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Introduction

Variational models to describe equilibria of brittle hyperelastic bodies have been largely
developed in the recent years. Inspired by Griffith’s theory of crack propagation, these mod-
els in fracture mechanics are based on the assumption that a pair (u, Γ) is an equilibrium
configuration of the body if it minimizes among all admissible configurations a total energy
whose basic form is

(0.1) E(u, Γ) =
∫

Ω
W (∇u) dx + kHN−1(Γ).
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2 A. GIACOMINI AND M. PONSIGLIONE

Here Γ denotes a crack inside the elastic body Ω ⊆ RN and u is a deformation well defined
outside Γ which satisfies suitable boundary conditions. The volume part of E(u,Γ), which de-
pends on the strain∇u, represents the elastic energy stored in the body, while the surface part,
which is proportional to the surface of the crack (HN−1 stands for the (N − 1)-dimensional
Hausdorff measure), represents the energy dissipated to produce the crack Γ. More general
surface energies may be considered: they could depend, following Barenblatt’s theory, on the
opening [u] of the lips of the crack, as well as on its orientation.

From a mathematical point of view, the minimization of the total energy (0.1) can be
carried out under general assumptions for W if the problem is settled within the theory of
SBV -deformations. The functional space SBV of special functions of bounded variations has
been introduced by De Giorgi and Ambrosio [12] to deal with free discontinuity problems
arising in image segmentation, and was proposed by Ambrosio and Braides [4] as a suitable
framework for fracture mechanics. A function u belongs to SBV (Ω, RN ) (see Section 1.2
for a precise definition) if u ∈ L1(Ω, RN ) and its derivative in the sense of distributions is a
finite Radon measure which is the sum of a part absolutely continuous with respect to the
N -dimensional Lebesgue measure LN with density ∇u (approximate gradient of u) and of a
part supported on the complement Su of the set of Lebsgue points and absolutely continuous
with respect to the (N−1)-dimensional measure HN−1. Deformations of class SBV are easily
interpreted as deformations with cracks inside Ω: the crack is identified with Su (which is
essentially a surface for N = 3), and ∇u represents the usual strain in the elastic part of the
body outside the crack.

Recently a variational approach to quasi-static crack growth based on time discretization
and energy minimization of (0.1) has been proposed by Francfort and Marigo [15], and it has
been developed in many subsequent papers in the framework of SBV -functions (we refer to
[14], [11], [19] and to the references therein).

The advantage of the SBV -approach to fracture mechanics is that, even if it allows to
involve in the minimization process a huge class of cracks, without a priori regularity assump-
tions, anyway it leads to useful compactness properties (see Ambrossio’s Theorem 1.6), so
that the minimization can be carried out following the direct method of the Calculus of Vari-
ations. The aim of this paper is to introduce and to discuss in this context the constraint of
non-interpenetration of matter. The introduction of such a constraint would make physically
more realistic the equilibria found through the minimization process of the specific considered
model.

Non interpenetration of matter for hyperelastic bodies subject to pure traction was first
studied by Ball [7] by means of a global inversion theorem for Sobolev maps in W 1,p(Ω) with
p > N [7, Theorem 1]: he proved that if u is a.e.-orientation preserving, i.e.,

det∇u(x) > 0 for a.e. x ∈ Ω,

and it coincides with a continuous and injective map on ∂Ω, then u is a.e.-injective in Ω,
i.e., it is injective outside a negligible subset of Ω. Furthermore [7, Theorem 2], if some
suitable energetic assumptions (involving the behavior of (∇u)−1) are satisfied, u is indeed
a homeomorphism between Ω and u(Ω). In other words, the non-interpenetration condition
can be plugged in the variational theory of nonlinear elasticity introduced by the same author
in [6] provided that the strain energy density satisfies suitable growth assumptions.

The problem of non-interpenetration of matter was then considered by Ciarlet-Nečas [9]
in the context of more general traction-displacements boundary problems. They consider as
admissible deformations Sobolev mappings in W 1,p(Ω, RN ) with p > N (which are continuous
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by Sobolev Embedding Theorem) that are a.e.-orientation preserving and which are a.e.-
injective in Ω. The key idea in order to take into account this non-interpenetration condition
in the minimization process is that the constraint of a.e.-injectivity can be reformulated
equivalently (employing the area formula for Sobolev mappings in W 1,p(Ω, RN ) with p > N ,
see Section 1.1) in the following way

(0.2)
∫

Ω
det∇u dx ≤ Volume

(
u(Ω)

)
.

Ciarlet and Nečas proved that this constraint is preserved under weak convergence and so it
is suitable to be employed in the minimization of the strain energy. They interpret this min-
imum problem as a mathematical model of frictionless self-contact without interpenetration
of matter [9, Theorem 4].

In this paper we will follow the ideas of [9], adapting them to the context of SBV - functions,
to prove analogous existence results in the setting of SBV -deformations of elastic bodies with
cracks. Given a deformation u ∈ SBV (Ω; RN ), we say that u satisfies the Ciarlet-Nečas non-
interpenetration condition if u is a.e.-orientation preserving, and u is a.e.-injective. In order
to take into account this constraint in a minimization problem, we want to reformulate a.e.-
injectivity imposing a constraint on the LN -volume of the image of the deformation, according
to (0.2). To this aim, we have to face the problem of defining what we mean by the image of Ω
under an SBV -deformation u: in fact u does not admit in general a continuous representative
(even outside the crack Su). The Lebesgue-representative ũ of u is the natural candidate to
define the image of Ω, since it is well defined outside the crack Su: we prove however that the
Lebesgue representative fails to map negligible sets into negligible sets (see Example 2.1), i.e.,
it does not satisfy what is usually referred to as the N -property, which is the starting point
to establish the area formula and recover (0.2). As a consequence, a.e.-injectivity cannot be
formulated with the integral constraint (0.2) employing the Lebesgue points. Our example
is heavily inspired by that given by Malý and Martio [21] concerning the N -property for the
Lebesgue representative of Sobolev functions in W 1,N : we remark that the N -property fails
in SBV even if ∇u ∈ Lp(Ω, RN2

) with p > N (in contrast to Sobolev space case, see Marcus
and Mizel [22]).

The “right” notion of image of Ω under u in order to carry out our program is given by
the image ũ(ΩD) of the set ΩD of points of approximate differentiability of u (see Section 1.1
for a precise definition) which is only a part of the set ΩL of Lebesgue points of u. We refer
to this image as the measure theoretical image of u, and we indicate it as [u(Ω)]. It turns
out from general results on the area formula for a.e. approximately differentiable maps (see
Section 1.1) that the constraint of a.e.-injectivity for orientation preserving SBV -maps can
be formulated through the constraint∫

Ω
det∇u dx ≤ Volume([u(Ω)]),

and we prove that this constraint is stable under weak convergence of u in SBV (see Theorem
3.4) provided some control on det∇u is available (which is usually inferred by the energy
control in a minimization problem). From a mechanical point of view, we conclude that the
set ΩL \ ΩD should be regarded as a set of damaged points, even if a mean value of u at
those points is well defined, and so they should not be considered to recover the deformed
configuration.
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The importance of the measure theoretical image [u(Ω)] (i.e., the image of approximate
differentiability points) in the variational approach to perfect finite elasticity has been pointed
out by Giaquinta, Modica and Souček [18, Chapter 2] (see also Müller and Spector [23] where
a model which allows for cavitation is considered). Also for the case of SBV -maps (i.e.,
also in the presence of fractures), we prove that the measure theoretical image [u(Ω)] enjoys
interesting variational and stability properties:

(1) it has minimal LN -measure with respect to any other image v(Ω), where v is any
representative of u (see Proposition 2.5);

(2) it is stable, in a L1-sense, with respect to weak convergence in SBV p(Ω; RN ) for
p > N(see Proposition 2.7 and Definition 1.6 for the definition of SBV p(Ω; RN ));

(3) if u ∈ SBV (Ω; RN ) is a.e.-injective, then the function µ[u] : E → LN ([u(E)]) is a mea-
sure, which says that non overlapping of matter occurs in the deformed configuration
(see Proposition (5.3)).

In Section 4 we prove that the Ciarlet-Nečas non-interpenetration condition can be taken
into account for hyperelastic brittle materials with an energy W of Ogden’s type [24]. In
Theorem 4.1 we prove that a minimum energy deformation which does not exhibit interpen-
etration of matter in the sense of Ciarlet-Nečas can be recovered using the direct method
of the Calculus of Variations: this follows easily from the stability property of the measure
theoretical images of weakly converging SBV -deformations, and from a lower semicontinu-
ity result in SBV for polyconvex energies of Ogden’s type recently proved by Fusco, Leone,
March and Verde [16].

In Section 5 we briefly discuss some alternative notions of non-interpenetration of matter
which could be taken into account in a minimization problem, pointing out the differences
between these notions and the Ciarlet-Nečas non-interpenetration condition through exam-
ples. In particular we consider: i) a linearized version of the non-interpenetration condi-
tion which involves the behaviour of the deformation near the crack; ii) a notion of non-
interpenetration condition in the deformed configuration, based on the assumption that the
function µ[u] : E → LN ([u(E)]) is a measure; iii) a notion of non-interpenetration during the
deformation process.

The paper is organized as follows. In Section 1 we recall some results concerning the
area formula for approximately differentiable functions, and we recall some basic facts from
the theory of SBV -functions. In Section 2 we prove that SBV p-functions does not satisfy
the N -property even for p > N , and we study the properties of the measure theoretical
image of SBV -deformations defined through the approximately differentiable representative.
Section 3 is devoted to the formulation and the main stability properties of the Ciarlet-Nečas
non-interpenetration condition for SBV -maps, while Section 4 contains the application to
brittle hyperlastic Ogden’s materials. Finally in Section 5 we address the problem of non-
interpenetration conditions alternative to that of Ciarlet-Nečas.

1. Preliminaries

In this Section we recall some basic facts which will be employed in the rest of the paper.
In what follows, Ω ⊆ RN , N ≥ 1, represents an open bounded set. Moreover LN stands for
the usual N -dimensional outer Lebesgue measure on RN .
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1.1. Area formula for approximately differentiable maps and a.e.-injectivity. In
this Section we briefly recall the link between a.e.-injectivity and the area formula for a.e.-
approximately differentiable maps which is at the basis of Ciarlet-Nečas approach to non-
interpenetration of matter for Sobolev deformations (see the Introduction).

Let u : Ω → RM be a measurable function. Given x ∈ Ω we say that u admits an
approximate limit l at x, and we write l = ap lim

y→x
u(y), if for every ε > 0 we have

lim
r→0

r−NLN ({y ∈ Br(x) : |u(y)− l| > ε}) = 0.

Here Br(x) denotes the ball of center x and radius r. We say that u is approximately con-
tinuous at x if u(x) is the approximate limit of u at x. We say that u is a.e.-approximately
continuous in Ω if it is approximately continuous at almost every point of Ω.

We say that u is approximately differentiable at x if u is approximately continuous at x
and there exists an (M ×N)-matrix L such that and

ap lim
y→x

u(y)− u(x)− L(y − x)
|y − x|

= 0.

The matrix L is called the approximate gradient of u at x and is usually denoted by ∇u(x).
We say that u is a.e.-approximately differentiable in Ω provided that it is approximately
differentiable at a.e. x ∈ Ω.

Let us consider N = M , and let us recall the area formula for a.e.-approximately differen-
tiable maps. We refer the reader to [17, Chapter 3] for a complete treatment of the subject.
For every measurable set E ⊆ Ω, let the number of preimages of a point y in the set E be
denoted by

m(u, y, E) := cardinality{x ∈ E : u(x) = y}.
Let ΩD be the set of points in Ω at which u is approximately differentiable. The area formula
for a.e.-approximately differentiable maps is the following (see e.g. [17, Theorem 1, Section
1.5, Chapter 3]).

Theorem 1.1 (The area formula). Let us assume that u : Ω → RN is a.e.-approximately
differentiable in Ω. Then for every measurable set E ⊆ Ω the function {y → m(u, y, E∩ΩD)}
is measurable, and we have

(1.1)
∫

E
|det∇u(x)| dx =

∫
RN

m(u, y, E ∩ ΩD) dy.

In order to formulate the area formula without the restriction to the set of approximate
differentiability points, we need the notion of N -property.

Definition 1.2 (N-property). We say that u : Ω → RN has the N -property if for every
LN -negligible set E ⊆ Ω, we have that u(E) is LN -negligible.

Notice that if u is measurable and satisfies the N -property, then u(F ) is measurable for
every measurable set F ⊆ Ω. In view of Theorem 1.1, we get immediately the following area
formula.

Theorem 1.3 (The area formula for a.e.-approximately differentiable maps). Let
us assume that u : Ω → RN is a.e.-approximately differentiable in Ω and satisfies the N -
property. Then for every measurable set E ⊆ Ω the function {y → m(u, y, E)} is measurable,
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and we have

(1.2)
∫

E
|det∇u(x)| dx =

∫
RN

m(u, y, E) dy.

Let us come to the link between a.e.-injectivity and the area formula.

Definition 1.4 (A.e.-injective maps). We say that a measurable map u : Ω → RN is
a.e.-injective if there exists a LN -negligible set E ⊂ Ω such that the restriction of u to Ω \ E
is injective.

The following result is basic to the study of a.e.-injectivity in variational problems (see
Section 3).

Proposition 1.5. Let us assume that u : Ω → RN is a.e.-approximately differentiable in Ω
and satisfies the N -property. If u is a.e.-injective, then

(1.3)
∫

Ω
|det∇u| dx ≤ LN (u(Ω)).

Viceversa, if u satisfies (1.3) and det∇u 6= 0 a.e. in Ω, then u is a.e.-injective.

Proof. By the area formula we have that

LN (u(Ω)) ≤
∫

Ω
|det∇u| dx.

so that inequality (1.3) is equivalent to

(1.4)
∫

Ω
|det∇u| dx = LN (u(Ω)).

From (1.2) we deduce that (1.4) holds if and only if m(u, y,Ω) ≤ 1 for a.e. y ∈ RN or
equivalently if and only if the set M := {y ∈ RN : m(u, y, Ω) ≥ 2} is LN -negligible.

We can now prove the conclusions of the Proposition. If u is a.e.-injective, then there exists
a negligible set E such that the restriction of u to Ω \E is injective, and hence M ⊆ u(E) is
LN -negligible in view of the N -property of u.

On the other hand let us assume that LN (M) = 0 and det∇u 6= 0 a.e. in Ω. Then by (1.2)
we have that also E := u−1(M) is LN -negligible, so that u is a.e.-injective. �

1.2. Special functions of bounded variation SBV . Let us recall some results from the
theory of SBV -functions: We refer the reader to [5] for an exhaustive treatment of the subject.

Let Ω be an open subset of RN , and let u : Ω → RM be a measurable function. We say
that u ∈ BV (Ω; RM ) if u ∈ L1(Ω; RM ), and its distributional derivative Du is a vector-valued
Radon measure on Ω with finite mass.

If u ∈ BV (Ω, RM ), it turns out that u is a.e.-approximately differentiable in Ω. Moreover,
denoting with Su the set of points where the approximate limit of u does not exist, it turns
out that Su is rectifiable, i.e. there exists a sequence (Mi)i∈N of C1-manifolds such that
Su ⊆

⋃
i Mi up to a set ofHN−1-measure zero, whereHN−1 stands for the (N−1)-dimensional

measure. In particular Su admits a normal νu(x) defined for HN−1-a.e. x ∈ Su. Moreover u
admits traces u+ and u− on each side of Su, and for every A ⊆ Ω we have the representation
formula

Du(A) =
∫

A
∇u dx +

∫
Su∩A

(u+ − u−)⊗ νu dHN−1 + Dcu(A),

where Dcu is the Cantor part of Du, which is singular with respect LN and HN−1 Su.
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We say that u ∈ SBV (Ω; RM ) if u ∈ BV (Ω; RM ) and Dcu = 0, i.e., the singular part of
Du with respect to LN is concentrated on Su. The space SBV (Ω; RM ) is called the space of
RM -valued special functions of bounded variation.

The space SBV is very useful when dealing with variational problems involving volume
and surface energies because of the following compactness and lower semicontinuity result
due to L.Ambrosio (see [1], [2], [3]).

Theorem 1.6. Let Ω be an open and bounded subset of RN , and let (uk)k∈N be a sequence
in SBV (Ω; RM ). Assume that there exists p > 1 and C ≥ 0 such that∫

Ω
|∇uk|p dx +HN−1(Suk

) + ||uk||∞ ≤ C

for every k ∈ N. Then there exists a subsequence (ukh
)h∈N and a function u ∈ SBV (Ω; RN )

such that for every open set A ⊆ Ω

ukh
→ u strongly in L1(A; RM );

∇ukh
⇀ ∇u weakly in Lp(A; RMN );(1.5)

HN−1(Su ∩A) ≤ lim inf
h→+∞

HN−1(Sukh
∩A).

For applications to fracture mechanics, it is useful to set for p ≥ 1

(1.6) SBV p(Ω; RM ) := {u ∈ SBV (Ω; RM ) : ∇u ∈ Lp(Ω, RMN ),HN−1(Su) < +∞}.
We will say that uk converges weakly to u in SBV p(Ω; RM ), and we will write uk ⇀ u in
SBV p(Ω; RM ), if uk and u satisfy (1.5) for every open subset A of Ω.

2. The measure theoretical image of SBV -maps

In this section we deal with the problem of defining the image for a deformation u ∈
SBV (Ω; RN ) which could be useful for the study of non-interpenetration of matter for cracked
hyperelastic bodies. Recall that an SBV -function is formally an equivalence class of maps
which coincide almost everywhere in Ω, so that the set u(Ω) depends on the representative
we choose. We look for an image of Ω under u which depends only on the class, and for which
an area formula holds, so that a reformulation of a.e.-injectivity in the spirit of Proposition
1.5 is available.

Let us denote by ΩL and ΩD the sets of Lebesgue points and of approximate differentiability
points of u. From the general theory of BV functions, we have that ΩL and ΩD do not depend
upon the representative of u, and that they have full measure in Ω. If ũ(x) is the Lebesgue
value of u at x ∈ ΩL, two natural candidates for the definition of the image of Ω under u are
the representative uL and uD defined as

uL(x) :=

{
ũ(x) if x ∈ ΩL

0 otherwise

and

(2.1) uD(x) :=

{
ũ(x) if x ∈ ΩD

0 otherwise.

From Theorem 1.1, we immediately deduce that uD satisfies the area formula. Concerning
the Lebesgue representative uL, from Section 1.1 we have that the area formula (1.2) holds if
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and only if uL satisfies the N -property, i.e., if uL maps LN -negligible sets into LN -negligible
sets. The following example shows that this is not the case in general for SBV p-maps:
the construction we employ is inspired by a counterexample given by Malý and Martio [21]
concerning the N -property for the Lebesgue representative of Sobolev functions in W 1,N .

Example 2.1. (Lebesgue representatives of SBV p-functions do not satisfy in gen-
eral the N-property) Let Ω be the unit ball of RN . We construct a map u ∈ SBV p(Ω; RN )
for every 1 ≤ p ≤ ∞ which admits a set B of Lebesgue points contained in J := {te1, t ∈ [0, 1]},
and such that uL(B) = Q, where Q = [0, 1]N and e1 is the first vector of the canonical base
of RN .

Let us consider Y :=
{
−1

2 , 1
2

}N : for every y ∈ Y we can find zy ∈ J and r0 > 0 such
that the balls B(zy, r0) are disjoint and contained in Ω, and such that 0 6∈ B(zy, r0). Let us
consider the map

gm(x) :=
∑
y∈Y

y1B(zy ,αm)

where αm < r0 and αm → 0 as m → +∞. Clearly gm ∈ SBV p(Ω; RN ) for every p ∈ [1,+∞].
Let us construct a sequence of maps uk ∈ SBV p(Q, RN ) as follows. Let u0 be the constant

map (1/2, . . . , 1/2). For k ≥ 1, let us divide the cube Q into cubes

Qk
i := [2−k+1(i1 − 1), 2−k+1i1]× · · · × [2−k+1(iN − 1), 2−k+1iN ]

where i ∈ {1, 2, . . . , 2k−1}N : The graph of uk−1 enables us to find points xk
i ∈ J and a radius

rk such that the mappings uk−1 maps the ball B(xk
i , rk) to the center of the cube Qk

i for each
i ∈ {1, 2, . . . , 2k−1}N . Let us set

hm,k :=

{
2−kgm

(
x−xk

i
rk

)
if |x− xk

i | ≤ rk

0 otherwise,

and let us choose mk in such a way that

(2.2) HN−1(Shmk,k
) < 2−k.

Let Bk := ∪iB(xk
i , rk). We set

uk := uk−1 + hmk,k.

The sequence uk converges pointwise to a function u : Ω → RN : in view of (2.2) and of
Ambrosio’s compactness theorem, we conclude that u ∈ SBV p(Ω; RN ) for every p ∈ [1,+∞].
Notice that by construction we have that B := ∩∞k=1Bk ⊆ J are Lebesgue points for u, and
moreover that uL is continuous on B. As a consequence, we conclude that uL(B) = Q, so
that uL does not satisfy the N -property.

Remark 2.2. In the case of Sobolev functions in W 1,p(Ω; RN ) with p > N , Marcus and
Mizel [22] proved that the N -property is satisfied by the continuous representative. Malý and
Martio [21] proved that this is no longer the case for functions in W 1,N (Ω; RN ) (and we used
their ideas in the Example above). However, if we add the condition

(2.3) det∇u(x) > 0 for a.e. x ∈ Ω,

then the Lebesgue representative of u ∈ W 1,N (Ω; RN ) satisfies the N -property (see e.g. [13,
Theorem 5.32]). But condition (2.3) does not help to infer further regularity for SBV p-
deformations. In fact, employing the notations of Example 2.1, we can consider the map
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v : Ω → RN defined as follows: we set v(x) = x outside B1, and if Bk = ∪iB(xk
i , rk) and

Bk+1 = ∪jB(xk+1
j , rk+1), we set

v(x) = λk(x− xk
i ) for x ∈ B(xk

i , rk) \Bk+1

with λk ∈]0, 1[. Notice that v ∈ SBV p(Q, RN ) for every p ≥ 1, det∇v(x) > 0 for a.e. x ∈ Q,
and that B = ∩kBk is a set of Lebesgue points for v with vL = 0 on B. As a consequence,

w(x) := v(x) + u(x)

satisfies det∇w > 0 a.e. in Q, and wL(B) = Q, i.e., the Lebesgue representative of w does
not satisfy the N -property.

Remark 2.3 (Damaged points). In view of Example 2.1, we deduce that we should consider
Lebesgue points of u which are not approximate differentiability points as damaged points of
the body. Their image under u is not connected to the elastic properties of the deformation.

The previous considerations motivate the choice of uD instead of uL as a privileged repre-
sentative of the map u in order to define the deformed configuration of the body Ω under the
action of u. We have the following definition.

Definition 2.4 (Measure theoretical image). Let u ∈ SBV (Ω; RN ), let uD be defined in
(2.1), and let E be a measurable subset of Ω. We say that uD(E) is the measure theoretical
image of E under the map u, and we denote it by [u(E)].

Notice that since uD satisfies the N -property, [u(E)] is indeed a measurable set. The
measure theoretical image [u(Ω)] enjoys the following variational property.

Proposition 2.5. Let u ∈ SBV (Ω; RN ): then we have

(2.4) LN ([u(Ω)]) = min
{
LN (v(Ω)) : v is a representative of u

}
and

(2.5) LN ([u(Ω)]) ≤
∫

Ω
|det∇u(x)| dx.

Proof. Inequality (2.5) follows immediately from (1.1) applied to uD. Let us prove (2.4). Let
E be the set where v is different from the representative uD of u. We have

v(Ω) = v(Ω \ E) ∪ v(E) = uD(Ω \ E) ∪ v(E).

Since uD satisfies the N -property and LN (E) = 0 we deduce

LN (v(Ω)) ≥ LN (uD(Ω \ E)) = LN (uD(Ω)),

and the proof is concluded. �

In order to prove a stability result for the measure theoretical image of an SBV -map under
weak convergence, we need the following lemma.

Lemma 2.6. Let (uh)h∈N be a sequence in SBV (Ω; RN ) and let u ∈ SBV (Ω; RN ) be such
that

uh ⇀ u weakly in SBV (Ω; RN )
according to (1.5). Let us assume that (det∇uh)h∈N is equintegrable. Then we have

(2.6) lim sup
h→+∞

LN ([uh(Ω)] \ [u(Ω)]) = 0.
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Proof. Since uh → u strongly in L1(Ω; RN ), we can suppose (up to a subsequence) that
uh → u almost uniformly. As a consequence, for every ε > 0 there exists a compact set
Kε ⊆ Ω such that LN (Ω \Kε) < ε, the restrictions of uh and u on Kε are continuous, and
uh → u uniformly on Kε. We claim that

(2.7) lim sup
h→+∞

LN ([uh(Ω \Kε)]) = c(ε)

where c(ε) → 0 as ε → 0, and that

(2.8) lim sup
h→+∞

LN ([uh(Kε)] \ [u(Ω)]) = 0.

Clearly (2.7) and (2.8) imply (2.6). In order to prove claim (2.7), it is sufficient to note that
by (2.5) we have

LN ([uh(Ω \Kε)]) ≤
∫

Ω\Kε

|det∇uh(x)| dx.

The conclusion follows since (det∇uh)h∈N is equintegrable and LN (Ω \Kε) < ε. Let us come
to (2.8). Since uh → u uniformly on Kε, for every η > 0 we get that for h large enough

uh(Kε) ⊆ Aη := {y ∈ RN : d(y, u(Kε)) < η}.

We deduce that
lim sup
h→+∞

LN (uh(Kε) \ [u(Ω)]) ≤ LN (Aη \ u(Kε)).

Since u(Kε) is compact, we get that limη→0 LN (Aη \ u(Kε)) = 0, so that claim (2.8) is
proved. �

The following theorem contains a stability result (in a L1-sense) for the measure theoretical
image of SBV p-maps with p > N under weak convergence.

Theorem 2.7. Let us assume that p > N , and let (uh)h∈N be a sequence in SBV p(Ω; RN )
weakly converging to u ∈ SBV p(Ω; RN ) according to (1.5). Then we have

(2.9) 1[uh(Ω)] → 1[u(Ω)] strongly in L1(RN ).

Proof. We have to check that

(2.10) lim
h→+∞

LN ([uh(Ω)] \ [u(Ω)]) = 0,

and

(2.11) lim
h→+∞

LN ([u(Ω)] \ [uh(Ω)]) = 0.

Equality (2.10) follows immediately from Lemma 2.6 because weak convergence of uh to u in
SBV p(Ω; RN ) with p > N implies weak convergence in L1(Ω) of det∇uh to det∇u (see [5,
Corollary 5.31]), so that in particular (det∇uh)h∈N is equintegrable.

Let us pass to the proof of (2.11). We claim that given ε > 0, for a.e. x ∈ Ω there exists
rk → 0 such that

(2.12) lim sup
h→+∞

LN ([u(Brk
(x))] \ [uh(Brk

(x)]) ≤ εrN
k .

Then (2.11) follows through a covering argument. In fact, by Besicovitch covering theorem
there exists a sequence of points (xj)j∈N in Ω and a sequence of radii (rj)j∈N such that



NON INTERPENETRATION OF MATTER FOR SBV -DEFORMATIONS 11

{Brj (xj)}j∈N is a disjoint covering of Ω up to a set of LN -measure zero and each Brj (xj)
satisfies (2.12). We conclude that

lim sup
h→+∞

LN ([u(Ω)] \ [uh(Ω)]) ≤
+∞∑
j=0

lim sup
h→+∞

LN ([u(Brj (xj))] \ [uh(Brj (xj))])

≤ ε

+∞∑
j=0

rN
j ≤ ε

LN (Ω)
ωN

,

where ωN is the volume of the unit ball. Since ε is arbitrary, (2.11) follows.
In order to conclude the proof, we need to establish claim (2.12). Let us consider the

measures
µh := |∇uh|p dx +HN−1 Suh

.

By weak convergence of uh to u, we may assume that up a subsequence

µh
∗
⇀ µ weakly∗ in the sense of measures.

Notice that for a.e. x ∈ Ω we have

(2.13) K(x) := lim sup
ρ→0+

µ(B̄ρ(x))
ρN

< +∞

and

(2.14) H(x) := lim sup
ρ→0+

µ(B̄ρ(x))
ρN−1

= 0.

In fact order to prove (2.13), let us assume by contradiction that there exists a Borel set B
with positive Lebesgue measure such that K(x) = +∞ on B. Then for every t > 0 we have

K(x) > t for every x ∈ B,

then (see for instance [5, Theorem 2.56]) we deduce that

µ B ≥ tLN B,

so that µ(B) = ∞. But this is against the fact that µ is finite. In order to prove (2.14), let
us assume by contradiction that there exists a Borel set B with positive Lebesgue measure
and t > 0 such that

H(x) ≥ t for every x ∈ B.

Then (see for instance [5, Theorem 2.56]) we deduce that

µ B ≥ tHN−1 B,

so that µ(B) = ∞. But again this is against the fact that µ is finite.
Let ΩD be the set of approximate differentiability points of u, and let x ∈ ΩD be such that

x is a Lebesgue point for |∇u|p, x has (N −1)-density zero for Su, and (2.14) and (2.13) hold.
Let rk → 0 and hk → +∞ be such that, setting

(2.15) vk(y) :=
u(x + rky)− u(x)

rk

and

(2.16) wk(y) :=
uhk

(x + rky)− u(x)
rk

,
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and denoting with L the linear map determined by ∇u(x), we have

(2.17) vk → L strongly in L1(B1; RN ),

(2.18) wk → L strongly in L1(B1; RN ),

and

(2.19) lim sup
h→+∞

LN ([u(Brk
(x))] \ [uh(Brk

(x)]) ≤ LN ([u(Brk
(x))] \ [uhk

(Brk
(x)]) +

ε

2
rN
k .

By assumption on x we have that

(2.20) ‖∇vk‖Lp(B1;RN2 )
≤ C and HN−1 (Svk

) → 0,

and by (2.13) and (2.14) we have that there exists C > 0 such that

‖∇wk‖Lp(B1;RN2 )
≤ C

and
HN−1(Swk

) → 0.

By [20, Lemma 2.1] we get that there exists zk ∈ W 1,p(B1, RN ) such that

LN ({y ∈ B1 : zk(y) 6= wk(y) or ∇zk(y) 6= ∇wk(y)}) → 0

and (|∇zk|p)k∈N is equintegrable. Since p > N , by (2.5) we deduce that

(2.21) LN ([zk(B1)]∆[wk(B1)]) → 0

where A∆B denotes the symmetric difference of sets. Since

LN ([u(Brk
(x))] \ [uhk

(Brk
(x)]) = rN

k LN ([vk(B1)] \ [wk(B1)]) ,

taking into account (2.19) and (2.21), in order to prove (2.12), it suffices to show that

lim
k→+∞

LN ([vk(B1)] \ [zk(B1)]) = 0.

Notice that in view of (2.17) and (2.20), vk → L weakly in SBV p(B1; RN ), and since p > N ,
det∇vk ⇀ detL weakly in L1(B1). From Lemma 2.6 we get

lim
k→+∞

LN ([vk(B1)] \ L(B1)) = 0.

Then in order to conclude, it suffices to show that

(2.22) lim
k→+∞

LN (L(B1) \ [zk(B1)]) = 0.

Notice that zk → L weakly in W 1,p(B1, RN ), and since p > N , the convergence is uniform.
If detL = 0, then there is nothing to prove; otherwise (2.22) is a consequence of the stability
of the degree for continuous maps under uniform convergence (see [13]). The proof is thus
concluded. �

Remark 2.8. Notice that Theorem 2.7 does not hold in the case p ≤ N even in the case
of Sobolev spaces, because cavitation effects may occur (see Ball-Murat [8]). Convergence
(2.9) still holds if non-interpenetration condition for uh and suitable estimates on det∇uh are
assumed (see Theorem 3.4).
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3. Ciarlet-Nečas non-interpenetration condition for SBV -deformations

The aim of this section is to show that a non-interpenetration condition for SBV -maps
can be taken into account in some problems arising in the variational approach to fracture
mechanics.

Following the ideas of Ciarlet-Nečas, we will consider a.e.-injective deformations as admis-
sible deformations which do not present interpenetration of matter.

Definition 3.1 (A.e.-injective SBV -maps). We say that u ∈ SBV (Ω; RN ) is a.e.-injective
if for every representative v of u there exists a LN -negligible set E ⊂ Ω such that the restriction
of v on Ω \ E is injective.

By Proposition 1.5 applied to the approximately differentiable representative, we get im-
mediately that a.e.-injectivity for SBV -maps can be reformulated in the following way.

Proposition 3.2. If u ∈ SBV (Ω; RN ) is a.e.-injective, then

(3.1)
∫

Ω
|det∇u| dx ≤ LN ([u(Ω)]),

where [u(Ω)] denotes the image of Ω under u according to Definition 2.4. Viceversa, if u
satisfies (3.1) and det∇u 6= 0 a.e. in Ω, then u is a.e.-injective.

We can now give the definition of the Ciarlet-Nečas non-interpenetration condition for
SBV -maps.

Definition 3.3 (Ciarlet-Nečas non-interpenetration condition for SBV -maps). We
say that u ∈ SBV (Ω; RN ) satisfies the Ciarlet-Nečas non-interpenetration condition if
det∇u(x) > 0 for a.e. x ∈ Ω and if u is a.e.-injective or, equivalently, if it satisfies∫

Ω
det∇u dx ≤ LN ([u(Ω)]),

where [u(Ω)] denotes the image of Ω under u according to Definition 2.4.

As mentioned in the Introduction, the condition det∇u(x) > 0 for a.e. x ∈ Ω means that,
in a weak sense, u is orientation preserving, while the a.e.-injectivity prevents overlapping of
matter.

Maps which satisfy the Ciarlet-Nečas non-interpenetration condition are essentially closed
under weak convergence with stability for their measure theoretical images. The precise
statement is the following.

Theorem 3.4. Let (uh)h∈N be a sequence of maps in SBV (Ω; RN ) satisfying inequality (3.1),
and let u ∈ SBV (Ω; RN ) be such that uh ⇀ u weakly in SBV (Ω; RN ). Let us assume that
det∇uh ⇀ det∇u weakly in L1(Ω). Then we have

(3.2) 1[uh(Ω)] → 1[u(Ω)] strongly in L1(RN ),

and u satisfies inequality (3.1). If in addition det∇u(x) > 0 for a.e. x ∈ Ω, then u is
a.e.-injective, and hence satisfies the Ciarlet-Nečas non-interpenetration condition.

Proof. To prove (3.2) we have to check that

(3.3) lim
h→+∞

LN ([uh(Ω)] \ [u(Ω)]) = 0,
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and

(3.4) lim
h→+∞

LN ([u(Ω)] \ [uh(Ω)]) = 0.

Inequality (3.3) follows immediately from Lemma 2.6. Let us prove (3.4). By assumption and
by (2.5) we have

LN ([uh(Ω)]) =
∫

Ω
|det∇uh| dx.

By (2.5) and since det∇uh ⇀ det∇u weakly in L1(Ω), we obtain

LN ([u(Ω)]) ≤
∫

Ω
|det∇u| dx ≤ lim inf

h→+∞

∫
Ω
|det∇uh| dx = lim inf

h→+∞
LN ([uh(Ω)]).

This relation together with (3.3) implies (3.4), and the proof of (3.2) is concluded. Since∫
Ω
|det∇u| dx ≤ lim inf

h→+∞

∫
Ω
|det∇uh| dx = lim inf

h→+∞
LN ([uh(Ω)]) = LN ([u(Ω)]),

we get that u satisfies (3.1). Finally, the last statement follows by Proposition 3.2. �

4. An application to brittle Ogden’s materials

In this section we show how the Ciarlet-Nečas non-interpenetration condition given in
Definition 3.3 can be taken into account in the analysis of brittle materials of Ogden’s type
[24]. Let us consider Ω ⊆ RN open, bounded and with Lipschitz boundary, and let ∂DΩ ⊆ ∂Ω
be open in the relative topology. Let M denote the set on N × N matrices, and let M+ be
the subset of M given by those with positive determinants. Let W : M+ → R be a stored
energy density such that the following assumptions hold.

(a) Polyconvexity of W : there is a convex function W : Rτ → R ∪ {+∞} such that

W (F ) = W(M(F )) for all F ∈ M,

where M(F ) denotes the vector whose components are all the minors of the matrix
F , and τ is the dimension of M(F ).

(b) Behavior as detF → 0+:

(4.1) W (F ) → +∞ as detF → 0+.

(c) Coerciveness: we have the growth estimate

(4.2) W (F ) ≥ β1|F |p +
N−1∑
k=2

βk|adjkF |pk + βN |detF |pN for all F ∈ M+,

where βk > 0 for every k, and

p ≥ 2, pk ≥
p

p− 1
if k = 2, . . . , N − 1, pN > 1,

and where adjkF denotes the vector whose components are the minors of the matrix
F of order k.

The stored energy density W models a large class of hyperelastic materials known as Ogden’s
materials [24].

Let K be a given compact set in RN . Let us consider as family of admissible deformations
the set

A(K) :=
{
u ∈ SBV p(Ω, RN ) : u satisfies Definition 3.3 and [u(Ω)] ⊆ K

}
.
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As explained in the previous Section, the Ciarlet-Nečas non-interpenetration condition re-
quires that u is an a.e.-injective and orientation preserving (in a weak sense) map. The
relation [u(Ω)] ⊆ K can be interpreted as a confinement condition.

The problem we are going to consider is the following. Let g ∈ A(K) ∩W 1,p(Ω, RN ) be
such that

∫
Ω W (∇g) dx < +∞. We consider the total energy on A(K) defined as

(4.3) F (u) :=
∫

Ω
W (∇u) dx +HN−1(Sg

u)

where
Sg

u := Su ∪ {x ∈ ∂DΩ : g(x) 6= u(x)} ,

and the inequality is intented for the traces of g and u on ∂Ω. The set Sg
u takes into account

the crack formed inside Ω, and the part of the ∂DΩ where u does not agree with the imposed
deformation g (which is thus considered as a part of the crack which has reached the bound-
ary). As mentioned in the Introduction, the minimization of (4.3) can be interpreted as a
mathematical model for equilibrium configurations of Ogden’s materials with cracks. The
minimization on A(K) leads to non-interpenetrating equilibrium configurations.

The main result of the Section is the following.

Theorem 4.1. The minimum problem

(4.4) min {F (u) : u ∈ A(K)}

has a solution.

Proof. Let (uh)h∈N be a minimizing sequence for F . Since F (uh) ≤ F (g) =
∫
Ω W (∇g) dx <

+∞, we get by (4.2)

sup
h

(
‖∇uh‖Lp +

N−1∑
k=2

‖adjk∇uh‖Lpk + ‖det∇uh‖LpN +HN−1(Sg
uh

)

)
< +∞.

Since [uh(Ω)] ⊆ K, and K is compact, we obtain that uh is uniformly bounded in L∞(Ω; RN ).
By Ambrosio’s theorem 1.6 we get that, up to a subsequence

uh ⇀ u weakly in SBV p(Ω, RN ).

By [16, Theorem 3.4], we obtain that, up to a subsequence, for every k = 2, . . . , N − 1

adjk∇uh ⇀ adjk∇u weakly in Lpk(Ω, Rτk)

(τk is the number of minors of order k) and

det∇uh ⇀ det∇u weakly in LpN (Ω).

By Theorem 3.4 and the fact that [uh(Ω)] ⊆ K, we get that [u(Ω)] ⊆ K. Moreover, since
det∇uh > 0 a.e. in Ω, we obtain det∇u ≥ 0 a.e. in Ω. By polyconvexity of W we deduce
that ∫

Ω
W (∇u) dx ≤ lim inf

h→+∞

∫
Ω

W (∇uh) dx

and by Ambrosio’s theorem (applied to the extension of uh and u to RN by setting uh = u = g
outside Ω) we get

HN−1(Sg
u) ≤ lim inf

h→+∞
HN−1(Sg

uh
).
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We thus finally obtain
F (u) ≤ lim inf

h→+∞
F (uh) = min

A(K)
F.

Since F (u) < +∞, by (4.1) we get that det∇u > 0 a.e. in Ω. By Theorem 3.4 we deduce
that u ∈ A(K), and the proof is concluded. �

5. Further discussions and remarks

The non-interpenetration of matter for SBV -deformation which we have studied in the
previous sections following the ideas of Ciarlet-Nečas relies on the notion of a.e.- injectivity,
and it is based on the area formula for a.e.-approximately differentiable maps. We have seen
that the constraint of non-interpenetration is closed with respect to weak convergence in SBV
under mild additional energetic assumptions (see Theorem 3.4).

Different notions of non-interpenetration can be considered. The aim of this section is to
discuss briefly some of them, pointing out the differences through examples.

5.1. Linearized self-contact condition. A local non-interpenetration condition based on
the self-contact of the crack’s surface can be introduced for linearized elasticity as follows.
We say that a displacement u : Ω → RN satisfies the linearized self-contact condition if for
HN−1-a.e. x ∈ Su we have

(5.1) (u+(x)− u−(x)) · ν(x) ≥ 0.

This condition is local because it takes into account the behaviour near each point of the
crack, prescribing that the opening does not generate interpenetration of matter. Clearly this
condition has not the global character carried by a.e.-injectivity. It can be proved that the
linearized self-contact condition is closed with respect to weak convergence in SBV [10].

It is clear that even if a displacement function u satisfies the linearized self-contact condition
(5.1), the associated deformation function v(x) := x+u(x) is not in general a.e.-injective. For
instance it is very easy to find continuous deformations (trivially satisfying (5.1)), which are
not a.e.-injective. Also the viceversa is false: a.e.-injective functions do not satisfy in general
the linearized non-interpenetration condition. An easy example is given as follows.

Example 5.1. Let Ω := B1, let w be a fixed vector, and let u be the displacement function
defined by

(5.2) u(x) :=

{
0 if |x| ≥ 1

2 ,

w if |x| < 1
2 .

If |w| is big enough, we clearly have that the deformation function v(x) := x + u(x) is a.e.-
injective, while u does not satisfy the linearized self-contact condition.

However, for small displacements, a.e-injectivity implies the linearized condition. A rigor-
ous statement is given in the following Proposition.

Proposition 5.2. Let u ∈ SBV p(Ω; RN ) with p > N . Let tn ↘ 0, and assume that for
every n ∈ N the function vn(x) := x + tnu(x) satisfies inequality (3.1). Then u satisfies the
linearized self-contact condition (5.1).

Proof. Assume by contradiction that there exists a set E ⊆ Su with HN−1(E) > 0 and such
that for x0 ∈ E

(5.3) (u+(x0)− u−(x0)) · ν(x0) < 0.
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Let us consider the function z∞ : B1 → RN defined by

z∞(y) :=

{
y + λu+(x0) if y · ν(x0) ≥ 0,

y + λu−(x0) if y · ν(x0) < 0,

where λ > 0 is a positive constant. In view of (5.3) we can choose λ (small enough) such that
the function z∞ is not a.e.-injective.

Let zn : B1 → RN be defined as

zn(y) := y + λu

(
x0 +

tn
λ

y

)
.

Note that by assumption the functions zn satisfy inequality (3.1). Moreover (see [5, Theorem
3.78]) we can assume that x0 ∈ E is chosen in such a way that zn → z∞ strongly in L1(B1).
Since ∇u ∈ Lp(Ω, RN2

) with p > N , we deduce that

det∇zn → 1 = det∇z∞ strongly in L1(B1).

By Theorem 3.4 we deduce that also z∞ satisfies inequality (3.1) and that it is a.e. injective,
which clearly provides a contradiction. �

5.2. Non-interpenetration in the deformed configuration. The Ciarlet-Nečas non-
interpenetration condition requires that a map u satisfies

(5.4)
∫

Ω
|det∇u| dx ≤ LN ([u(Ω)]),

and that u preserves orientation, i.e. det∇u(x) > 0 for a.e. x ∈ Ω. If we let det∇u(x) ≥ 0 for
a.e. x ∈ Ω, we obtain a weaker notion of non-interpenetration in the deformed configuration
[u(Ω)] as shown in the following Proposition.

Proposition 5.3. Let u ∈ SBV (Ω; RN ). Then u satisfies inequality (5.4) if and only if the
set function µ[u] defined by µ[u](E) = LN ([u(E)]) is a measure. In particular µ[u] is a measure
whenever u is a.e.-injective.

Proof. Let us assume that (5.4) holds. By the area formula (1.2) applied to the approximately
differentiable representative uD of u we have that

(5.5) m(uD, y,Ω) = 1 for a.e. y ∈ [u(Ω)].

In order to prove that µ[u] is a measure, it suffices to show the additivity of µ[u] on disjoint
sets. Let E1, E2 be two measurable disjoint subset of Ω. By the fact that uD satisfies the
N -property we have that uD(E1) and uD(E2) are measurable subsets of RN . Moreover, by
(5.5) we deduce that their intersection is negligible, so that µ[u](E1∪E2) = µ[u](E1)+µ[u](E2).

Let us assume now that µ[u] is a measure. In view of the area formula (1.1), the proof
reduces to showing that the multiplicity function m(uD, y,Ω) = 1 for a.e. y ∈ RN . To this
aim let

En := {y ∈ RN : there exist x1, x2 ∈ Ω with |x1 − x2| ≥ 1/n, uD(x1) = uD(x2) = y}.
The union of these sets En gives exactly the set of points y ∈ RN with m(uD, y,Ω) 6= 1.
Therefore we have to prove that each En has measure zero. To this aim let us fix n ∈ N,
and let us cover Ω by means of cubes Qi of size m(n), where m(n) is chosen so small that if
|x1 − x2| ≥ 1/n, then x1 and x2 belong to two disjoint cubes. Let Q1 and Q2 be two disjoint
cubes. By the fact that µ[u] is a measure, we obtain that [u(Q1∩Ω)]∩ [u(Q2∩Ω)] has measure
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zero. Since En by construction is contained in a finite union of such intersections, we deduce
that En has measure zero.

Finally, if u is a.e.-injective, the conclusion follows by Proposition 3.2. �

In view of Proposition 5.3, we conclude that no overlapping of matter in the deformed
configuration occurs on a set of positive measure. On the other hand, inequality (3.1) does
not prevent that a set of positive measure in the reference configuration is mapped on a single
point. These considerations lead to the following definition.

Definition 5.4. We say that u ∈ SBV (Ω; RN ) satisfies the non-interpenetration condition
in the deformed configuration if det∇u ≥ 0 for a.e.-x ∈ Ω, and∫

Ω
det∇u dx ≤ LN ([u(Ω)]).

Theorem 3.4 ensures that the non-interpenetration condition in the deformed configuration
is preserved along any sequence un ⇀ u in SBV (Ω; RN ) such that det∇un ⇀ det∇u weakly
in L1(Ω). Therefore this condition can be involved in minimization problems in alternative
to the Ciarlet-Nečas non-interpenetration condition. The convenience of this notion is that
it does not require the condition det∇u > 0 for a.e. x ∈ Ω, which in some cases could be
difficult to check. An application of the non-interpenetration in the deformed configuration
which explains this point is given in the following paragraph, where we take into account the
deformation process.

5.3. Non-interpenetration during the deformation process. Example 5.1 shows that
there are very unphysical deformations which satisfy the Ciarlet-Nečas non-interpenetration
condition. The point is that it seems difficult to imagine a deformation process whose result is
the deformation function v(x) := x+u(x) with u(x) defined as in (5.2). It looks then natural
to consider a notion of non-interpenetration which takes into account the deformation process.
More precisely, given a deformation v ∈ SBV (Ω; RN ), we could consider v admissible if there
exists a time dependent deformation process satisfying at each time a non-interpenetration
condition, which starts from the identity map and whose final result is the given deformation
v. To make this notion rigorous, we have also to specify which are the admissible deformation
processes. We will consider here the simplest deformation process, which is progressive and
linear in time. More precisely given v ∈ SBV (Ω; RN ), let V : [0, 1]× Ω → RN be defined by

V (t, x) := x + t(v(x)− x).

The function V represents the deformation process, while the function t(v(x)− x) represents
the displacement function at time t, which is assumed to be linear with respect to time. Note
that V (0, ·) is the identity map, while V (1, ·) ≡ v.

We say that a deformation v satisfies the progressive non-interpenetration condition if for
every t ∈ [0, 1] the map V (t, ·) satisfies the non-interpenetration condition in the deformed
configuration (see Definition 5.4). Clearly every deformation v which satisfies the progressive
non-interpenetration condition and with det∇v > 0 a.e. in Ω is in particular a.e.-injective
(since v ≡ V (1, ·) is a.e.-injective by Proposition 3.2) and hence it satisfies the Ciarlet-Nečas
non-interpenetration condition. The converse is not true in general, as we saw in Example
5.1.

The progressive non-interpenetration condition can be clearly taken as a constraint in the
minimization problem (4.4) relative to brittle Odgen materials provided that the boundary
datum g satisfies the same condition. Indeed, by Theorem 3.4 we easily deduce that the
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progressive non-interpenetration condition is closed along sequences of SBV -deformations
whose minors weakly converge in L1. We deduce that the minimum problem (4.4) has a
solution in the class of Ciarlet-Nečas admissible deformations which satisfy also the progressive
non-interpenetration condition.

Finally, another interesting feature of the progressive non-interpenetration condition is
that, in view of Proposition 5.2, it implies the linearized self-contact condition.
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