
SHARP STABILITY OF SOME SPECTRAL INEQUALITIES

LORENZO BRASCO AND ALDO PRATELLI

Abstract. In this work we review two classical isoperimetric inequalities involving eigen-
values of the Laplacian, both with Dirichlet and Neumann boundary conditions. The
first one is classically attribuited to Krahn and P. Szego and asserts that among sets of
given measure, the disjoint union of two balls with the same radius minimizes the sec-
ond eigenvalue of the Dirichlet-Laplacian, while the second one is due to G. Szegő and
Weinberger and deals with the maximization of the first non trivial eigenvalue of the
Neumann-Laplacian. New stability estimates are provided for both of them.

1. Introduction

It is generally known that “isoperimetric problems” are very interesting and easy to
state, but hard to solve. The fundamental example (from which the name comes) is the
classical isoperimetric inequality, asserting that balls have maximal measure among sets of
given perimeter, that is,

|Ω| ≤ |B| ,
B being a ball of the same perimeter as Ω. Moreover, equality holds if and only if Ω is a ball.
Observe that the homogeneity of the problem automatically implies that the optimization
problem has to be posed with some constraints, for example a perimeter constraint as in
this case, otherwise the extremum problem is always trivial. On the other hand, one can
decide to give up the constraints by adimensionalizing the problem: for example, noticing
that

F(Ω) = |Ω|(1−N)/NP (Ω) ,

is scaling invariant, the classical isoperimetric statement is equivalent to

|Ω|(1−N)/NP (Ω) ≥ |B|(1−N)/NP (B) ,

where B is any ball, with no need for any constraint: this is the most familiar and compact
version of the classical isoperimetric property of balls.

Apart from this result linking measure and perimeter, there are a lot of other interesting
isoperimetric statements, depending on the choice of the set function F and of the admis-
sible sets: among these, some fascinating ones are those regarding the spectrum of a given
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elliptic operator, with homogeneous boundary conditions (Dirichlet or Neumann, for ex-
ample). In the case of the Laplacian operator −∆, the celebrated Faber-Krahn inequality
(see [8, Chapter 3]) asserts

λ1(Ω) ≥ λ1(B) , (1.1)

where B is a ball with |B| = |Ω| and λ1 is the first eigenvalue of the Laplacian with Dirichlet
conditions. Moreover, in (1.1) we can have equality only for balls (up to sets of capacity
zero). Again, we could drop the measure constraint, by considering the scaling invariant

set function F(Ω) = |Ω|2/Nλ1(Ω), so that the previous inequality can be recast into

|Ω|2/Nλ1(Ω) ≥ |B|2/Nλ1(B) ,

where B is any ball and equality holds if and only Ω coincides with a ball. Also in this
case, we have a quantity which is minimized by a certain set, together with a uniqueness
statement, which means that strict inequality holds each time the set is not the optimal
one. Therefore, it would be of great interest to improve the inequality with a remainder
term, that is, finding some meaningful set function S(Ω), vanishing only for the balls, such
that

|Ω|2/N λ1(Ω) ≥ |B|2/N λ1(B)
(
1 + S(Ω)

)
.

The function S must measure (in a suitable sense) the distance of a set from the minimizers:
if this can be done, then we have a stability estimate for our isoperimetric statement, that
is, a quantitative information on how much a certain set is far from being the optimal one,
in terms of how far it is from realizing the equality.

For example, in the two cases considered above, stability estimates have been provided
by the second author together with Fusco and Maggi: namely, they have proven

|Ω|(1−N)/NP (Ω) ≥ |B|(1−N)/NP (B)
{

1 + αNA(Ω)2
}
, (1.2)

and
|Ω|2/Nλ1(Ω) ≥ |B|2/Nλ1(B)

{
1 + γNA(Ω)4

}
, (1.3)

where A(Ω) is the Fraenkel asymmetry of a set, defined as

A(Ω) = inf

{
|Ω∆B|
|Ω|

: B ball, |B| = |Ω|
}
,

and αN , γN are dimensional constants. For more details, historical remarks and a com-
prehensive bibliography on other stability results for the aforementioned inequalities, the
reader is referred to the papers [5] and [6]. Here we only want to stress that inequality (1.2)
is sharp, that is, the exponent 2 for the Fraenkel asymmetry is optimal in the decay rate
of the isoperimetric deficit, defined as

|Ω|(1−N)/NP (Ω)

|B|(1−N)/NP (B)
− 1 .

On the contrary, inequality (1.3) is not sharp: for example, in dimension N = 2 Bhat-
tacharya has provided an estimate with the power 4 replaced by 3 (see [2, Theorem 2.1]).
In any case, actually the best exponent should be 2, as conjectured in [3] on the basis of
the expansion in the case of ellipsoids – in fact, in the isoperimetric problems the ellipsoids
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usually show the optimal rate of convergence. Anyway, a proof of (1.3) with the exponent
2, which would then be sharp, is still missing.

In the very same spirit, the main scope of this paper is to provide sharp stability estimates
for the following classical isoperimetric inequalities, involving eigenvalues of the Laplacian:

• Krahn-Szego inequality, asserting that for every open bounded sets Ω ⊂ RN we
have

λ2(Ω) ≥ λ2(Θ2) ,

where Θ2 is the disjoint union of two balls, both having measure |Ω|/2, with equality
holding if and only if Ω = Θ2;
• Szegő-Weinberger inequality, dealing with the first non trivial eigenvalue of

the Laplacian with Neumann boundary condition, stating that this is maximized
by the ball, that is,

µ2(Ω) ≤ µ2(B) ,

where B is a ball having the same measure as Ω, and equality holds if and only if
Ω is a ball.

For both inequalities, we will provide the relative quantitative version, where the proper
notion of deficit controls a suitable concept of asymmetry.

We stress that the quantitative version of the Szegő-Weinberger inequality we derive
here, i.e.,

µ2(B)− µ2(Ω) ≥ cNA(Ω)2 ,

is sharp: this is one of the main points of interest of the paper. In fact, while the proof
of the inequality is not excessively difficult and relies on a simple geometric intuition, the
proof of its sharpness is not trivial at all. As we will explain more in details in Section 5,
the main source of difficulties is the fact that µ2, for the ball, is a multiple eigenvalue. The
latter fact implies that the shape functional Ω 7→ µ2(Ω) is not differentiable (in the sense of
shape derivative, see [9, Chapter 5] for example) near the ball, which is a maximum point.
Roughly speaking, this tells that along some “directions” (i.e., for some perturbations of
the ball), the difference of the eigenvalues has a non trivial first order expansion, which
means that the superdifferential at the maximum point contains a non zero element. This
observation provides some sets Ωε, suitably converging to B, for which

µ2(B)− µ2(Ωε) ≈ A(Ωε) .

And in fact, one observes this linear rate of convergence in all the simplest examples, for
instance in the case of ellipsoids (which usually, as pointed out above, converge with the
sharp convergence rate). Hence, one is easily lead to guess that the right exponent should be
1. To exclude that this is the case and prove the sharpness of the exponent 2, we will show
how to build a suitable family of nearly optimal sets Ωε for which µ2(B)−µ(Ωε) ≈ A(Ωε)

2.

On the contrary, concerning the inequality for λ2, the quantitative version we derive
in this work is surely not optimal. Indeed, the proof relies on (1.3) which is not sharp,
as already said. However, the key point of our proof of the quantitative Krahn-Szego



4 LORENZO BRASCO AND ALDO PRATELLI

inequality is a Lemma of geometrical content, whose derivation is sharp (see Example 3.4
below).

Besides this, it is interesting to underline that the exponent we obtain for the Fraenkel
2−asymmetry (see below) depends on the dimension: as we will explain in details, this
is not a drawback. Indeed, we can show that the optimal exponent has to be dimension-
dependent, and in particular has to diverge with the dimension, which is quite surprising,
at first glance. In fact, in most examples the optimal exponent does not depend on the
dimension.

The paper is organized as follows: in Section 2 we set some of the notations, definitions
and results that we will use throughout the paper. We then turn to the first inequality:
in Section 3 we provide a stability estimate (Theorem 3.5) for the Krahn-Szego inequality
for λ2. Then in Section 4 we show how to get a quantitative form of the Szegő-Weinberger
inequality (Theorem 4.1): this section also includes, as a corollary, a stability estimate for
a classical inequality (first conjectured by Kornhauser and Stakgold, [11]) involving λ1 and
µ2. We then turn to the problem of showing that the quantitative estimate of Theorem 4.1
is sharp: we start with Section 5, where we derive the decay rate of the Fraenkel asym-
metry for ellipsoids with very small eccentricity, in terms of the Szegő-Weinberger deficit.
Surprisingly, ellipsoids turn out not to prescribe the optimal decay rate. Finally, the last
section is devoted to the construction of a family of nearly optimals sets for the inequality,
whose deficit goes exactly like the Fraenkel asymmetry to the power 2, thus proving the
sharpness of Theorem 4.1.

2. Notations and preliminaries

In what follows, with N we will always denote the dimension. We will also use the
convention of indicating with CN (resp., cN ) a sufficiently big (resp., sufficiently small)
constant depending on the dimension only, without keeping trace of its precise value, which
may increase (resp., decrease) from line to line.

We recall some basic facts about eigenvalues of the Laplace operator for open subsets of
RN : for more details, the reader is referred to the recent monograph [8]. Given an open
bounded set Ω ⊂ RN , we define its first Dirichlet eigenvalue as

λ1(Ω) = min
u∈W1,2

0 (Ω)\{0}

∫
Ω |∇u(x)|2 dx∫
Ω |u(x)|2 dx

.

Supposing that u1 ∈ W1,2
0 (Ω) is an eigenfuction corresponding to λ1(Ω), i.e. u1 realizes

the minimum in the previous Rayleigh quotient, then the second eigenvalue is defined as

λ2(Ω) = min
u∈W1,2

0 (Ω)\{0}∫
Ω u(x)u1(x) dx=0

∫
Ω |∇u(x)|2 dx∫
Ω |u(x)|2 dx

,

that is λ2(Ω) is obtained minimizing the same Rayleigh quotient, but now restricting
admissible functions to those orthogonal (in the L2(Ω) sense) to the first eigenfuction. In
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the very same way the successive eigenvalues λk(Ω), k ≥ 3, are defined, and we clearly have
λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . . In the case that Ω is not connected, its eigenvalues can be
simply obtained by gathering and ordering the eigenvalues of its connected components.

We recall that a first eigenfunction has to be of constant sign in Ω: this implies, due to
the orthogonality condition, that a second eigenfunction u2 has to change sign in Ω (if Ω is
connected) or must have a support disjoint from that of u1. We call nodal sets of a certain
eigenfunction uk the connected components of the sets

{x ∈ Ω : uk > 0} and {x ∈ Ω : uk < 0} ,

respectively. Incidentally, we observe that for the second eigenvalue, these nodal domains
are known to be two, at most (this is a consequence of the so called Courant-Hilbert nodal
domains Theorem, for which the reader is referred to [4]).

It is easily seen that λk(Ω) scales as a length to the power −2, that is λk(tΩ) = t−2λk(Ω),
for every t > 0, so that usually it is useful to consider the scaling invariant quantity
|Ω|2/Nλk(Ω). In this way the well-known Faber-Krahn inequality asserts

|Ω|2/Nλ1(Ω) ≥ |B|2/Nλ1(B) ,

where B is any ball. One tool that we will use in this work, is a quantitative version of
this isoperimetric statement, which can be rephrased as follows

FK(Ω) ≥ γNA(Ω)4 , (2.1)

where FK(Ω) is the Faber-Krahn deficit, defined as

FK(Ω) :=
|Ω|2/Nλ1(Ω)

|B|2/Nλ1(B)
− 1 .

Since the optimal object for λ2 is the disjoint union of two balls (see below), it is useful to
introduce, besides the usual Fraenkel asymmetry, the Fraenkel 2−asymmetry, defined as

A2(Ω) = inf

{
|Ω∆(B1 ∪B2)|

|Ω|
: |B1 ∩B2| = 0 and |B1| = |B2| =

|Ω|
2

}
,

which measures the distance of a set Ω from the disjoint union of two balls with the same
radius.

Finally, in the case of homogeneous Neumann boundary conditions, the first eigenvalue
µ1(Ω) is always 0 and corresponds to constant functions, while the first non trivial eigen-
value, if Ω is a connected open set with Lipschitz boundary, can be defined as

µ2(Ω) = min
u∈W1,2(Ω)∫
Ω u(x) dx=0

∫
Ω |∇u(x)|2 dx∫
Ω |u(x)|2 dx

.

The successive eigenvalues can be defined similarly, that is µk(Ω) is obtained by minimizing
the same quotient, among functions orthogonal (in the L2(Ω) sense, again) to the first
k − 1 eigenfunctions. Clearly, if Ω has k connected components, we have µ1(Ω) = · · · =
µk(Ω) = 0, with corresponding eigenfunctions given by constant function on each connected
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component. Neumann eigenvalues have the same scaling properties as the Dirichlet ones
and there holds the Szegő-Weinberger inequality

|Ω|2/Nµ2(Ω) ≤ |B|2/Nµ2(B) ,

and in this case the ball is the unique maximizer.
For a ball B of radius r, µ2(B) has multiplicity N , that is, µ2(B) = · · · = µN+1(B), and

it can be explicitely computed, together with its corresponding eigenfunctions. Indeed,
these are given by (see [1])

ξi(x) := |x|1−
N
2 JN/2

(
βN/2,1|x|

r

)
xi
|x|
, i = 1, . . . , N ,

where JN/2 is a Bessel function of the first kind, solving the ODE

g′′(t) +
1

t
g′(t) +

(
1− N

2

1

t2

)
g(t) = 0 ,

while βN/2,1 denotes the first positive zero of the derivative of t 7→ t1−N/2 JN/2(t), i.e. it
verifies

βN/2,1 J
′
N/2,1(βN/2,1) +

(
1− N

2

)
JN/2(βN/2,1) = 0 .

Observe in particular that the radial part of ξi, given by

ϕN (|x|) := |x|1−
N
2 JN/2

(
βN/2,1|x|

r

)
, (2.2)

satisfies the ODE (of Bessel type)

g′′(t) +
N − 1

t
g′(t) +

(
µ2(B)− N − 1

t2

)
g(t) = 0 , (2.3)

and one can calculate

µ2(B) =
β2
N/2,1

r2
.

3. Minimization of the second eigenvalue of the Dirichlet-Laplacian

We now recall the classical isoperimetric inequality concerning the second eigenvalue of
the Laplacian with homogeneous Dirichlet boundary conditions, a result which is usually
attributed to Krahn ([12]) and Peter Szego1 (Pólya gave credit to this in [14]). It worths
remarking that the same result was also proven independently by Hong (see [10]), exactly
in the same years as Szego. We give this result directly in the scaling invariant form, so
disregarding the constraint on the measure of the admissible sets.

1Son of Gabor Szegő. The difference in the spelling of the surname is due to the fact that Peter passed
most of his life in the US and consequently “Americanized” his name. We owe these informations to the
kind courtsey of Mark S. Ashbaugh.
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Krahn-Szego inequality. For every open bounded set Ω ⊂ RN , we have

|Ω|2/Nλ2(Ω) ≥ |Θ2|2/Nλ2(Θ2) , (3.1)

where Θ2 = B+ ∪B− is any disjoint union of two balls having the same radius.

We aim to give a quantitative version of this result: namely, we wish to estimate how
far a generic set is from being the disjoint union of two equal balls, in terms of how far
the product | · |2/N λ2( · ) is from the minimum. Thus, for every bounded open set Ω, we
introduce the Krahn-Szego deficit

KS(Ω) :=
|Ω|2/Nλ2(Ω)

|Θ2|2/Nλ2(Θ2)
− 1 . (3.2)

We begin with a simple but useful technical Lemma.

Lemma 3.1. Let Ω ⊂ RN be a bounded open set. Then there exist two disjoint sets
Ω+, Ω− ⊂ Ω such that

λ2(Ω) = max
{
λ1(Ω+), λ1(Ω−)

}
. (3.3)

Proof. Let u1 and u2 be two eigenfunctions relative to the first two eigenvalues λ1(Ω) and
λ2(Ω), and let us distinguish two possibilities:

(i) either u2 has always the same sign in Ω;
(ii) or u2 changes sign on Ω.

In case (i), let us define

Ω+ =
{∣∣u1

∣∣ > 0
}
, Ω− =

{∣∣u2

∣∣ > 0
}
.

Since neither u1 nor u2 change sign in Ω, by the orthogonality condition∫
Ω
u2(x)u1(x) dx = 0

we immediately get that Ω+ and Ω− are disconnected. But then, since u2 ∈ W1,2
0 (Ω−),

and since of course ∫
Ω
u(x)u1(x) dx = 0, for every u ∈W1,2

0 (Ω−) ,

we immediately derive that

λ1(Ω−) ≤

∫
Ω
|∇u2(x)|2 dx∫

Ω
|u2(x)|2 dx

= λ2(Ω) ≤ inf
u∈W1,2

0 (Ω−)

∫
Ω
|∇u(x)|2 dx∫

Ω
|u(x)|2 dx

= λ1(Ω−) .

Hence, we directly get (3.3) simply by noticing, that since u1 is supported in Ω+, then

λ1(Ω+) = λ1(Ω) < λ2(Ω) .
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On the other hand, in case (ii), we consider the nodal sets of u2

Ω+ =
{
x ∈ Ω : u2(x) > 0

}
Ω− =

{
x ∈ Ω : u2(x) < 0

}
and we observe that, in the weak sense, we have{

−∆u2 = λ2(Ω)u2 in Ω+ ,
u2 = 0 on ∂Ω+ ,

{
−∆u2 = λ2(Ω)u2 in Ω− ,

u2 = 0 on ∂Ω− .

This tells us that u2 is an eigenfunction both for Ω+ and Ω−, and in particular it is strictly
positive in Ω+ and strictly negative in Ω−, so it corresponds to the first eigenvalue for both
sets. Hence we get

λ2(Ω) = λ1(Ω+) = λ1(Ω−) ,

and (3.3) follows also in this case. �

Corollary 3.2 (Disjoint equal balls minimize λ2). For any bounded open set Ω ⊂ RN ,
there holds

λ2(Ω) ≥ λ2

(
B+ ∪B−

)
= λ1(B)

(
2

|Ω|

)2/N

, (3.4)

being B+ and B− any two disjoint balls with |B+| = |B−| = |Ω|/2, and being B a ball of
unit volume. Moreover, the equality holds if and only if Ω is in fact such a disjoint union
(up to a set of capacity zero).

Proof. Let Ω+ and Ω− be as in Lemma 3.1, and let B̃+ and B̃− be two disjoint balls with∣∣B̃±∣∣ =
∣∣Ω±∣∣. By the standard Faber-Krahn inequality we know that

λ1(Ω+) ≥ λ1(B̃+) , λ1(Ω−) ≥ λ1(B̃−) , (3.5)

then by (3.3) we have, calling B the ball of unit volume,

λ2(Ω) ≥ max
{
λ1(B̃+), λ1(B̃−)

}
= max

{
λ1(B)∣∣B̃+

∣∣2/N , λ1(B)∣∣B̃−∣∣2/N
}

=
λ1(B)(

min
{∣∣Ω+

∣∣, ∣∣Ω−∣∣})2/N
≥ λ1(B)(∣∣Ω∣∣/2)2/N

= λ2

(
B+ ∪B−

)
.

(3.6)

This gives the asserted inequality in (3.4), while the equality comes directly by the scaling
properties of λ1. Moreover, if equality holds in (3.4), then the inequalities (3.5) and (3.6)
above must both be equalities. In particular, the fact that the equality holds in (3.5)
implies – by Faber-Krahn inequality – that both Ω+ and Ω− are balls. On the other hand,
the fact that the equality holds in (3.6) implies that

∣∣Ω+

∣∣ =
∣∣Ω−∣∣ =

∣∣Ω∣∣/2. This completes
the proof. �

Keeping the same notations as in Lemma 3.1, the next result tells us that the errors of
the two subsets Ω+ and Ω− control the distance of Ω from a minimizer of λ2, i.e. a disjoint
union of two equal balls: this is a crucial fact, preliminary to the main estimate of this
section.
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Lemma 3.3. Let Ω ⊂ RN be an open bounded set. With the notations of Lemma 3.1, we
have

A2(Ω) ≤ CN
(
A(Ω+) +

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣+A(Ω−) +

∣∣∣∣12 − |Ω−||Ω|
∣∣∣∣)2/(N+1)

, (3.7)

for a suitable dimensional constant CN .

Proof. The idea of the proof is quite easy: all we have to do, is to take a pair of optimal
balls for A(Ω+) and A(Ω−) and to make them admissible for estimating A2(Ω), possibly
rescaling and translating them. We start setting

ε+ =
1

2
− |Ω+|
|Ω|

, ε− =
1

2
− |Ω−|
|Ω|

,

and let B1, B2 be two balls centered at the origin, such that |B1| = |Ω+| and |B2| = |Ω−|,
with

A(Ω+) =
2|(B1 + x0) \ Ω+|

|Ω+|
, A(Ω−) =

2|(B2 + y0) \ Ω−|
|Ω−|

,

for suitable x0, y0. One would like to use directly (B1 + x0) ∪ (B2 + y0) as an admissible
set for A2(Ω), but we can not do it for two reasons: the first is that it could happen that
|(B1 + x0) ∩ (B2 + y0)| > 0; the second is that in general |B1| 6= |B2|. So first of all we
define two new balls rescaling B1 and B2, that is,

B̃1 = (1− 2ε+)−1/NB1 , B̃2 = (1− 2ε−)−1/NB2 ,

so that both B̃1 and B̃2 have volume |Ω|/2. We have now to translate them, since it is not

guaranteed that the two balls B̃1 +x0 and B̃2 +y0 are disjoint: we make this translation in

the direction given by y0−x0, so we need to estimate the width of the set (B̃1+x0)∩(B̃2+y0)
in this direction. Calling ` this quantity, it is not difficult to see that there holds

`(N+1)/2|Ω|(N−1)/(2N) ≈ CN |(B̃1 + x0) ∩ (B̃2 + y0)| . (3.8)

This shows that we need an information on |(B̃1 + x0) ∩ (B̃2 + y0)|. Observe that with
simple algebraic manipulations, we have

(B̃1 + x0) ∩ (B̃2 + y0) ⊂
(

(B̃1 + x0) \ Ω+

)
∪
(

(B̃2 + y0) \ Ω−

)
∪ (Ω− ∩ Ω+) ,

so that using |Ω+ ∩ Ω−| = 0, we obtain

|(B̃1 + x0) ∩ (B̃2 + y0)| ≤ |(B̃1 + x0) \ Ω+|+ |(B̃2 + y0) \ Ω−|

≤ |B̃1∆B1|+ |(B1 + x0) \ Ω+|+ |B̃2∆B2|+ |(B2 + x0) \ Ω−|

≤ CN |Ω|
(
|ε+|+ |ε−|+A(Ω+) +A(Ω−)

)
,

(3.9)

where we have used |B̃1∆B1| = |Ω| |ε+| and |B̃2∆B2| = |Ω| |ε−|. We now consider the

couple of balls B̃1 + x0 and B̃2 + y0, with y0 given by

y0 = y0 + `
y0 − x0

|y0 − x0|
,
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so that these new balls are disjoint. Finally, let us observe that∣∣∣(y0 + B̃2)∆(y0 + B̃2)
∣∣∣ ≈ ` |Ω|(N−1)/N ,

so that∣∣∣(y0 +B2)∆(y0 + B̃2)
∣∣∣ ≤ ∣∣∣(y0 +B2)∆(y0 + B̃2)

∣∣∣+
∣∣∣(y0 + B̃2)∆(y0 + B̃2)

∣∣∣
≤ |Ω| |ε−|+ CN` |Ω|(N−1)/N .

(3.10)

Up to now, we have collected all the elements in order to complete the proof: we start
observing that

A2(Ω) ≤
∣∣∣Ω \ ((x0 + B̃1) ∪ (y0 + B̃2)

)∣∣∣
≤
∣∣∣Ω+ \ (x0 + B̃1)

∣∣∣+
∣∣∣Ω− \ (y0 + B̃2)

∣∣∣+
(
|Ω| − |Ω+| − |Ω−|

)
,

(3.11)

then we estimate the three terms above. One has clearly

|Ω| − |Ω+| − |Ω−| = |Ω| (ε+ + ε−) ,

while ∣∣∣Ω+ \ (x0 + B̃1)
∣∣∣ ≤ |Ω+ \ (x0 +B1)|+ |B̃1∆B1| ≤ |Ω|

A(Ω+)

2
+ |Ω| |ε+|

and∣∣∣Ω− \ (y0 + B̃2)
∣∣∣ ≤ |Ω− \ (y0 +B2)|+

∣∣∣(y0 +B2)∆(y0 + B̃2)
∣∣∣

≤ |Ω| A(Ω−)

2
+ |Ω||ε−|+ CN` |Ω|(N−1)/N

≤ |Ω| A(Ω−)

2
+ |Ω||ε−|+ CN |Ω|

(
|ε+|+ |ε−|+A(Ω+) +A(Ω−)

)2/(N+1)
,

thanks to (3.10), (3.8) and (3.9). Inserting the last three estimates into (3.11) finally
yields (3.7). �

It is not difficult to show that the exponent 2/(N + 1) in (3.7) is indeed sharp.

Example 3.4. Let us fix a small parameter ε > 0 and consider the following set

Ωε = {(x, y) : (x+ 1− ε)2 + y2 < 1} ∪ {(x, y) : (x− 1 + ε)2 + y2 < 1},
which is just the union of two disks of radius 1, with an overlapping part whose area is of
order ε3/2. With the previous notations, we have

Ωε
+ = {(x, y) ∈ Ωε : x > 0} and Ωε

− = {(x, y) ∈ Ωε : x < 0},

and by symmetry, we can work only with Ωε
+. It is not difficult to see thatA(Ωε

+) = O(ε3/2):
indeed, consider a ball B+ with the same measure as Ωε

+ and centered at (1 − ε, 0), that

is π − |B+| ' ε3/2, so that the radius rε of B+ is such that 1 − rε ' ε3/2. We have

|Ωε
+ \B+| = c ε3/2 so that

A(Ωε
+) ≤ c ε3/2.
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Translating B+ if necessary, we can not improve on an estimate of the type |Ωε
+\B+| ' ε3/2,

thus showing that A(Ωε
+) = O(ε3/2).

On the contrary, observe that in order to let our ball be admissible for A2(Ω), we have
to translate it rightward of a length which is of order ε, so to avoid the overlapping region.

If we call B̃+ this new ball, we then have |Ω+ \ B̃+| ' ε, so that

A2(Ω)3/2 ' ε3/2 ' A(Ω+).

The very same computations also apply to the case N ≥ 3, with the exponent (N + 1)/2
in place of 3/2. This shows that the exponent in (3.7) is sharp.

Thanks to the previous geometrical result, we can now give the following stability esti-
mate, which is the main result of this section.

Theorem 3.5. Let Ω ⊂ RN be an open bounded set. Then

KS(Ω) ≥ CN A2(Ω)2(N+1) , (3.12)

with the constant CN depending on N only.

Proof. Thanks to Lemma 3.1, we know the existence of two disjoint sets Ω+,Ω− ⊂ Ω such
that (3.3) holds. We then set

δ+ = |Ω+| −
|Ω|
2
, δ− = |Ω−| −

|Ω|
2
,

and we observe that it must be δ+ + δ− ≤ 0. We will prove the Theorem as soon as we
show that

KS(Ω) ≥ 1

CN
max

{
A(Ω+)4 +

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣ ,A(Ω−)4 +

∣∣∣∣12 − |Ω−||Ω|
∣∣∣∣} , (3.13)

thanks to Lemma 3.3. To obtain (3.13), it will be useful to distinguish two cases, namely
whether δ+ and δ− are both non positive, or they have opposite sign. Observe that since
the quantities appearing in the right-hand side of (3.13) are all bounded by a universal
constant, it is not restrictive to prove (3.13) under the further assumption

KS(Ω) ≤ 1.

Case 1. δ+ and δ− are both non-positive.
In this case, let us apply the quantitative Faber-Krahn inequality (2.1) to Ω+. Calling again
B the ball of unit volume, and recalling (3.3) and the definition (3.2) of the Krahn-Szego
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deficit, we find

γNA(Ω+)4 ≤
∣∣Ω+

∣∣2/Nλ1(Ω+)

λ1(B)
− 1 ≤

(
|Ω|
2

+ δ+

)2/N

λ2(Ω)

2−2/N |Θ2|2/N λ2(Θ2)
− 1

=

∣∣Ω∣∣2/N (1 +
2δ+

|Ω|

)2/N

λ2(Ω)

|Θ2|2/N λ2(Θ2)
− 1 =

(
KS(Ω) + 1

)(
1 +

2δ+

|Ω|

)2/N

− 1

≤
(
KS(Ω) + 1

)(
1 +

4

N

δ+

|Ω|

)
− 1,

which can be rewritten as follows

γNA(Ω+)4 ≤ KS(Ω) +
4

N

δ+

|Ω|
(KS(Ω) + 1). (3.14)

Using that δ+ ≤ 0 and KS(Ω) ≥ 0, we thus obtain

KS(Ω) ≥ γNA(Ω+)4 +
4

N

(
1

2
− |Ω+|
|Ω|

)
. (3.15)

Hence, the same calculations with Ω− in place of Ω+ yield (3.13)

Case 2. δ+ and δ− have opposite sign.
Let us assume for example that δ+ ≥ 0 and δ− ≤ 0. Hence, we still have the estimate (3.14)
for both Ω+ and Ω−, but it is no more true that(

1

2
− |Ω+|
|Ω|

)
=

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣ .
However, recalling that Ω+ and Ω− are disjoint, we have

1

2
− |Ω+|
|Ω|
≥ −

(
1

2
− |Ω−|
|Ω|

)
≥ −N

4
KS(Ω) , (3.16)

where in the second inequality we used (3.15) applied to Ω−. Therefore, using this infor-
mation in (3.14)) and using that KS(Ω) ≥ 1, we immediately get

KS(Ω) ≥ γN
3
A(Ω+)4,

while (3.16) can be also rephrased as∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣ =
|Ω+|
|Ω|
− 1

2
≤ N

4
KS(Ω).

These estimates on Ω+, together with the validity of (3.14) for Ω− and with the fact that
δ− ≤ 0, ensure that (3.13) holds also in this case. �

Concerning the sharpness of estimate (3.12), some remarks are in order.
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Remark 3.6. Let us define

κ := optimal exponent for the quantitative Faber-Krahn inequality,

then observe that our proof actually provides the following estimate

KS(Ω) ≥ CNA2(Ω)κ·(N+1)/2. (3.17)

We stress the fact that the proof of (3.17) consisted of two steps: the first one is the
geometrical result of Lemma 3.3, which enables to switch from the error terms of Ω+ and
Ω− to A2(Ω); the second one is the application of the quantitative Faber-Krahn inequality
to the two relevant pieces Ω+ and Ω−. Both steps are optimal (in the second, the precise
value of κ actually plays no role), but unfortunately this is of course not a warranty of the
sharpness of estimate (3.17).

In the end, we are not able to decide whether the exponent for A2 in (3.17) is optimal or
not: in any case, we point out that the optimal exponent for the quantitative Krahn-Szego
inequality has to be dimension-dependent. To see this, it is enough to consider the very
same set of Example 3.4 and then observe that, keeping the same notations, we have

KS(Ωε) = FK(Ω+
ε ) ≤ O(A(Ω+

ε )) = O(A2(Ωε)
(N+1)/2).

4. Maximization of the first non trivial eigenvalue of the
Neumann-Laplacian

In the case of Neumann conditions, the minimization of the k−th eigenvalue is no more
interesting, since we always have µk(Ω) = 0 for any set with k connected components. On
the contrary, the maximization problem with a measure constraint becomes interesting.
The extremal set is again known to be a ball.

Szegő-Weinberger inequality. For every open bounded set Ω ⊂ RN there holds

|B|2/Nµ2(B) ≥ |Ω|2/Nµ2(Ω) ,

where B is any ball. Moreover, equality holds if and only if Ω itself is a ball.

In order to provide a quantitative estimate for this inequality, it is better to have an idea
of how the classical proof goes on: the arguments below are due to Weinberger (see [17]),
while Gabor Szegő’s proof relies on conformal mappings and thus it is only valid when
N = 2 (see [15]).

Roughly speaking, given a domain Ω, the fact that the membrane is free on the boundary
(that is, we have no Dirichlet conditions) allows to use directly the eigenfunctions of the
ball in the Rayleigh quotient definining µ2(Ω), then giving the desired estimate, as far as
µ2(Ω) is defined as the minimum of this quotient. The only point which requires some
attention, is the fact that the zero-mean condition on Ω is in general not satisfied by the
eigenfunctions of the ball, so they would not be admissible: anyway, it is just a matter of
properly choosing the origin.
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After having given the idea, let us start with the proof: we denote with B the ball
centered at the origin, having radius given by

r =

(
|Ω|
ωN

) 1
N

, (4.1)

where ωN denotes the measure of the unitary ball, so that |B| = |Ω|. With the same
notations as in Section 2, the eigenfunctions of B corresponding to µ2(B) are given by

ξi = ϕN (|x|) xi
|x|

, i = 1, . . . , N .

It is important to stress here that ϕN (0) = 0, ϕN is strictly increasing in (0, r), and
ϕ′N (r) = 0. In order to make ξi admissible for the variational problem defining µ2(Ω), we
extend continuously ϕN as follows

φN (t) =

{
ϕN (t), t ∈ [0, r] ,
ϕN (r), t ∈ (r,∞) ,

and then we consider the new functions

Ξi(x) = φN (|x|) xi
|x|

, i = 1, . . . , N .

It is now possible to choose the origin of the coordinate axes in such a way that
∫

Ω Ξi(x) dx =
0, i = 1, . . . , N (see [8, Lemma 6.2.2]), hence we infer

µ2(Ω) ≤

∫
Ω
|∇Ξi(x)|2 dx∫
Ω

Ξi(x)2 dx

, i = 1, . . . , N . (4.2)

Now, a summation over i = 1, . . . , N yields

µ2(Ω) ≤

N∑
i=1

∫
Ω
|∇Ξi(x)|2 dx

N∑
i=1

∫
Ω

Ξ2
i (x) dx

.

This trick is essential in order to let the angular variables disappear: indeed, while the
denominator can be immediately written as

N∑
i=1

∫
Ω

Ξi(x)2 dx =

∫
Ω
φN (|x|)2 dx ,

computing the gradient of Ξi there is a cancellation of the mixed term φNφ
′
N , and one

simply gets

|∇Ξi|2 = φ′N (|x|)2 x2
i

|x|2
+
φN (|x|)2

|x|2

(
1− x2

i

|x|2

)
.
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Summing all up, we have obtained

µ2(Ω) ≤

∫
Ω
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx∫

Ω
φN (|x|)2 dx

. (4.3)

Before going on, we remark that inside B one has that Ξi = ξi is an eigenfunction for
µ2(B), so if Ω = B then (4.2) is an equality for all i = 1, . . . , N , and then also (4.3) is an
equality. Namely,

µ2(B) =

∫
B
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx∫

B
φN (|x|)2 dx

. (4.4)

Using the monotone behaviour of φN and the fact that |Ω| = |B|, we can easily estimate
the denominator as follows ∫

Ω
φN (|x|)2 dx ≥

∫
B
φN (|x|)2 dx . (4.5)

On the other hand, we claim that the integrand of the numerator in (4.3) is strictly de-
creasing for |x| increasing. Indeed, by making use of (2.3), this immediately reduces to
check that for all t > 0 one has(

φ′N (t)− φN (t)

t

)2

> −µ2(B)t φN (t)φ′(t)N
N − 1

,

which in turn is clearly true since φN > 0, φ′N ≥ 0 on (0,+∞). Therefore,∫
Ω
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx ≤

∫
B
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx . (4.6)

Finally, collecting the estimates (4.5) and (4.6), and using (4.3) and (4.4), we have proven

µ2(Ω) ≤

∫
Ω
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx∫

Ω
φN (|x|)2 dx

≤

∫
B

[
φ′N (|x|)2 + (N − 1)φN (|x|)2/|x|2

]
dx∫

B
φN (|x|)2 dx

= µ2(B) ,

thus concluding the proof of the Szegő-Weinberger inequality. Also the equality case fol-
lows, since both (4.5) and (4.6) are strict unless Ω is a ball.
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We now introduce the Szegő-Weinberger deficit, defined as

SW (Ω) := 1− |Ω|
2/Nµ2(Ω)

|B|2/Nµ2(B)
.

The main result of this section is the following stability estimate.

Theorem 4.1. For every Ω ⊂ RN open Lipschitz set, we have

SW (Ω) ≥ cNA(Ω)2 . (4.7)

Equivalently, the following quantitative form of the Szegő-Weinberger inequality holds,

|B|2/Nµ2(B)
(

1− cN A(Ω)2
)
≥ |Ω|2/Nµ2(Ω) , (4.8)

where B is any ball and cN is a small constant which depends only on the dimension N .

Proof. By the scaling invariance of the problem, to show (4.8) we can take a ball B such
that |B| = |Ω|, and we can translate it in such a way that (4.3) and (4.4) hold. By definition
of asymmetry, one has

A(Ω) ≤ α :=
|Ω∆B|
|Ω|

. (4.9)

We start observing that, with the same notations as before, (4.3) and (4.4) imply that

µ2(B)

∫
B
φN (|x|)2 dx− µ2(Ω)

∫
Ω
φN (|x|)2 dx ≥∫

B
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx−

∫
Ω
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx .

(4.10)

While inequality (4.6) only ensures that the last quantity is positive, our main scope now
is to refine that estimate, so to get a quantitative lower bound. In order to do so, we can
start determining the “worst case”. In fact, let us call, as in Figure 1, B1 and B2 two balls,
concentric with B and with radii r1 < r < r2, in such a way that

|Ω ∩B| = |B1| = ωNr
N
1 , |Ω \B| = |B2 \B| = ωN

(
rN2 − rN

)
,

so that by construction one has

rN − rN1
rN

=
α

2
=
rN2 − rN

rN
. (4.11)

Recalling now that the function

|x| 7→ φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2

is strictly decreasing, as we have already checked above, it is immediate to observe that∫
Ω
φ′N (|x|)2 + (N − 1)

φN (|x|)2

|x|2
dx ≤

∫
B1∪(B2\B)

φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2
dx ,
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B
Ω B2

B1

Figure 1. The construction of the proof of Theorem 4.1

so that from (4.10) we can deduce

µ2(B)

∫
B
φN (|x|)2 dx− µ2(Ω)

∫
Ω
φN (|x|)2 dx ≥∫

B\B1

φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2
dx−

∫
B2\B

φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2
dx .

(4.12)

Concerning the left-hand side, recalling (4.5) and using (2.2) and (4.1) we have∫
Ω
φN (|x|)2 dx ≥

∫
B
φN (|x|)2 dx = r2

∫
{|y|≤1}

|y|2−N JN/2(βN/2,1|y|)2 dy = |Ω|2/N ηN ,

where we have set

ηN := ω
−2/N
N

∫
{|y|≤1}

|y|2−N JN/2(βN/2,1|y|)2 dy .

Notice that ηN is a constant which only depends on the dimension N . Hence, we can
estimate the left-hand side of (4.12) as

µ2(B)

∫
B
φN (|x|)2 dx− µ2(Ω)

∫
Ω
φN (|x|)2 dx ≤

(
µ2(B)− µ2(Ω)

)∫
B
φN (|x|)2 dx

= |Ω|2/NηN
(
µ2(B)− µ2(Ω)

)
.

(4.13)

On the other hand, concerning the right-hand side of (4.12), again recalling that the inte-
grand is strictly decreasing and that φ′N (t) = 0 for t ≥ r we get∫

B\B1

φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2
dx ≥

∫
B\B1

(N − 1)
φN (r)2

r2
dx

=
(N − 1)ωNφN (r)2

r2

(
rN − rN1

)
,

(4.14)
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while∫
B2\B

φ′N (|x|)2 + (N − 1)
φN (|x|)2

|x|2
dx = (N − 1)φN (r)2

∫
B2\B

1

|x|2
dx

= NωN (N − 1)φN (r)2

∫ r2

r
tN−3 dx ≤ NωNφN (r)2

r

(
rN−1

2 − rN−1
)
.

(4.15)

Therefore, inserting (4.13), (4.14) and (4.15) into (4.12), we get

|Ω|2/N
(
µ2(B)− µ2(Ω)

)
≥ ωN η̃N

rN

(
(N − 1)

(
rN − rN1

)
−N

(
rrN−1

2 − rN
))

where, using (2.2) again, we have set

η̃N :=
φN (r)2

ηN
rN−2 =

JN/2(βN/2,1)2

ηN
,

which is still a constant depending only on the dimension N .
Since |Ω| = |B|, the thesis will follow as soon as we show that

(N − 1)
rN − rN1
rN

−N rrN−1
2 − rN

rN
≥ cNA(Ω)2 . (4.16)

But in fact, by the second equality in (4.11), one has

r2 = r

(
1 +

α

2

) 1
N

,

and since one surely has α ≤ 2, this implies

rN−1
2 = rN−1

(
1 +

α

2

)N−1
N

≤ rN−1

(
1 +

N − 1

N

α

2
− cNα2

)
,

for a strictly positive constant cN depending only on N . Using now the first equality
in (4.11), a simple calculation gives

(N − 1)
rN − rN1
rN

−N rrN−1
2 − rN

rN
= (N − 1)

α

2
−N rN−1

2 − rN−1

rN−1

≥ (N − 1)
α

2
−N

(
N − 1

N

α

2
− cNα2

)
= NcNα

2 .

Finally, recalling (4.9) we obtain (4.16) and the proof is concluded. �

Before concluding this Section, we make some observations on the comparison between
eigenvalues of the Laplacian with different boundary conditions: it is well-known that
combining the Faber-Krahn inequality together with the Szegő-Weinberger one, we get

µ2(Ω) ≤ µ2(B) < λ1(B) ≤ λ1(Ω) ,
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that is for every domain Ω we have µ2(Ω) < λ1(Ω). The strict inequality for balls µ2 < λ1

is based on an explicit computation, which actually gives µ2(B) = θN λ1(B), for a positive
constant θN < 1 depending only on the dimension N and given by

θN =

(
βN/2,1

jN/2−1,1

)2

, (4.17)

where βN/2,1 is as before and jN/2−1,1 is the first zero of the Bessel function JN/2−1. Then,
we can rephrase everything by saying that

µ2(Ω) ≤ θN λ1(Ω) ,

and equality sign holds if and only if Ω is a ball. We can easily derive a stability estimate
for this inequality: namely, we have the following.

Corollary 4.2. For every Ω ⊂ RN open bounded set with Lipschitz boundary, we have∣∣Ω∣∣2/N(θNλ1(Ω)− µ2(Ω)
)
≥ cN A(Ω)2 ,

for some constant cN depending only on N , while θN is given by (4.17).

Proof. Let B be a ball such that |B| = |Ω|, then it is enough to observe

θN λ1(Ω)− µ2(Ω) = θN (λ1(Ω)− λ1(B)) + θN λ1(B)− µ2(Ω)

= θN (λ1(Ω)− λ1(B)) + µ2(B)− µ2(Ω) ≥ µ2(B)− µ2(Ω) ,

and then apply (4.7). �

5. Decay rate of nearly circular ellipses

We now turn to the question of sharpness of the exponent 2 for the Fraenkel asymmetry
in (4.7). To do so, we have to exhibit a family Ωε of small deformations of a ball, such that
A(Ωε)→ 0 and

|B|2/Nµ2(B) ≤ |Ω|2/Nµ2(Ωε) + CNA(Ωε)
2 ,

with a constant CN independent of ε. If this is true, then we have the asymptotic behaviour
|B|2/Nµ2(B)− |Ωε|2/Nµ2(Ωε) = O(A(Ωε)

2), thus proving the sharpness of the exponent 2
in the inequality (4.7) for the Szegő-Weinberger deficit.

The easiest deformations that one can consider are ellipsoids Eε: in this section, we show
that this is not the right choice, proving that

|B|2/Nµ2(B)− |Eε|2/Nµ2(Eε) ≈ A(Eε) .

At a first sight, this is quite surprising: indeed, nearly spherical ellipsoids prescribe the
right decay rate both in the standard isoperimetric inequality and in the Faber-Krahn one.

In what follows, for simplicity we restrict to the case N = 2. As it will apparent in a
while, this is not restrictive and the very same calculations can be performed for every N .

Let D ⊂ R2 be the disk with unit radius and centered at the origin. For every ε > 0, we
set

Mε =

[
1 + ε 0

0 1
1+ε

]
,
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and we consider the ellipse Eε = MεD. The first non trivial Neumann-Laplacian eigen-
value of Eε is defined through

µ2(Eε) = min
v∈W1,2(Eε)\{0},

∫
Eε

v(x) dx=0

∫
Eε
|∇v(x)|2 dx∫
Eε
v(x)2 dx

.

Remark 5.1. It is worth stressing here that for the case of an ellipse, the explicit de-
termination of the eigenvalues is quite a tricky fact. Indeed, proceeding as in the case
of the disk, that is, introducing elliptic coordinates and separating the variables, we then
arrive to a family of ODEs, called Mathieu equations, whose solutions are correspondingly
called Mathieu functions (see [13]). Then, in order to determine the eigenvalues, at least
in the Dirichlet case, one has to determine the zeros of these functions. Some interesting
(though quite involved and not easy to deal with) asymptotic formulas for the eigenvalues
in the case of the Dirichlet-Laplacian can be found in [16] (see formula (5.1), for the case
of eccentricity ≈ 0). In the Neumann case, the situation is even worse, as far as one has to
compute the zeros of derivatives of Mathieu functions. This is why we have preferred here
to directly give an expansion of the Rayleigh quotient.

In order to obtain an asymptotic expansion of µ2(Eε) as ε goes to 0, it is convenient to
set the problem in the disk D with the obvious change of variable: more precisely, observe
that defining

Bε :=

[ 1
(1+ε)2 0

0 (1 + ε)2

]
,

we have

µ2(Eε) = min
u∈W1,2(D)\{0},

∫
D u dx=0

∫
D〈Bε∇u(x),∇u(x)〉 dx∫

D u(x)2 dx
.

We can further impose the normalization condition
∫
D u(x)2 dx = 1, without affecting the

minimization problem. Let us set for simplicity

S(D) =

{
u ∈W1,2(D) \ {0} :

∫
D
u(x) dx = 0,

∫
D
u(x)2 dx = 1

}
,

so that

µ2(Eε) = min
u∈S(D)

∫
D
〈Bε∇u(x),∇u(x)〉 dx ,

and, at least formally∫
D
〈Bε∇u(x),∇u(x)〉 dx =

∫
D
|∇u(x)|2 dx+ 2ε

∫
D

[
|∂x2u(x)|2 − |∂x1u(x)|2

]
dx

+ ε2

∫
D

[
3|∂x2u(x)|2 + |∂x1u(x)|2

]
dx+ o(ε2) .

(5.1)

The first order term in (5.1) can have a sign: in particular, take the two eigenfunctions
corresponding to µ2(D)

ξ2(x) = c J1(β1,1|x|)
x1

|x|
and ξ3(x) = c J1(β1,1|x|)

x2

|x|
,
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being c the renormalization constant so that ξ2, ξ3 ∈ S(D). Since ξ2 and ξ3 are eigen-
functions for µ2(D), they minimize the leading term in (5.1), while for the first order we
have ∫

D

[
|∂x2ξ2(x)|2 − |∂x1ξ2(x)|2

]
dx = −

∫
D

[
|∂x2ξ3(x)|2 − |∂x1ξ3(x)|2

]
dx ,

and an explicit computation gives∫
D

[
|∂x2ξ2(x)|2 − |∂x1ξ2(x)|2

]
dx < 0 .

This implies that
µ2(Eε)− µ2(D) = O(ε) = O(A(Eε)) ,

thus showing a linear decay rate in the Szegő–Weinberger inequality. Hence, the ellipsoids
do not show the optimality of the exponent 2 in (4.7).

Remark 5.2. Observe that the first order negative term is given by the eigenfuction ξ2,
corresponding to the direction x1 along which the disk has been stretched: the fact that
µ2(D)− µ(Eε) ≈ ε should not be surprising, since µ2(D) is a multiple eigenvalue, so that
the function

Ω 7→ µ2(Ω) ,

is not differentiable at the maximum point D (see [9, Chapter 5]). In a very rough way, we
could say that at D the superdifferential of µ2(·) is a proper set, not just a singleton.

6. Sharpness of the quantitative Szegő-Weinberger inequality

In this section, we will show the sharpness of the exponent 2 in the Szegő-Weinberger
inequality (4.7). To do so, we will exhibit a family Dε of sets approaching the disk D of
unit radius in such a way that

A(Dε) ≈
∣∣Dε∆D

∣∣∣∣D∣∣ ≈ ε , SW (Dε) ≈ ε2 .

In our construction, we will work for simplicity in dimension N = 2, but the same argument
could be generalized to any dimension N ≥ 2. Since the whole construction is quite
complicate, we will divide this section in various subsections.

6.1. Preliminaries: setting of the construction and main properties. As in the
previous section, D stands for the unit disk and we identify its boundary ∂D with the
circle S1. We consider a general nearly circular domain, given in polar coordinates by

Dε = {(%, ϑ) : ϑ ∈ [0, 2π], 0 ≤ % ≤ 1 + εψ(ϑ)} ,
where ψ ∈ C∞(S1) is such that

∫
S1 ψ = 0, thus giving

|Dε| − |D| . ε2 . (6.1)

More precisely, we fix an angle ϑ0 ∈ (0, π/4) and we take a function ψ whose support is
given by

supp (ψ) = [−ϑ0, ϑ0] ∪ [π − ϑ0, π + ϑ0] ,
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Figure 2. The set Dε

and such that, for any ϑ ∈ (−ϑ0, ϑ0),

ψ(ϑ) > 0 , ψ(ϑ+ π) = −ψ(ϑ) , ψ(−ϑ) = ψ(ϑ) . (6.2)

Observe that Dε is invariant for reflections with respect to the x1 axis, and looks like the
set in Figure 2: also observe that by construction one easily gets that

A(Dε) ≈
∣∣Dε∆D

∣∣∣∣D∣∣ ≈ ε. (6.3)

Let us fix now an eigenfunction uε for µ2(Dε), normalized in such a way that∫
Dε

u2
ε(x) dx = 1 ,

∫
Dε

∣∣∇uε(x)
∣∣2 dx = µ2(Dε) . (6.4)

Remark 6.1. Thanks to the fact that ∂Dε is of class C∞, we obtain that uε ∈ C∞(Dε).
Moreover, the domains Dε are uniformly of class Ck, for every k ≥ 0, hence we can assume
the functions uε to satisfy uniform Ck estimates

‖uε‖Ck(Dε) ≤ Hk , (6.5)

for some constants Hk ∈ R+ depending only on k ∈ N.

Since we want to compare µ2(Dε) with µ2(D), we have to define suitable functions on
D. To do so, we consider a C3 extension ũε of uε to the whole D ∪Dε: we can make this
extension in such a way that

‖ũε‖C3(D∪Dε) ≤ K‖uε‖C3(Dε) . (6.6)

In particular, since
∫
Dε
uε = 0 and

∣∣D \Dε

∣∣ =
∣∣Dε \D

∣∣ = O(ε), we have

δ :=
1

|D|

∫
D
ũε(x) dx =

1

|D|

(∫
D\Dε

ũε(x) dx−
∫
Dε\D

uε(x) dx

)
= O(ε) , (6.7)

because both the integrals are performed on a set of area ≈ ε and the integrands satisfy
global L∞ estimates, uniformly in ε, thanks to (6.6) and (6.5).
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We now come to define an admissible function for the Rayleigh quotient defining µ2(D):
we set

vε := ũε · 1D − δ , (6.8)

and we immediately notice that

‖vε‖C3(Dε) ≤ K , (6.9)

thanks to (6.5), (6.6) and (6.7). In words, vε is the original eigenfunction uε extended to the
whole D ∪Dε, then restricted to D and finally vertically translated in order to satisfy the
zero-mean condition. By the definition (6.8), and recalling (6.7), we immediately observe
that ∣∣∣∣∫

D
v2
ε − ũ2

ε

∣∣∣∣ =

∣∣∣∣∣
∫
D

(
1

|D|2

(∫
D
ũε

)2

− 2

|D|

(∫
D
ũε

)
ũε

)∣∣∣∣∣
=

1

|D|

(∫
D
ũε

)2

≤ Kε2 .

(6.10)

Moreover, still using the definition (6.8), and the fact that ũε satisfies (6.6) and coincides
with uε on D ∩Dε, it is also∣∣∣∣ ∫

D\Dε

v2
ε− ũ2

ε

∣∣∣∣ ≤ ∫
D\Dε

∣∣v2
ε− ũ2

ε

∣∣ ≤ K ∫
D\Dε

∣∣vε− ũε∣∣ = K

∣∣D \Dε

∣∣
|D|

∫
D
ũε ≤ Kε2 . (6.11)

By (6.10) and (6.11), also recalling (6.4), we can thus estimate µ2(D) from above as follows

µ2(D) ≤
∫
D |∇vε(x)|2 dx∫
D vε(x)2 dx

≤

∫
D∩Dε

|∇uε(x)|2 dx+
∫
D\Dε

|∇vε(x)|2 dx∫
D∩Dε

uε(x)2 dx+
∫
D\Dε

ũε(x)2 dx−Kε2

≤
µ2(Dε) +

∫
D\Dε

|∇vε(x)|2 dx−
∫
Dε\D |∇uε(x)|2 dx

1 +
∫
D\Dε

vε(x)2 dx−
∫
Dε\D uε(x)2 dx−Kε2

.

Introducing the two error terms

R1(ε) =

∫
D\Dε

|∇vε|2 −
∫
Dε\D

|∇uε|2 and R2(ε) =

∫
D\Dε

v2
ε −

∫
Dε\D

u2
ε,

we thus have obtained the following estimate for µ2(D)

µ2(D) ≤ µ2(Dε) +R1(ε)

1 +R2(ε)−Kε2
. (6.12)

We notice that thanks to the uniform estimates (6.5) with k = 0, 1, it is immediate to
estimate ∣∣R1(ε)

∣∣ ≤ Kε , ∣∣R2(ε)
∣∣ ≤ Kε , (6.13)

which inserted in (6.12) gives the easy estimate

µ2(D) ≤ µ2(Dε) +Kε .
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More generally, we have the following simple but important fact: each estimate on the
error terms R1 and R2 automatically translates into an estimate of the same order for the
deficit. Let us state precisely this observation, whose proof is immediate from (6.12).

Lemma 6.2. Let ω : [0, 1] → R+ be a continuous function with t2/K ≤ ω(t) ≤ Kt. If
there exists a constant C > 0 such that

|R1(ε)| ≤ C ω(ε) and |R2(ε)| ≤ C ω(ε), (6.14)

then there exists a constant C ′ such that

µ2(D) ≤ µ2(Dε) + C ′ ω(ε)

for every sufficiently small ε > 0.

Keeping in mind Theorem 4.1, (6.3) and (6.1), we know that

SW (Dε) ≈ µ2(D)− µ2(Dε) ,

hence to conclude the optimality of the exponent 2 in (4.7) one would like to prove (6.14)
with ω(t) = t2.

6.2. First step: some heuristics and a “toy proof”. In this subsection, we briefly
present the “toy scheme of proof” in order to introduce the main ideas that will give us
the searched result. Then, in next subsections, we will give the formal proof. We will focus
on the term R1(ε), but one can easily see that everything works exactly in the same way
for R2(ε).

Let us start observing that∫
Dε\D

|∇uε(x)|2 dx =

∫ ϑ0

−ϑ0

∫ 1+εψ(ϑ)

1

(
(∂%uε)

2 +
1

%2
(∂ϑuε)

2

)
% d% dϑ

and ∫
D\Dε

|∇vε(x)|2 dx =

∫ π+ϑ0

π−ϑ0

∫ 1

1+εψ(ϑ)

(
(∂%vε)

2 +
1

%2
(∂ϑvε)

2

)
% d% dϑ .

Using the fact that ∂%uε(ϑ, %) = O(ε) and ∂%vε(ϑ, %) = O(ε) for % = 1 + O(ε) (which in
turn is an immediate consequence of the geometry, together with (6.5) for k = 2), and the
fact that |D \Dε| = |Dε \D| ≈ ε, one can calculate∫

Dε\D
|∇uε(x)|2 dx =

∫ ϑ0

−ϑ0

∫ 1+εψ(ϑ)

1

1

%2
(∂ϑuε)

2 % d% dϑ+ o(ε2)

= ε

∫ ϑ0

−ϑ0

ψ(ϑ)
(
∂ϑuε(ϑ, 1)

)2
dϑ+O(ε2) ,

and similarly ∫
D\Dε

|∇vε(x)|2 dx =

∫ π+ϑ0

π−ϑ0

∫ 1

1+εψ(ϑ)

1

%2
(∂ϑvε)

2 % d% dϑ+ o(ε2)

= −ε
∫ π+ϑ0

π−ϑ0

ψ(ϑ)
(
∂ϑvε(ϑ, 1)

)2
dϑ+O(ε2) .



STABILITY OF SOME SPECTRAL INEQUALITIES 25

Hence, recalling that by (6.2) one has ψ(ϑ+ π) = −ψ(ϑ), one gets

R1(ε) = −ε
∫ π+ϑ0

π−ϑ0

ψ(ϑ)
(
∂ϑvε(ϑ, 1)

)2
dϑ− ε

∫ ϑ0

−ϑ0

ψ(ϑ)
(
∂ϑuε(ϑ, 1)

)2
dϑ+O(ε2)

= ε

∫ ϑ0

−ϑ0

ψ(ϑ)

(
∂ϑvε(ϑ+ π, 1)2 − ∂ϑuε(ϑ, 1)2

)
dϑ+O(ε2)

= ε

∫ ϑ0

−ϑ0

ψ(ϑ)

(
∂ϑvε(ϑ+ π, 1)2 − ∂ϑvε(ϑ, 1)2

)
dϑ+O(ε2) ,

(6.15)

where the last equality is due to the fact that by definition uε = vε up to the constant δ
around (1, ϑ), with ϑ ∈ (−ϑ0, ϑ0). The idea now is quite simple: one can guess that vε is
sufficiently close to an eigenfunction ū for µ2(D). For example, imagine that vε coincides
with u, up to an error of order ε: then substituting vε with u in the above estimate the
integral term would disappear, thanks to the symmetries of the eigenfunctions of the disk.
This would improve the rate of convergence to 0 of the term R1(ε) up to an order ε2.

It is important to notice that more generally, by means of (6.15) and Lemma 6.2, we have
the following chain of implications

min
ξ∈E2

‖vε − ξ‖C1(D) ≈ ω(ε) =⇒ |Ri(ε)| . ε ω(ε) =⇒ |µ2(D)− µ2(Dε)| . ε ω(ε)

for every ω as in Lemma 6.2, where E2 = {a ξ2 + b ξ3 : (a, b) ∈ R × R} is the eigenspace
relative to µ2(D). As we will see, this observation constitutes the core of our proof of the
sharpness of (4.7).

Remark 6.3. At this point, the reason why ellipsoids did not work in Section 5 becomes
evident. Indeed, for the ellipsoid Eε of the previous section, the function ψ satisfies ψ(π+
ϑ) = ψ(ϑ) rather than (6.2). Hence, in (6.15) one would have that the two terms in the last
integral add up instead of subtracting, thus giving R1(ε) ≈ ε, which is perfectly consistent
with the fact that µ2(D)− µ2(Eε) ≈ ε.

6.3. Towards the proof: technical machinery. The first technical result we need is
the following: the convergence of vε to the eigenspace E2 is quantified in terms of the decay
rate of the error terms R1 and R2.

Lemma 6.4. Let ω be a function as in Lemma 6.2. Suppose that there exists C > 0 such
that for every ε small enough, we have

|R1(ε)| ≤ C ω(ε) and |R2(ε)| ≤ C ω(ε) . (6.16)

Then there exists an eigenfunction ξε relative to µ2(D), such that

‖vε − ξε‖C1(D) ≤ C̃
√
ω(ε) , (6.17)

for some constant C̃ depending on C, but not on ε.
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Proof. We will proceed using a spectral decomposition in L2(D) for vε, namely

vε =
∑
n≥2

an(ε)ξn ,

where {ξn}n≥1 are the (renormalized) Neumann eigenfunctions of D, forming an orthonor-
mal basis of L2(D), and where a1(ε) = 0 because vε has zero-mean.

First of all, one can easily calculate∑
n≥2

an(ε)2 − 1 = ‖vε‖2L2(D) − 1 =

∫
D
v2
ε −

∫
Dε

u2
ε =

∫
D
v2
ε − ũ2

ε −
∫
D\Dε

v2
ε − ũ2

ε +R2(ε) ,

which by (6.16) and recalling (6.10) and (6.11) yields∣∣∣∣∑
n≥2

an(ε)2 − 1

∣∣∣∣ ≤ Cω(ε) +Kε2 ≤ C1 ω(ε) . (6.18)

Notice now that by the normalization of the eigenfunctions and by definition one has∫
D |∇ξn|

2 = µn(D) for all n, from which we get

µ2(Dε) =

∫
Dε

|∇uε(x)|2 dx

=

∫
D
|∇vε(x)|2 dx+

∫
Dε\D

|∇uε(x)|2 dx−
∫
D\Dε

|∇vε(x)|2 dx

=
∑
n≥2

an(ε)2µn(D)−R1(ε) .

(6.19)

Since assumption (6.16) and Lemma 6.2 ensure that
∣∣µ2(D)−µ2(Dε)

∣∣ ≤ C ′ω(ε), from (6.18)
and (6.19) we get∣∣∣∣∑

n≥2

an(ε)2µn(D)− µ2(D)

∣∣∣∣ ≤ (C + C ′)ω(ε) = C2 ω(ε) . (6.20)

Recall now that µ2(D) = µ3(D) < µ4(D). Hence, by (6.20) and (6.18) we have

C2 ω(ε) ≥
∣∣∣∣∑
n≥2

an(ε)2µn(D)− µ2(D)

∣∣∣∣
=

∣∣∣∣µ2(D)

(∑
n≥2

an(ε)2 − 1

)
+
∑
n≥4

an(ε)2
(
µn(D)− µ2(D)

)∣∣∣∣
≥
(
µ4(D)− µ2(D)

)∑
n≥4

an(ε)2 − µ2(D)C1 ω(ε),

which gives∑
n≥4

an(ε)2 ≤ C3 ω(ε) , hence
∣∣∣a2(ε)2 + a3(ε)2 − 1

∣∣∣ ≤ C4 ω(ε),
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where the implication comes again from (6.18). Inserting this estimate into (6.20), one
derives ∑

n≥4

an(ε)2µn(D) ≤ C5 ω(ε).

Finally, this ensures that vε is close, in the W1,2 norm, to the function

ϕ := a2(ε) ξ2 + a3(ε) ξ3 ,

which in turn is an eigenfunction for µ2(D) = µ3(D). In fact,

‖vε − ϕ‖2W1,2(D) =

∫
D

(
vε − ϕ

)2
+
∣∣∇(vε − ϕ)

∣∣2 =

∫
D

∑
n≥4

an(ε)2
(
ξ2
n + |∇ξn|2

)
=
∑
n≥4

an(ε)2
(
1 + µn(D)

)
≤ C6 ω(ε) .

(6.21)

Summarizing, to conclude the proof we only need to replace the W1,2 norm by the C1

norm. To do so, we are going to use the classical elliptic estimates of Calderon-Zygmund
type for the Laplace operator (see [7, Chapter 9]).

Let us then start by observing that, in D ∩Dε, one has

−∆vε = −∆uε = µ2(Dε)uε = µ2(Dε)
(
vε + δ

)
,

where δ = O(ε) has been defined in (6.7), and then set

fε :=

{
µ2(Dε)

(
vε + δ

)
on D ∩Dε ,

−∆vε on D \Dε ,
gε := 〈∇vε, νD〉 on ∂D ,

where by νD we denote the outer normal to D on ∂D. Hence, vε is by construction the
unique solution of the problem

−∆u = fε in D,

〈∇u, νD〉 = gε on ∂D,∫
Ω
u(x) dx = 0 .

Similarly, if we set f = µ2(D)ϕ, then ϕ is clearly the unique solution of the problem
−∆u = f in D,

〈∇u, νD〉 = 0 on ∂D,∫
Ω
u(x) dx = 0 .

Let us then fix now an exponent p > N = 2, and keep in mind the global estimate∥∥D2(vε − ϕ)
∥∥
Lp(D)

≤ H
(∥∥fε − f∥∥Lp(D)

+
∥∥gε∥∥W1−1/p,p(∂D)

+
∥∥D(vε − ϕ)

∥∥
Lp(D)

)
. (6.22)

We start considering the first term of (6.22). By definition, for any x ∈ D ∩ Dε one has
fε(x) = µ2(Dε)(vε(x) + δ). Moreover, for any x ∈ D there is x̃ ∈ D∩Dε with |x− x̃| ≤ Cε
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(if x ∈ D∩Dε, simply take x̃ = x!). Hence, recalling the uniform estimates (6.9) and (6.7),
one can observe that

fε(x) = −∆vε(x) = −∆vε(x̃) +O(ε) = µ2(Dε)
(
vε(x̃) + δ

)
+O(ε) = µ2(Dε)vε(x) +O(ε) ,

hence∥∥fε − f∥∥Lp(D)
=
∥∥µ2(Dε)vε − µ2(D)ϕ

∥∥
Lp(D)

+O(ε)

≤
∣∣µ2(Dε)− µ2(D)

∣∣‖vε‖Lp(D) + µ2(D)
∥∥vε − ϕ∥∥Lp(D)

+O(ε)

≤ C7 ω(ε) + C8

√
ω(ε) +O(ε) ≤ C9

√
ω(ε) ,

(6.23)

where we have used (6.16) and Lemma 6.2 to estimate |µ2(Dε) − µ2(D)| ≤ C ′ ω(ε),

and (6.21) plus a Sobolev embedding to estimate ‖vε − ϕ‖Lp ≤ C8

√
ω(ε).

Concerning the second term in (6.22), one immediately gets

‖gε‖W1−1/p,p(D) ≤ Cε (6.24)

by simple geometric considerations, since vε is a C3 extension of uε up to an additive
constant, and since uε satisfies the Neumann boundary condition on ∂Dε.

Finally, let us consider the last term in (6.22). To estimate this, we can use the interpo-
lation inequality

‖D(vε − ϕ)‖Lp(D) ≤ Cθ‖D(vε − ϕ)‖L2(D) + θ‖D2(vε − ϕ)‖Lp(D) , (6.25)

valid for θ ∈ (0, 1), and where Cθ is a constant depending on θ such that Cθ → ∞ as θ
goes to 0. By choosing θ small enough, namely such that Hθ < 1 being H the constant
in (6.22), and by recalling again (6.21), we can insert the estimates (6.23), (6.24) and (6.25)
into (6.22) and get ∥∥vε − ϕ∥∥W2,p(D)

≤ C10

√
ε .

We conclude the validity of (6.17), hence the proof, by a last Sobolev embedding theorem,
since p > 2. �

We now rigorously prove that to every improvement on the decay rate of the distance
between vε and the eigenspace E2, there corresponds an improvement (of the same order)
on the convergence to 0 of R1 and R2.

Lemma 6.5. Let t 7→ ω(t) satisfies the hypotheses of Lemma 6.2. Suppose that for every
ε� 1, there exists an eigenfunction ξε for µ2(D) such that

‖vε − ξε‖C1(D) ≤ C
√
ω(ε), (6.26)

for some constant C independent of ε. Then there exists a constant C̃, still independent of
ε, such that

|Ri(ε)| ≤ C̃ ε
√
ω(ε), i = 1, 2.
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Proof. Using the uniform estimates (6.5), for any point with polar coordinates (%, ϑ) ∈
Dε \D (hence, with 1 ≤ % ≤ 1 + εψ(ϑ)), one has∣∣∇uε(%, ϑ)∣∣ =

∣∣∇uε(1 + εψ(ϑ), ϑ
)∣∣+O(ε) = |∂ϑuε

(
1 + εψ(ϑ), ϑ

)
|+O(ε)

= |∂ϑuε
(
1, ϑ
)
|+O(ε) .

Notice that the second equality comes from the facts that uε satisfies a Neumann condition
on ∂Dε, and that the normal vector on ∂Dε is radial up to an error of order ε. Therefore,
recalling also that |Dε \D| ≈ ε, one obtains∫

Dε\D

∣∣∇uε(x)
∣∣2 dx = ε

∫ ϑ0

−ϑ0

ψ(θ)∂ϑuε(1, θ)
2 dϑ+O(ε2)

= ε

∫ ϑ0

−ϑ0

ψ(θ)∂ϑvε(1, θ)
2 dϑ+O(ε2) ,

(6.27)

where the last equality comes from the fact that vε = uε on D ∩ Dε up to an additive
constant. In the very same way, recalling that by definition of vε one has

∇vε
(
1 + εψ(ϑ), ϑ

)
= ∇uε

(
1 + εψ(ϑ), ϑ

)
for all ϑ ∈ [π − ϑ0, π + ϑ0], and that the uniform estimates holds also for vε by (6.9), one
gets ∫

D\Dε

∣∣∇vε(x)
∣∣2 dx = ε

∫ π+ϑ0

π−ϑ0

ψ(θ)∂ϑvε(1, θ)
2 dϑ+O(ε2) . (6.28)

Let us now apply Lemma 6.4, which is admissible since (6.16) holds by assumption.
Finally, recalling the definition of R1(ε), from (6.27) and (6.28) and (6.26) one obtains

|R1(ε)| ≤ ε
∣∣∣∣∫ ϑ0

−ϑ0

ψ(ϑ)
(

(∂ϑvε(1, ϑ+ π))2 − (∂ϑvε(1, ϑ))2
)
dϑ

∣∣∣∣+O(ε2)

= ε

∣∣∣∣∫ ϑ0

−ϑ0

ψ(ϑ)
(

(∂ϑξ(1, ϑ+ π))2 − (∂ϑξ(1, ϑ))2
)
dϑ

∣∣∣∣+ C ′ ε
√
ω(ε) +O(ε2)

≤ C̃ ε
√
ω(ε),

where we used the fact that ∂ϑξ(%, ϑ) = −∂ϑξ(%, ϑ + π), true for any eigenfunction ξ for

µ2(D). In the very same way, one can prove that also |R2(ε)| ≤ C̃ ε
√
ω(ε), hence the proof

is concluded. �

6.4. Sharpness of the exponent 2. We are now ready for the main result of this section.
To do so, let us define

ω0(ε) :=
∣∣R1(ε)

∣∣+
∣∣R2(ε)

∣∣ .
This is clearly a continuous function, with ω0(ε) ≤ Kε by (6.13), and with ω0(ε) ≥ ε2/K
by Theorem 4.1. We can then apply Lemma 6.4, which ensures the existence of an eigen-
function ξε for µ2(D) with the property that

‖vε − ξε‖C1(D) ≤ C
√
ω0(ε),
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for some constant C not depending on ε. Applying then Lemma 6.5, we obtain that

ω0(ε) =
∣∣R1(ε)

∣∣+
∣∣R2(ε)

∣∣ ≤ 2C̃ε
√
ω0(ε) ,

being also C̃ a computable constant, not depending on ε. The previous inequality of course

implies that ω0(ε) ≤ 4C̃2ε2, that is,

|R1(ε)| ≤ 4C̃2ε2 , |R2(ε)| ≤ 4C̃2ε2 .

We can then apply Lemma 6.2 with ω(ε) = ε2, so to finally obtain |µ2(Dε)− µ2(D)| ≈ ε2

as desired.
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Applications], 48. Springer, Berlin, 2005.

[10] I. Hong, On an inequality concerning the eigenvalue problem of membrane, Kōdai Math. Sem. Rep.,
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