# $B V$ functions in a Hilbert space with respect to a Gaussian measure 

Luigi Ambrosio, Giuseppe Da Prato, Diego Pallara!

April 30, 2010


#### Abstract

Functions of bounded variation in Hilbert spaces endowed with a Gaussian measure $\gamma$ are studied, mainly in connection with Ornstein-Uhlenbeck semigroups for which $\gamma$ is invariant.


AMS Subject Classification: 26A45, 28C20, 46E35, 60H07.

## 1 Introduction

Functions of bounded variation, whose introduction in [13] was based on the heat semigroup, are by now a well-established tool in Euclidean spaces, and more generally in metric spaces endowed with a doubling measure, see e.g. [6] and the references there. Applications run from variational problems with possibly discontinuous solutions along surfaces and geometric measure theory (see [3] and the references there) to renormalized solutions of ODEs without uniqueness (see [1]). More recently, the theory has been extended to infinite dimensional settings (see [16, 17, 4, 5], aiming to apply the theory to variational problems (see [14, 18]), infinite dimensional geometric measure theory (see [15]), ODEs (see [2] for the Sobolev case), as well as stochastic differential equations (see $[11,12]$ ).

If the ambient space is a Hilbert space $X$ endowed with a Gaussian measure $\gamma$, then, beside the Malliavin calculus, on which the above quoted papers are based, an approach based on the infinite dimensional analysis as presented in [10] is possible. As in the case of Sobolev spaces, this approach turns out to be similar but not equivalent to the other, and a smaller class of $B V$ functions is obtained. The aim of this paper is to deepen this analysis, mainly in connection with the Ornstein-Uhlenbeck semigroup $R_{t}$ studied in [10] whose invariant measure is $\gamma$, which enjoys stronger regularizing properties compared to the operator $P_{t}$ of the Malliavin calculus. We prove that, for $u \in L^{1}(X, \gamma)$, the property of having measure derivatives in a weak sense (i.e., of being $B V$ ) is equivalent to the boundedness of a (slightly enforced) Sobolev norm of the gradient of $R_{t} u$. This regularity result on $R_{t} u$, for $u \in B V$, is used as a tool, but can be interesting on its own.

[^0]
## 2 Notation and preliminaries

Let $X$ be a separable real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $|\cdot|$, and let us denote by $\mathcal{B}(X)$ the Borel $\sigma$-algebra and by $B_{b}(X)$ the space of bounded Borel functions; since $X$ is separable, $\mathcal{B}(X)$ is generated by the cylindrical sets, that is by the sets of the form $E=\Pi_{m}^{-1} B$ with $B \in \mathcal{B}\left(\mathbb{R}^{m}\right)$, where $\Pi_{m}: X \rightarrow \mathbb{R}^{m}$ is orthogonal (see $[19$, Theorem I.2.2]). The symbol $C_{b}^{k}(X)$ denotes the space of $k$ times continuously Fréchet differentiable functions with bounded derivatives up to the order $k$, and the symbol $\mathcal{F} C_{b}^{k}(X)$ that of cylindrical $C_{b}^{k}(X)$ functions, that is, $u \in \mathcal{F} C_{b}^{k}(X)$ if $u(x)=v\left(\Pi_{m} x\right)$ for some $v \in C_{b}^{k}\left(\mathbb{R}^{m}\right)$. We also denote by $\mathscr{M}(X, Y)$ the set of countably additive measures on $X$ with finite total variation with values in a separable Hilbert space $Y, \mathscr{M}(X)$ if $Y=\mathbb{R}$. We denote by $|\mu|$ the total variation measure of $\mu$, defined by

$$
\begin{equation*}
|\mu|(B):=\sup \left\{\sum_{h=1}^{\infty}\left|\mu\left(B_{h}\right)\right|_{Y}: B=\bigcup_{h=1}^{\infty} B_{h}\right\} \tag{2.1}
\end{equation*}
$$

for every $B \in \mathcal{B}(X)$, where the supremum runs along all the countable disjoint unions. Notice that, using the polar decomposition, there is a unit $|\mu|$-measurable vector field $\sigma$ : $X \rightarrow Y$ such that $\mu=\sigma|\mu|$, and then the equality

$$
|\mu|(X)=\sup \left\{\int_{X}\langle\sigma, \phi\rangle d|\mu|, \phi \in C_{b}(X, Y),|\phi(x)|_{Y} \leq 1 \forall x \in X\right\}
$$

holds. Note that, by the Stone-Weierstrass theorem, the algebra $\mathcal{F} C_{b}^{1}(X)$ of $C^{1}$ cylindrical functions is dense in $C(K)$ in sup norm, since it separates points, for all compact sets $K \subset X$. Since $|\mu|$ is tight, it follows that $\mathcal{F} C_{b}^{1}(X)$ is dense in $L^{1}(X,|\mu|)$. Arguing componentwise, it follows that also the space $\mathcal{F} C_{b}^{1}(X, Y)$ of cylindrical functions with a finite-dimensional range is dense in $L^{1}(X,|\mu|, Y)$. As a consequence, $\sigma$ can be approximated in $L^{1}(X,|\mu|, Y)$ by a uniformly bounded sequence of functions in $\mathcal{F} C_{b}^{1}(X, Y)$, and we may restrict the supremum above to these functions only to get

$$
\begin{equation*}
|\mu|(X)=\sup \left\{\int_{X}\langle\sigma, \phi\rangle d|\mu|, \phi \in \mathcal{F} C_{b}^{1}(X, Y),|\phi(x)|_{Y} \leq 1 \forall x \in X\right\} \tag{2.2}
\end{equation*}
$$

We recall the following well-known result (see for instance [5]): given a sequence of real measures $\left(\mu_{j}\right)$ on $X$ and an orthonormal basis $\left(e_{j}\right)$, if if

$$
\begin{equation*}
\sup _{m}\left|\left(\mu_{1}, \ldots, \mu_{m}\right)\right|(X)<\infty \tag{2.3}
\end{equation*}
$$

then the measure $\mu=\sum_{j} \mu_{j} e_{j}$ belongs to $\mathscr{M}(X, X)$.
Let us come to a description of the differential structure in $X$. We refer to [10] for more details and the missing proofs. By $N_{a, Q}$ we denote a non degenerate Gaussian measure on $(X, \mathcal{B}(X))$ of mean $a$ and trace class covariance operator $Q$ (we also use the simpler notation $\left.N_{Q}=N_{0, Q}\right)$. Let us fix $\gamma=N_{Q}$, and let $\left(e_{k}\right)$ be an orthonormal basis in $X$ such that

$$
Q e_{k}=\lambda_{k} e_{k}, \quad \forall k \geq 1
$$

with $\lambda_{k}$ a nonincreasing sequence of strictly positive numbers such that $\sum_{k} \lambda_{k}<\infty$. Set $x_{k}=\left\langle x, e_{k}\right\rangle$ and for all $k \geq 1, f \in C_{b}(X)$, define the partial derivatives

$$
\begin{equation*}
D_{k} f(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t e_{k}\right)-f(x)}{t} \tag{2.4}
\end{equation*}
$$

(provided that the limit exists) and, by linearity, the gradient operator $D: \mathcal{F} C_{b}^{1}(X) \rightarrow$ $\mathcal{F} C_{b}(X, X)$. The gradient turns out to be a closable operator with respect to the topologies $L^{p}(X, \gamma)$ and $L^{p}(X, \gamma, X)$ for every $p \geq 1$, and we denote by $W^{1, p}(X, \gamma)$ the domain of the closure in $L^{p}(X, \gamma)$, endowed with the norm

$$
\|u\|_{1, p}=\left(\int_{X}|u(x)|^{p} d \gamma+\int_{X}\left(\sum_{k=1}^{\infty}\left|D_{k} u(x)\right|^{2}\right)^{p / 2} d \gamma\right)^{1 / p}
$$

where we keep the notation $D_{k}$ also for the closure of the partial derivative operator. For all $\varphi, \psi \in C_{b}^{1}(X)$ we have

$$
\int_{X} \psi D_{k} \varphi d \gamma=-\int_{X} \varphi D_{k} \psi d \gamma+\frac{1}{\lambda_{k}} \int_{X} x_{k} \varphi \psi d \gamma
$$

and this formula, setting $D_{k}^{*} \varphi=D_{k} \varphi-\frac{x_{k}}{\lambda_{k}} \varphi$, reads

$$
\begin{equation*}
\int_{X} \psi D_{k} \varphi d \gamma=-\int_{X} \varphi D_{k}^{*} \psi d \gamma \tag{2.5}
\end{equation*}
$$

Notice that $Q^{1 / 2}$ is still a compact operator on $X$, and define the Cameron-Martin space

$$
H=Q^{1 / 2} X=\left\{x \in X: \exists y \in X \text { with } x=Q^{1 / 2} y\right\}=\left\{x \in X: \sum_{k=1}^{\infty} \frac{\left|x_{k}\right|^{2}}{\lambda_{k}}<\infty\right\}
$$

endowed with the orthonormal basis $\varepsilon_{k}=\lambda_{k}^{1 / 2} e_{k}$ relative to the norm $|x|_{H}:=\left(\sum_{k} \frac{\left|x_{k}\right|^{2}}{\lambda_{k}}\right)^{1 / 2}$. The Malliavin derivative of $f \in C_{b}^{1}(X)$ is defined by

$$
\begin{equation*}
\partial_{\varepsilon_{k}} f(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t \varepsilon_{k}\right)-f(x)}{t} \tag{2.6}
\end{equation*}
$$

(provided that the limit exists) and turns out to be a closable operator as well (see [7] or apply (2.8) below) with respect to the topology $L^{p}(X, \gamma)$ for every $p \geq 1$. We denote by $\nabla_{H} f$ the gradient and by $\mathbb{D}^{1, p}(X, \gamma)$ the domain of its closure in $L^{p}(X, \gamma)$, endowed with the obvious norm. As a consequence of the relation $\varepsilon_{k}=\lambda_{k}^{1 / 2} e_{k}$ we have also

$$
\begin{equation*}
\partial_{\varepsilon_{k}}=\lambda_{k}^{1 / 2} D_{k} \tag{2.7}
\end{equation*}
$$

so that $W^{1, p}(X, \gamma) \subset \mathbb{D}^{1, p}(X, \gamma)$, since $\left|\nabla_{H} f\right|_{H}=\left(\sum_{k} \lambda_{k}\left|D_{k} f\right|^{2}\right)^{1 / 2}$. By (2.7) and (2.5) the integration by parts formula corresponding to the Malliavin calculus reads

$$
\begin{equation*}
\int_{X} \psi \partial_{k} \varphi d \gamma=-\int_{X} \varphi \partial_{k} \psi d \gamma+\int_{X} \frac{1}{\sqrt{\lambda_{k}}} x_{k} \varphi \psi d \gamma \tag{2.8}
\end{equation*}
$$

There exist infinitely many Ornstein-Uhlenbeck semigroups having $\gamma$ as invariant measure. Let us choose the one corresponding to the stochastic evolution equation

$$
\begin{equation*}
d X=A X d t+d W(t), \quad X(0)=x \in X \tag{2.9}
\end{equation*}
$$

where $A:=-\frac{1}{2} Q^{-1}$ is selfadjoint and

$$
\langle W(t), z\rangle=\sum_{k=1}^{\infty} W_{k}(t) z_{k}, \quad z \in X
$$

with $\left(W_{k}\right)_{k \in \mathbb{N}}$ sequence of independent real Brownian motions. We have $A e_{k}=-\alpha_{k} e_{k}$, where

$$
\alpha_{k}=\frac{1}{2 \lambda_{k}}
$$

The transition semigroup corresponding to (2.9) is given by

$$
\begin{equation*}
R_{t} f(x)=\int_{X} f(y) d N_{e^{t A} x, Q_{t}}(y)=\int_{X} f\left(e^{t A} x+y\right) d N_{Q_{t}}(y), \quad f \in B_{b}(X) \tag{2.10}
\end{equation*}
$$

where

$$
Q_{t}=\int_{0}^{t} e^{2 s A} d s=-\frac{1}{2} A^{-1}\left(1-e^{2 t A}\right)
$$

Therefore $N_{Q_{t}} \rightarrow N_{Q}=\gamma$ weakly as $t \rightarrow \infty$, so that $\gamma$ is invariant for $R_{t}$. Moreover, for every $k \geq 1, v \in C_{b}^{1}(X)$, from (2.10) we get

$$
D_{k} R_{t} v(x)=e^{-\alpha_{k} t} \int_{X} D_{k} v\left(e^{t A} x+y\right) d N_{Q_{t}}(y)=e^{-\alpha_{k} t} R_{t} D_{k} v(x)
$$

whence, since $R_{t}$ is symmetric, we deduce that for every $u \in L^{1}(X, \gamma)$ and $\varphi \in \mathcal{F} C_{b}^{1}(X)$ the equality

$$
\begin{equation*}
\int_{X} R_{t} u D_{k}^{*} \varphi d \gamma=e^{-\alpha_{k} t} \int_{X} u D_{k}^{*} R_{t} \varphi d \gamma \tag{2.11}
\end{equation*}
$$

holds. In fact, if $u$ is bounded, by [10, Theorem 8.16] we know that $R_{t} u \in C_{b}^{\infty}(X)$ for every $t>0$, and then for every $\varphi \in C_{b}^{1}(X)$ we have

$$
\begin{aligned}
\int_{X} R_{t} u D_{k}^{*} \varphi d \gamma & =-\int D_{k}\left(R_{t} u\right) \varphi d \gamma=-e^{-\alpha_{k} t} \int_{X} R_{t} D_{k} u \varphi d \gamma \\
& =-e^{-\alpha_{k} t} \int_{X} D_{k} u R_{t} \varphi d \gamma=e^{-\alpha_{k} t} \int_{X} u D_{k}^{*} R_{t} \varphi d \gamma
\end{aligned}
$$

In the general case $u \in L^{1}(X, \gamma)$ we use the density of $C_{b}^{1}(X)$ in $L^{1}(X, \gamma)$, as both sides in (2.11) are continuous with respect to $L^{1}(X, \gamma)$ convergence in $u$.

By a standard duality argument we can define a linear contraction operator $R_{t}^{*}: \mathscr{M}(X) \rightarrow$ $L^{1}(X, \gamma)$ characterized by:

$$
\begin{equation*}
\int_{X} R_{t}^{*} \mu \varphi d \gamma=\int_{X} R_{t} \varphi d \mu, \quad \varphi \in B_{b}(X) \tag{2.12}
\end{equation*}
$$

To see that this is a good definition, using Hahn decomposition we may assume with no loss of generality that $\mu$ is nonnegative. Under this assumption, we notice that $\left(\varphi_{i}\right) \subset B_{b}(X)$ equibounded and $\varphi_{i} \uparrow \varphi$, with $\varphi \in B_{b}(X)$, implies $\int_{X} R_{t} \varphi_{i} d \mu \uparrow \int_{X} R_{t} \varphi d \mu$, hence Daniell's theorem (see e.g. [8, Theorem 7.8.1]) shows that $\varphi \mapsto \int_{X} R_{t} \varphi d \mu$ is the restriction to $B_{b}(X)$ of $\varphi \mapsto \int_{X} \varphi d \mu^{*}$ for a suitable (unique) nonnegative $\mu^{*} \in \mathscr{M}(X)$. In order to show that $R_{t}^{*} \mu \ll \gamma$, take a Borel set $B$ with $\gamma(B)=0$. Then

$$
\left(R_{t}^{*}\right) \mu(B)=\int_{X} \chi_{B} d R_{t}^{*} \mu=\int_{X} R_{t} \chi_{B} d \mu
$$

but $R_{t} \chi_{B}(x)=N_{e^{t A} x, Q_{t}}(B)$ and since $N_{e^{t A} x, Q_{t}} \ll \gamma$ (see [12, Lemma 10.3.3]) we have $R_{t} \chi_{B}(x)=0$ for all $x$ and the claim follows. Finally, since $R_{t} 1=1$ we obtain that $\mu^{*}(X)=$ $\mu(X)$, hence $R_{t}^{*}$ is a contraction. It is also useful to notice that $R_{t}^{*}$ is contractive on vector measures as well. In fact, $R_{t}$ is a contraction in $C_{b}$, hence $\left|\left\langle R_{t}^{*} \mu, \phi\right\rangle\right|=\left|\left\langle\mu, R_{t} \phi\right\rangle\right| \leq\langle | \mu|,|\phi|\rangle$ for every $\varphi \in C_{b}(X)$. Since for every vector measure $\nu$ the minimal positive measure $\sigma$ such that $|\langle\nu, \phi\rangle| \leq\langle\sigma,| \phi| \rangle$ for all $\varphi$ is $|\nu|$, taking $\nu=R_{t}^{*} \mu$ we conclude.

## 3 Functions of bounded variation

In the present context it is possible to define functions of bounded variation, as it has been done, using the Malliavin derivative, in [16], [17] and [4], [5], and to relate $B V$ functions to the Ornstein-Uhlenbeck semigroup $R_{t}$. According to [5], in order to distinguish the two notions of $B V$ functions, we keep the notation $B V(X, \gamma)$ for the functions coming from the $\nabla_{H}$ operator and use the notation $B V_{X}(X, \gamma)$ for those coming from $D$.
Definition 3.1. A function $u \in L^{1}(X, \gamma)$ belongs to $B V_{X}(X, \gamma)$ if there exists $\nu^{u} \in$ $\mathscr{M}(X, X)$ such that for any $k \geq 1$ we have

$$
\int_{X} u(x) D_{k} \varphi(x) d \gamma=-\int_{X} \varphi(x) d \nu_{k}^{u}+\frac{1}{\lambda_{k}} \int_{X} x_{k} u(x) \varphi(x) d \gamma, \quad \varphi \in \mathcal{F} C_{b}^{1}(X)
$$

with $\nu_{k}^{u}=\left\langle\nu^{u}, e_{k}\right\rangle_{X}$. If $u \in B V_{X}(X, \gamma)$, we denote by $D u$ the measure $\nu^{u}$, and by $|D u|$ its total variation.

According to (2.2), for $u \in B V_{X}(X, \gamma)$ the total variation of $D u$ is given by

$$
\begin{equation*}
|D u|(X)=\sup \left\{\int_{X} u\left[\sum_{k} D_{k}^{*} \phi_{k}\right] d \gamma, \phi \in \mathcal{F} C_{b}^{1}(X, X),|\phi(x)| \leq 1 \forall x \in X\right\} \tag{3.1}
\end{equation*}
$$

Obviously, if $u \in W^{1,1}(X, \gamma)$ then $u \in B V_{X}(X, \gamma)$ and $|D u|(X)=\int_{X}|D u| d \gamma$.
Recalling that $u \in B V(X, \gamma)$ if there is a finite measure $D_{\gamma} u=\left(D_{\gamma}^{k} u\right)_{k} \in \mathscr{M}(X, X)$ such that

$$
\int_{X} u(x) \partial_{k} \varphi(x) d \gamma=-\int_{X} \varphi(x) d D_{\gamma}^{k} u+\frac{1}{\sqrt{\lambda_{k}}} \int_{X} x_{k} u(x) \varphi(x) d \gamma, \quad \varphi \in \mathcal{F} C_{b}^{1}(X), k \geq 1
$$

it is immediate to check that $B V_{X}(X, \gamma)$ is contained in $B V(X, \gamma)$ and that

$$
\begin{equation*}
D_{\gamma}^{k} u=\lambda_{k}^{1 / 2} \nu_{k}^{u}, \quad \forall k \geq 1 \tag{3.2}
\end{equation*}
$$

The next proposition provides a simple criterion, analogous to the finite-dimensional one, for the verification of the $B V_{X}$ property.

Proposition 3.2. Let $u \in L^{1}(X, \gamma)$ and let us assume that

$$
\begin{equation*}
\mathcal{R}(u):=\sup _{m} \sup \left\{\int_{X} \sum_{k=1}^{m} u D_{k}^{*} \varphi_{k} d \gamma: \varphi_{k} \in C_{b}^{1}(X), \sum_{i=1}^{m} \varphi_{k}^{2} \leq 1\right\}<\infty \tag{3.3}
\end{equation*}
$$

Then $u \in B V_{X}(X, \gamma)$ and $|D u|(X) \leq \mathcal{R}(u)$.
Proof. Fix $k \geq 1$, set $X_{k}=\left\{x \in X: x=s e_{k}, s \in \mathbb{R}\right\}, X_{k}^{\perp}=\left\{x \in X:\left\langle x, e_{k}\right\rangle=0\right\}$, and define

$$
\begin{aligned}
& V_{k}(u):=\sup \left\{\int_{X} u\left(\partial_{k} \phi-\frac{1}{\sqrt{\lambda_{k}}} \phi\right) d \gamma: \phi \in C_{c}^{1}(X),|\phi(x)| \leq 1 \forall x \in X\right\}, \\
& \mathscr{V}_{k}(u):=\sup \left\{\int_{X} u\left(D_{k} \phi-\frac{1}{\lambda_{k}} \phi\right) d \gamma: \phi \in C_{c}^{1}(X),|\phi(x)| \leq 1 \forall x \in X\right\}
\end{aligned}
$$

For $y \in X_{k}^{\perp}$, define the function $u_{y}(s)=u\left(y+s e_{k}\right), s \in \mathbb{R}$, and notice that $V_{k}(u)=$ $\sqrt{\lambda_{k}} \mathscr{V}_{k}(u)$, so that by [5, Theorem 3.10] we have

$$
\mathscr{V}_{k}(u)=\int_{X_{k}^{\perp}} \mathscr{V}\left(u_{y}\right) d \gamma^{\perp}(y)
$$

where $\mathscr{V}$ denotes the 1-dimensional variation of $u_{y}$ and we have used the factorization $\gamma=\gamma_{1} \otimes \gamma^{\perp}$ induced by the orthogonal decomposition $X=X_{k} \oplus X_{k}^{\perp}$.

Since $\mathscr{V}_{k}(u) \leq \mathcal{R}(u)$ we have

$$
\int_{X_{k}^{\perp}} \mathscr{V}\left(u_{y}\right) d \gamma^{\perp}(y)<\infty
$$

It follows that for $\gamma^{\perp}$-a.e. $y \in X_{k}^{\perp}$ the function $u_{y}$ has bounded variation in $\mathbb{R}$. By a Fubini argument, based on the factorization $\gamma=\gamma_{1} \otimes \gamma^{\perp}$, the 1-dimensional integration by parts formula yields that the measure $D_{k} u$ coincides with $D u_{y} \otimes \gamma^{\perp}$, i.e.,

$$
D_{k} u(A)=\int_{X_{k}^{\perp}} D u_{y}\left(A_{y}\right) d \gamma^{\perp}(y)
$$

(where $A_{y}:=\left\{s: y+s e_{k} \in A\right\}$ is the $y$-section of a Borel set $A$ ) provides the derivative of $u$ along $e_{k}$. Notice that $D_{k} u$ is well defined, since we have just proved that $\int_{X_{k}^{\perp}}\left|D u_{y}\right|(\mathbb{R}) d \gamma^{\perp}$ is finite.

Now, setting $\mu_{k}=D_{k} u$, by the implication stated in (2.3) we obtain that $|D u|(X) \leq$ $\mathcal{R}(u)$.

The next theorem characterizes the $B V$ class in terms of the semigroup $R_{t}$ : notice that the functions $R_{t} u$, for $u \in B V(X, \gamma)$, turn out to be slightly better than $W^{1,1}(X, \gamma)$, since not only $\left|D R_{t} u\right|$, but also $\left|e^{-t A} D R_{t} u\right|$ is integrable.
Theorem 3.3. Let $u \in L^{1}(X, \gamma)$. Then, $u \in B V_{X}(X, \gamma)$ if and only if $R_{t} u \in W^{1,1}(X, \gamma)$, $\left|e^{-t A} D R_{t} u\right| \in L^{1}(X, \gamma)$ for all $t>0$ and

$$
\begin{equation*}
\liminf _{t \downarrow 0} \int_{X}\left|e^{-t A} D R_{t} u\right| d \gamma<\infty \tag{3.4}
\end{equation*}
$$

Moreover, if $u \in B V_{X}(X, \gamma)$ we have $D R_{t} u=e^{-t A} R_{t}^{*} D u$,

$$
\begin{equation*}
\int_{X}\left|e^{-t A} D R_{t} u\right| d \gamma \leq|D u|(X), \quad \forall t>0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{X}\left|e^{-t A} D R_{t} u\right| d \gamma=|D u|(X) \tag{3.6}
\end{equation*}
$$

Proof. Let $u \in B V_{X}(X, \gamma)$. We use (2.11) to deduce

$$
\int_{X} R_{t} u D_{k}^{*} \varphi d \gamma=-e^{-\alpha_{k} t} \int_{X} R_{t} \varphi d D_{k} u \quad \forall \varphi \in \mathcal{F} C_{b}^{1}(X), t>0
$$

According to (2.12), this implies that $D_{k} R_{t} u=e^{-\alpha_{k} t} R_{t}^{*} D_{k} u \in L^{1}(X, \gamma)$. Therefore, as $R_{t}^{*}$ is a contractive semigroup also on vector measures,

$$
\int_{X}\left|e^{-t A} D R_{t} u\right| d \gamma=\int_{X}\left|R_{t}^{*} D u\right| d \gamma \leq|D u|(X)
$$

for every $t>0$ and (3.5) follows.
Conversely, let us assume that $R_{t} u \in W^{1,1}(X, \gamma)$ for all $t>0$ and that the $\lim \inf$ in (3.4) is
finite. We shall denote by $\Pi_{m}: X \rightarrow \mathbb{R}^{m}$ the canonical projection on the first $m$ coordinates and we shall actually prove that $u \in B V_{X}(X, \gamma)$ and

$$
\begin{equation*}
|D u|(X) \leq \sup _{m} \liminf _{t \downarrow 0} \int_{X}\left|\Pi_{m} D R_{t} u\right| d \gamma \tag{3.7}
\end{equation*}
$$

under the only assumption that the right hand side of (3.7) is finite. Indeed, fix an integer $m$ and notice that an integration by parts gives

$$
\sup \left\{\int_{X} \sum_{k=1}^{m} R_{t} u D_{k}^{*} \varphi_{k} d \gamma: \varphi_{k} \in C_{b}^{1}(X), \sum_{i=1}^{m} \varphi_{k}^{2} \leq 1\right\} \leq \int_{X}\left|\Pi_{m} D R_{t} u\right| d \gamma
$$

so that passing to the limit as $t \downarrow 0$ and taking the supremum over $m$ we obtain

$$
\mathcal{R}(u) \leq \sup _{m} \liminf _{t \downarrow 0} \int_{X}\left|\Pi_{m} D R_{t} u\right| d \gamma,
$$

with $\mathcal{R}$ defined as in (3.3). Therefore we obtain the inequality (3.7) by Proposition 3.2. Finally (3.6) follows combining (3.5) with (3.7).

Remark 3.4. (1) Notice that the inclusion $B V_{X}(X, \gamma) \subset B V(X, \gamma)$ allows us to exploit the results in [5] in order to prove one implication in the above theorem, while the other one uses the strong regularizing properties of the semigroup $R_{t}$. Anyway, we have tried to keep the use of the results in the above quoted paper to a minimum, and in fact only Theorem 3.10 in [5] has been used in the proof of Proposition 3.2. It is most likely possible to give a proof completely independent from [5], but some of the arguments therein should be rephrased and proved again, basically along the same lines.
(2) The argument used in the proof of the theorem shows that $D_{k} R_{t} u \in L^{1}(X, \gamma)$ for all $t>$ $0, k \geq 1$ and finiteness of the right hand side of (3.7) suffices to conclude that $u \in B V_{X}(X, \gamma)$. Furthermore, combining (3.5) and (3.7) we obtain that $\int_{X}\left|D R_{t} u\right| d \gamma \rightarrow|D u|(X)$ as $t \downarrow 0$, as well.
(3) By the same argument as [5] one can use (2) to conclude that the measures $e^{-t A} D R_{t} u \gamma$ are equi-tight as $t \downarrow 0$; hence, they converge (componentwise) to $D u$ not only on $\mathcal{F} C_{b}^{1}(X)$ but also on $C_{b}^{0}(X)$.

We recall also that both Sobolev and $B V$ spaces in the present context are compactly embedded into the corresponding Lebesgue spaces. The following statement is proved in [5, Theorem 5.3], see also [9] for the case $1<p<\infty$.
Theorem 3.5. For every $p \geq 1$, the embedding of $W^{1, p}(X, \gamma)$ into $L^{p}(X, \gamma)$ is compact. The embedding of $B V_{X}(X, \gamma)$ into $L^{1}(X, \gamma)$ is also compact.

## References

[1] L. Ambrosio: Transport equation and Cauchy problem for $B V$ vector fields, Invent. Math. 158 (2004), 227-260.
[2] L. Ambrosio, A. Figalli: On flows associated to Sobolev vector fields in Wiener spaces, J. Funct. Anal. 256 (2009), 179-214.
[3] L. Ambrosio, N. Fusco, D. Pallara: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000.
[4] L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara: Towards a theory of $B V$ functions in abstract Wiener spaces, Evolution Equations: a special issue of Physica D, forthcoming.
[5] L. Ambrosio, S. Maniglia, M. Miranda Jr, D. Pallara: BV functions in abstract Wiener spaces, J. Funct. anal., 258 (2010), 785-813.
[6] L. Ambrosio, M. Miranda Jr, D. Pallara: Special functions of bounded variation in doubling metric measure spaces, in: D. Pallara (ED.), Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, Quaderni di Matematica, vol. 14 (2004), Dipartimento di Matematica della seconda Università di Napoli, 1-45.
[7] V. I. Bogachev: Gaussian Measures. American Mathematical Society, 1998.
[8] V. I. Bogachev: Measure Theory, vol. 2. Springer, 2007.
[9] A. Chojnowska-Michalik, B. Goldys: Symmetric Ornstein-Uhlenbeck semigroups and their generators, Probab. Theory Related Fields 124 (2002), 459-486.
[10] G. Da Prato: An introduction to infinite-dimensional analysis, Springer, 2006.
[11] G. Da Prato, J. Zabczyk: Stochastic equations in infinite dimensions, Cambridge U. P., 1992.
[12] G. Da Prato, J. Zabczyk: Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series, 293, Cambridge U. P., 2002.
[13] E. De Giorgi: Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191-213, and also Ennio De Giorgi: Selected Papers, (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. SpagNOLO EDS.) Springer, 2006, 79-99. English translation, Ibid., 58-78.
[14] E. De Giorgi: Su alcune generalizzazioni della nozione di perimetro, in: Equazioni differenziali e calcolo delle variazioni (Pisa, 1992), G. Buttazzo, A. Marino, M.V.K. Murthy eds, Quaderni U.M.I. 39, Pitagora, 1995, 237-250.
[15] D. Feyel, A. de la Pradelle: Hausdorff measures on the Wiener space, Potential Anal. 1 (1992), 177-189.
[16] M. Fukushima: $B V$ functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174 (2000), 227-249.
[17] M. Fukushima \& M. Hino: On the space of $B V$ functions and a Related Stochastic Calculus in Infinite Dimensions, J. Funct. Anal., 183 (2001), 245-268.
[18] M. Ledoux: The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, 2001.
[19] N.N. Vakhania, V.I. Tarieladze, S.A. Chobanyan: Probability distribution in Banach spaces, Kluwer, 1987.


[^0]:    *Scuola Normale Superiore, Piazza dei Cavalieri,7, 56126 Pisa, Italy, e-mail: l.ambrosio@sns.it, g.daprato@sns.it
    ${ }^{\dagger}$ Dipartimento di Matematica "Ennio De Giorgi", Università del Salento, C.P.193, 73100, Lecce, Italy, e-mail: diego.pallara@unisalento.it

