A direct uniqueness proof for equations involving the p-Laplace operator

by M.Belloni (Parma) and B.Kawohl (Cologne)
manuscripta mathematica, submitted on May 3, 2002 accepted on June 26, 2002
Abstract: We provide a simple convexity argument for some known uniqueness theorems. Previous proofs were more technical and had to pay attention to the behaviour of solutions near the boundary.

Let $p \in(1, \infty)$, and suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded simply connected domain. A well-known result in nonlinear partial differential equations states that positive (weak) solutions of

$$
\begin{align*}
\Delta_{p} u+\lambda|u|^{p-2} u=0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega \tag{1}
\end{align*}
$$

are unique modulo scaling, in other words the corresponding eigenvalue is simple. These functions are also called first eigenfunctions or nonlinear ground states of the p-Laplace operator, and $\Delta_{p} v:=\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)$. Various proofs were given in [1-3, 7-12].

To prove the uniqueness result for problem (1), recall that modulo scaling u is characterized as a critical point, and in fact a minimizer, of the functional

$$
\begin{equation*}
J_{p}(v)=\int_{\Omega}|\nabla v|^{p} d x \quad \text { on } \quad K:=\left\{v \in W_{0}^{1, p}(\Omega) \mid\|v\|_{L^{p}(\Omega)}=1\right\} \tag{2}
\end{equation*}
$$

Our proof is based on the observation, made in [8, Prop. 4], that for nonnegative functions u the functional $J_{p}(v)$ is convex in v^{p}. We attribute this idea to R.Benguria, see [4] and the remarks therein. If there are two positive solutions u and U of (2), then the function $w=\eta^{1 / p}$ with $\eta:=\left(u^{p}+U^{p}\right) / 2$ is admissible in (2), because $\int_{\Omega} w^{p} d x=\left(\int_{\Omega} u^{p} d x+\int_{\Omega} U^{p} d x\right) / 2=1$.

Now we calculate $\nabla w=\eta^{-1+1 / p}\left[u^{p-1} \nabla u+U^{p-1} \nabla U\right] / 2$, so that

$$
\begin{aligned}
|\nabla w|^{p} & =\eta^{1-p}\left|\frac{1}{2}\left(u^{p-1} \nabla u+U^{p-1} \nabla U\right)\right|^{p} \\
& =\eta\left|\frac{1}{2}\left(\frac{u^{p}}{\eta} \frac{\nabla u}{u}+\frac{U^{p}}{\eta} \frac{\nabla U}{U}\right)\right|^{p} \\
& =\eta\left|s(x) \frac{\nabla u}{u}+(1-s(x)) \frac{\nabla U}{U}\right|^{p} \text { with } s(x)=\frac{u^{p}}{u^{p}+U^{p}} \in(0,1) \\
& \leq \eta\left[s(x)\left|\frac{\nabla u}{u}\right|^{p}+(1-s(x))\left|\frac{\nabla U}{U}\right|^{p}\right] \\
& =\frac{1}{2}\left(u^{p}\left|\frac{\nabla u}{u}\right|^{p}+U^{p}\left|\frac{\nabla U}{U}\right|^{p}\right)=\frac{1}{2}\left(|\nabla u|^{p}+|\nabla U|^{p}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla w|^{p} d x \leq \frac{1}{2}\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega}|\nabla U|^{p} d x\right) \tag{3}
\end{equation*}
$$

Because u and U are both solutions of (2), equality must hold in (3), i.e.

$$
\begin{equation*}
\frac{\nabla u}{u}=\frac{\nabla U}{U} \quad \text { a.e. in } \Omega . \tag{4}
\end{equation*}
$$

But (4) implies that $\nabla(u / U)=0$ a.e. in Ω, so that $u=$ const. U. This completes the proof for problem (1).

The proof can be easily generalized to recover a related result (from [5,6]), which states that positive (weak) solutions of

$$
\begin{align*}
\Delta_{p} u+f(x, u)=0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \tag{5}
\end{align*}
$$

are unique, provided $f: \Omega \times[0, \infty)$ satisfies the hypotheses
(H2) for a.e. $x \in \Omega$ the map $r^{1-p} f(x, r)$ is strictly decreasing in $r \in[0, \infty)$.
(H3) There ex. $c>0$ with $f(x, r) \leq c\left(r^{p-1}+1\right)$ for a.e. $x \in \Omega$ and $r \in[0, \infty)$.
To give the proof for problem (5), one has to observe that solutions of (5) are critical points of a functional

$$
\begin{equation*}
H_{p}(v):=\int_{\Omega}\left[\frac{1}{p}|\nabla v|^{p}-F(x, v)\right] d x \tag{6}
\end{equation*}
$$

with $F(x, v):=\int_{0}^{v} f(x,|s|) d s$. Because of (H3), the functional H_{p} is well defined on $W_{0}^{1, p}(\Omega)$. By definition it is even in v and its first part convex in v^{p}. The second part $-\int F(x, v) d x$ is even strictly convex in v^{p} due to (H2). Hence H_{p} can have at most one positive critical point. We should remark that the strict convexity of H_{p} in v^{p} was mentioned in [5,6], but not exploited in such a direct way. Moreover these papers start with nonnegative solutions and first show their positivity under an additional assumption (H1) on f.
Acknowledgement: We thank P.Lindqvist for a helpful conversation on an earlier version of this proof and for encouraging us to publish it and I. Shafrir for pointing [2] out to one of us. This research was financially supported by the DFG.

References

[1] A.Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C.R. Acad. Sci. Paris Ser. I Math 305 (1987) 725-728.
[2] W.Allegretto \& Yin Xi Huang, A Picone's identity for the p-Laplacian and applications. Nonlin. Anal. TMA 32 (1998) 819-830.
[3] G.Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann. Fac. Sc. Toulouse 9 (1988) 65-75.
[4] R.Benguria, H.Brezis \& E.H.Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys. 79 (1981) 167-180.
[5] H.Brezis \& L.Oswald, Remarks on sublinear problems. Nonlin. Anal. 10 (1986) 55-64.
[6] J.I.Diaz \& J.E.Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C.R. Acad. Sci. Paris Ser. I Math 305 (1987) 521-524.
[7] B.Kawohl \& M.Longinetti, On radial symmetry and uniqueness of positive solutions of a degenerate elliptic eigenvalue problem. Zeitschr. Angew. Math. Mech. 68 (1988) 459-460.
[8] B.Kawohl, Symmetry results for functions yielding best constants in Sobolevtype inequalities, Discrete and Cont. Dyn. Systems 6 (2000) 683-690.
[9] P.Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc. 109 (1990) 157-164 .
[10] P.Lindqvist, Addendum to "On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$ ", Proc. Amer. Math. Soc. 116 (1992) 583-584.
[11] M.Otani, On certain second order differential equations associatzed with Sobo-lev-Poincaré type inequalities, Nonlin. Anal. 8 (1984) 1255-1270.
[12] S.Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Sup. Pisa 14 (1987) 404-421.
M. Belloni, Dip. di Matematica, Universita di Parma, Via d'Azeglio 85, I-43100 Parma, Italy
B. Kawohl, Mathematisches Institut, Universität zu Köln, D-50923 Köln, Germany

AMS Classification 35J20, 35J70, 49R05

