Proposition 3.2. It is most likely possible
to give a proof completely independent from [5], but some of the arguments therein should
be rephrased and proved again, basically along the same lines.
(2) The argument used in the proof of the theorem shows that DkRtu ∈ L1(X, γ) for all t >
0, k ≥ 1 and finiteness of the right hand side of (3.7) suffices to conclude that u ∈ BVX(X, γ).
Furthermore, combining (3.5) and (3.7) we obtain that

∫
X
|DRtu|dγ → |Du|(X) as t ↓ 0,

as well.
(3) By the same argument as [5] one can use (2) to conclude that the measures e−tADRtuγ
are equi-tight as t ↓ 0; hence, they converge (componentwise) to Du not only on FC1

b (X)
but also on C0

b (X).

We recall also that both Sobolev and BV spaces in the present context are compactly
embedded into the corresponding Lebesgue spaces. The following statement is proved in [5,
Theorem 5.3], see also [9] for the case 1 < p <∞.

Theorem 3.5. For every p ≥ 1, the embedding of W 1,p(X, γ) into Lp(X, γ) is compact.
The embedding of BVX(X, γ) into L1(X, γ) is also compact.
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