
CURVES OF MINIMAL ACTION OVER METRIC SPACES
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Abstract. Given a metric space X, we consider a class of action functionals, generalizing
those considered in [10] and [3], which measure the cost of joining two given points x0

and x1, by means of an absolutely continuous curve. In the case X is given by a space of
probability measures, we can think of these action functionals as giving the cost of some
congested/concentrated mass transfer problem. We focus on the possibility to split the
mass in its moving part and its part that (in some sense) has already reached its final
destination: we consider new action functionals, taking into account only the contribution
of the moving part.

1. Introduction

The recent years have seen a growing interest in the topics of Analysis in metric spaces.
This is due to the fact that a number of questions in the Calculus of Variations can be
naturally settled in this setting: for instance various PDEs coming from evolution problems
can be seen as gradient flows in appropriate metric spaces (see [2]).

In a metric setting, also the problem of geodesics can be treated from a differential
viewpoint: in fact, we can look for a curve µ : I → X, with fixed endpoints, that minimizes
the length functional

`(µ) =
∫

I
|µ′|(t) dt,

where |µ′| stands for the metric derivative of the curve µ (see Section 2 for the definition).
In the paper [10], Brancolini, Buttazzo and Santambrogio generalize this idea and pro-

pose a geodesic point of view for congested/concentrated Monge-Kantorovich problems.
This has motivated the topic of the present paper: the study of general action functionals
defined on the space of absolutely continuous curves in a metric space

A(µ) =
∫

I
f(t, µ(t), |µ′|(t)) dt,

with applications to the Monge-Kantorovich problem in mind.

The latter, the so called Monge-Kantorovich mass transfer problem, has received a lot
of attention in the last years, contributing to the growth of new techniques which can
be applied to various fields of mathematics (see [24] and the references therein). Our
main interest is in its dynamical formulation, which is particularly relevant when we want
to study movement of masses, subject to congestion or concentration phenomena: the
evolution of urban traffic (see [12], [13], [14]) or the branching of an irrigation network
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are two examples of such problems (see the papers [5], [6], [8], [22], [25] or the recent
monograph [7]).

In all these situations, the cost of moving some mass from a point to another is not
only related to the distance between the two points, as in the classical Monge-Kantorovich
problem, but also to some physical phenomenon underlying the movement, which can
favour the aggregation or the spreading of masses.

Just to clarify the situation, in the case of concentration, you can think of a power
supply station which has to give energy to a pair of houses (see Figure 1): one could see
this as a transport problem between a Dirac mass (the station) and the sum of two Dirac
masses (the houses). Monge-Kantorovich solution imposes to use a wire for every house,
but it should be quite clear that in the real world it is preferable to start with a single wire
and then split. This means that every model for congested/concentrated dynamics must
encode the cost of the transportation structure in its formulation.

house 2

house 1

station

house 2

house 1

station

Figure 1. The Monge-Kantorovich model (on the left) is not natural in this situation.

The point of view introduced in [10] is the following: the authors propose to study
weighted-length functionals of the type

(1.1) `g(µ) =
∫ T

0
g(µ(t))|µ′|(t) dt,

where t 7→ µ(t) is a Lipschitz curve with values in the Wasserstein space Wq(Ω). We briefly
recall that the latter is a metric space, made up of all Borel probability measures µ over Ω
with finite q-momentum, metrized according to the q-Kantorovich-Rubinstein-Wasserstein
distance wq (see Section 6 for the precise definitions).

Minimizers of functionals (1.1), under the constraints µ(0) = µ0 and µ(T ) = µ1, can
be seen as geodesics (with respect to a new metric) in the space of probability measures,
joining the points (which are actually probabilities) µ0 and µ1.

With suitable choices of the Riemannian coefficient g, they are able to treat the case
of congestion (where the mass spreads over all Ω) as well that of concentration (where
on the contrary the mass travels together as much as possible), giving results of existence
of a minimizing curve with finite cost and sufficient conditions to ensure that, given an
initial distribution of mass µ0 and a final one µ1, they can be joined by means of a curve
with finite cost (see also [9] for a more detailed analysis of this conditions, in the case of
concentration).
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Moreover, in the subsequent paper [3], there can be found some necessary optimality
condition for a curve to be a minimizer, in the form of an Euler-Lagrange equation for the
functional (1.1).

As already observed in [23], for the case of branching transport, in despite of being
elegant and relatively simpler, this model has some unnatural behaviours: as a consequence,
it happens to give quite different results, with respect to the models proposed by other
authors ([5], [22], [25]), which instead turn out to be equivalent with each other (and a
proof of these equivalences can be found in [6]). It is however important to underline that
the model of Brancolini, Buttazzo and Santambrogio is a purely dynamical one: on the
contrary, the models of Xia ([25]) and of Bernot, Caselles and Morel ([5], [6]) are static, in
the sense that they do not (in a way or another) really depend on time1.

Let us discuss in some details the unnatural behaviours of the geodesic model, in order
to motivate better some of the studies of this paper:

(i) energetic behaviour: if one thinks of the curve µ as a quantity of mass which is
moving from an initial to a final configuration, one sees that in the Riemannian
action (1.1) the term g is a function of the whole µ, which means that if some
masses arrive at their destination and then stop, we continue to pay a cost for
them until all the process is over.

We try to clarify the situation with an enligthening example: let us take as
initial measure µ0 = δx0 , while µ1 = mδx1 + (1 − m)δx2 is the final one, with
|x0 − x1| = λ|x0 − x2| and λ > 1 (see Figure 2).

x

x

x0

1

2

Figure 2. The set
⋃

t∈[0,1]

spt(µ(t)) for the curve connecting δx0 and mδx1 +

(1−m)δx2 .

The curve of measures given by

µ(t) =





mδ(1−t)x0+tx1
+ (1−m)δ(1−λt)x0+λtx2

, t ∈ [0, 1/λ],

mδ(1−t)x0+tx1
+ (1−m)δx2 , t ∈ [1/λ, 1],

1This is made precise in a recent paper by Bernot and Figalli, where a dynamical extension of the latter
model is given: once again, this is equivalent (under appropriate hypothesis on the initial measure µ0) to
the other formulations (we refer to [8] for more details)
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is made of two atoms, moving with the same speed v = |x0 − x1|: this means that
the atom moving towards x2 and carrying the mass (1−m), arrives before than the
other and then it stops. So one sees that for a path like this, the energy given by
(1.1) is unnatural, because of the fact that through the coefficient g, we continue
to pay the mass (1−m) also after it is stopped.

On the contrary, it would be desiderable to have a model in which g takes into
account only the contribution of the moving masses, which for the present example
is simply given by the following curve of sub-probabilities

ν(t) =
{

µ(t), t ∈ [0, 1/λ],
mδ(1−t)x0+tx1

, t ∈ [1/λ, 1].

This is the reason why, after presenting general action functionals over metric spaces
(a topic that we think can be of independent interest), in Section 6 we introduce
functionals of the type

(1.2) ˜̀
g(ν, µ) =

∫ 1

0
g(ν(t))|µ′|(t) dt,

where now ν is a curve of sub-probability measures, which represents the mass
that is effectively moving, while the pairing (ν, µ) is an evolution pairing: roughly
speaking, this means that the moving part ν is always less than the total mass µ
and that the mass reaching its final destination, given by the difference µ− ν, has
to grow in time (for the precise definition of evolution pairings, see Section 6);

(ii) scaling behaviour: it is not clear how to choose the exponent q ∈ [1,+∞]. This
choice influences the energy `g(µ) through the term |µ′|, which we expect to repre-
sent the velocity of the particles: as far as one can see with the following example,
it seems that the right choice should be q = +∞. Indeed, let us take µ0 and µ1 as
before and consider the curve

µ(t) = mδ(1−t)x0+tx1
+ (1−m)δ(1−t)x0+tx2

, t ∈ [0, 1],

then it is easily seen that its metric derivative is given by

|µ′|(t) = wq(µ0, µ1) = (m|x0 − x1|q + (1−m)|x0 − x2|q)
1
q ,

(in fact µ is actually a constant speed geodesic in the Wasserstein space Wq, see
[2] for details).

Anyway the latter quantity, namely the metric derivative, has little to do with
the velocities of the single atoms, but it is rather a mass-weigthed sum of these two
quantities: the situation changes if we take q = +∞, in fact now the quantity

|µ′|(t) = max{|x0 − x1|, |x0 − x2|},
has the right scaling property. So we are led to study functionals (1.2) also for the
case of W∞.

The plan of the paper is as follows: in Section 2 we recall some basic facts about spaces
of curves in a general metric space; Section 3 is devoted to some preliminary semicontinuity



CURVES OF MINIMAL ACTION OVER METRIC SPACES 5

results about affine functionals, while Section 4 contains a semicontinuity result for general
action functionals over metric spaces. Then (Section 5) we turn to the problem of finding
a curve of minimal action joining two given points: we recall the known results and give
ours. We specialize (Section 6) the previous results to the case of Wasserstein spaces
Wq(Ω) with q ∈ [1,+∞], introducing the concept of evolution pairing and discussing some
of its features. Finally, the last part of the work (Section 7) is devoted to the proof of the
existence of minimal evolution pairings, for functionals of the type (1.2).

2. Curves in a metric space

In this paper we will always assume that (X, d) is a Polish space (i.e. a complete and
separable metric space), with a given Borel measure m. Moreover I = [0, T ] ⊂ R is a
compact interval, while by L 1 we mean the 1-dimensional Lebesgue measure.

Let us start recalling some basic facts about spaces of curves in a metric space.

2.1. Summable curves. For p ∈ [1,+∞), we say that a curve µ : I → X belongs to
Lp(I;X) if µ is Borel measurable and

∫

I
d(µ(t), x0)p dt < +∞,

where x0 is a point of X (clearly the definition does not depend on the choice of x0, by
means of the triangular inequality).

As in the Euclidean case, we call Lp(I;X) the space of equivalence classes (with respect
to the relation equivalence L 1-a.e.) of functions in Lp(I;X): this is clearly a metric space,
endowed with the distance

dp(µ1, µ2) =
(∫

I
d(µ1(t), µ2(t))p dt

)1/p

.

In the case of p = +∞, we define L∞(I;X) as the space of all curves µ : I → X such that

ess sup
t∈I

d(µ(t), x0) < +∞,

for some x0 ∈ X and again L∞(I;X) is the space of equivalence classes, with the distance

d∞(µ1, µ2) = ess sup
t∈I

d(µ1(t), µ2(t)).

Remark 1. It is straightforward to see that if X is separable and complete, then for every
p ∈ [1,+∞) the metric space Lp(I;X) is complete and separable, too. Moreover, as in
the Euclidean case, it is possible to show that if µn → µ in Lp(I;X), then there exists a
subsequence {µnk

}k∈N converging to µ L 1-a.e.
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2.2. Continuous curves. Let C(I;X) be the space of all continuous curves inX, endowed
with the topology of the uniform convergence, that is

µn → µ in C(I;X) ⇐⇒ d∞(µn, µ) = max
t∈I

d(µn(t), µ(t)) → 0.

We recall that by the metric derivative of µ ∈ C(I;X) at the point t ∈ I, we mean

(2.3) |µ′|(t) = lim
s→t

d(µ(t), µ(s))
|s− t| ,

every time this limit exists.

Remark 2. When X = RN with the usual Euclidean distance, if µ : I → X is differentiable
at the point t0, then

|µ′|(t0) =
∥∥∥∥
dµ

dt
(t0)

∥∥∥∥ ,
that is |µ′|(t0) is nothing but the Euclidean norm of the derivative of µ at the point t0.

For p ∈ [1,+∞], we consider the space ACp(I;X) ⊂ C(I;X), defined as follows: we say
that µ ∈ ACp(I;X) if there exists some ψ ∈ Lp(I;R) such that

(2.4) d(µ(t), µ(s)) ≤
∫ t

s
ψ(r) dr, for every s, t ∈ I such that s ≤ t.

The elements of ACp(I;X) are called absolutely continuous curves with finite p-energy (or
simply absolutely continuous curves, in the case p = 1) and they have the nice property of
being almost everywhere metric differentiable, as the following Theorem states (see [4] for
the proof in the Lipschitz case and [2] for the general case).

Theorem 1. If µ ∈ ACp(I;X), with p ≥ 1, then the limit (2.3) exists for L 1-a.e. t ∈ I.
The function t 7→ |µ′|(t) belongs to Lp(I;R) and

d(µ(t), µ(s)) ≤
∫ t

s
|µ′|(r) dr, for every s, t ∈ I such that s ≤ t.

Moreover, we have
|µ′|(t) ≤ ψ(t), for L 1-a.e. t ∈ I,

for every ψ ∈ Lp(I;R) for which (2.4) holds.

Next result is a sort of Poincaré-Wirtinger inequality with a trace term, that holds true
for curves in an arbitrary metric space.

Theorem 2 (Poincaré-Wirtinger Inequality). If µ ∈ ACp(I;X), with p ∈ (1,+∞), then
for every x0 ∈ X we get

(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤ C(p, T )




(∫ T

0
|µ′|p(t) dt

) 1
p

+
|d(µ(0), x0)− d(µ(T ), x0)|

T
p−1

p




+ ξp(µ(0), µ(T );x0),

(2.5)
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where the constant C(p, T ) is given by

(2.6) C(p, T ) =
pT

2π(p− 1)
1
p

sin
(
π
p− 1
p

)
,

while the function ξp : (X ×X)×X → R is defined by

ξp(x, y; z) =





(
T

p+ 1
d(x, z)p+1 − d(y, z)p+1

d(x, z)− d(y, z)

) 1
p

, d(x, z) 6= d(y, z),

T
1
pd(x, z), d(x, z) = d(y, z).

In particular, if µ ∈ ACp(I;X) happens to be a loop with base point x0 ∈ X, that is
µ(0) = µ(T ) = x0, then

(2.7)
(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤ C(p, T )
(∫ T

0
|µ′|p(t) dt

) 1
p

.

Proof. The proof is the same as in [17], except for the fact that we allow the exponent p
to vary in (1,+∞): we simply use the Poincaré-Wirtinger inequality for real functions of
one variable.

Let us set

f(t) = d(µ(t), x0)−
(

1− t

T

)
d(µ(0), x0)− t

T
d(µ(T ), x0), t ∈ [0, T ],

then it is easily seen that f ∈ ACp(I;R), with f(0) = f(T ) = 0, so for it the standard
Poincaré-Wirtinger inequality holds true, that is

∫ T

0
|f(t)|p dt ≤ C(p, T )

∫ T

0
|f ′(t)|p dt,

where the best constant C(p, T ) is given by (2.6) (see [18] for example, where the best
constant is computed, together with the function that realizes it).

We now observe that

|f ′(t)| ≤ |µ′|(t) +
1
T
|d(µ(0), x0)− d(µ(T ), x0)|, L 1-a.e. t ∈ I,

so that Minkowski inequality yields

(2.8)
(∫ T

0
|f(t)|p dt

) 1
p

≤ C(p, T )




(∫ T

0
|µ′|p(t) dt

) 1
p

+
|d(µ(0), x0)− d(µ(T ), x0)|

T
p−1

p


 .

Moreover, by Minkowski inequality again we get
(∫ T

0
d(µ(t), x0)p dt

) 1
p

≤
(∫ T

0
|f(t)|p dt

) 1
p

+
(∫ T

0

((
1− t

T

)
d(µ(0), x0) +

t

T
d(µ(T ), x0)

)p

dt

) 1
p

.
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Computing the integral in the right-hand side and using (2.8), we obtain (2.5). ¤

Another remarkable property of curves in ACp is that they can be reparametrized by
arc length. Precisely, we have the following (see [4] for a proof):

Lemma 1 (Reparametrization Lemma). For p ∈ [1,+∞], suppose µ ∈ ACp(I;X) and let

`(µ) =
∫

I
|µ′|(t) dt.

Then there exists a strictly increasing left-continuous function

t : [0, `(µ)] → [0, T ],

such that:
(1) µ = µ ◦ t ∈ AC∞([0, `(µ)];X);
(2) µ([0, `(µ)]) = µ([0, T ]);
(3) |µ′|(t) = 1, for L 1-a.e. t ∈ [0, `(µ)].

Remark 3. The time rescaling t given by the previous Lemma is defined as

t(s) = inf
{
t ∈ [0, T ] : s =

∫ t

0
|µ′|(r) dr

}
.

We remark that in general this is not a continuous function: the important fact is that at
its discontinuity points, the jumps of t corresponds to time intervals on which µ is constant.

In the sequel, we consider the space ACp(I;X) endowed with the following notion of
convergence: we say that {µn}n∈N ⊂ ACp(I;X) weakly converges to some µ ∈ ACp(I;X),
and we write µn ⇀ µ, if

(i) lim
n→∞max

t∈I
d(µn(t), µ(t)) = 0;

(ii) the sequence {|µ′n|}n∈N is equi-bounded in Lp(I;R) and equi-integrable;
where we intend that, if p > 1, then the equi-integrability condition is redundant.

Finally, we recall a compactness criterion for the space of continuous curves C(I;X).

Theorem 3 (Ascoli-Arzelà). Given a sequence {µn}n∈N ⊂ C(I;X), this is relatively com-
pact if and only if the following are satisfied:

(i) {µn}n∈N is equi-continuous;
(ii) for every t ∈ I, the set {µn(t) : n ∈ N} is relatively compact in X.

2.3. Curves of bounded variation. Given a curve µ : I → X, it is possibile to define
its pointwise total variation

(2.9) Var(µ; I) = sup

{
k∑

i=0

d(µ(ti), µ(ti+1)) : 0 = t0 < t1 < · · · < tk < tk+1 = T

}
,
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where the supremum is taken over all finite partitions of I and we say that µ is rectifiable
if Var(µ) < +∞. For absolutely continuous curves, we have the following (see [4] for a
proof):

Lemma 2. Let p ∈ [1,+∞] and µ ∈ ACp(I;X); then it holds

(2.10) Var(µ; I) =
∫

I
|µ′|(t) dt.

In particular, every µ ∈ ACp(I;X) is rectifiable.

We now want to introduce the space of curves of bounded variation: we essentially follow
[16].

Let µ : I → X be a Borel measurable curve, we say that µ is approximately continuous
at t ∈ I if there exists x ∈ X such that all the sets

Xε = {s ∈ I : d(µ(s), x) > ε},
have 0-density at t, that is

lim
r→0+

L 1((t− r, t+ r) ∩Xε)
2r

= 0, for every ε > 0.

The point x if exists is unique and is called approximate limit of µ in t. We indicate with
Sµ the set of points where the approximate limit does not exist: we point out that there
holds L 1(Sµ) = 0 (see [16], Theorem 2.9.13).

Remark 4. If µ ∈ L1(I;X), then we have

L 1((t− r, t+ r) ∩Xε)
2r

≤ 1
ε
−
t+r∫

t−r

d(µ(s), x) ds,

so that every Lebesgue point of µ is in particular a point of approximate continuity.

Given a Borel measurable curve µ : I → X, we can also define its left and right approx-
imate limits: for every t ∈ I, we define x = µ+(t) if the sets

{s ∈ I : t < s, d(µ(s), x) > ε}
have 0-density at t for every ε > 0. Similarly we set x = µ−(t) if

{s ∈ I : t > s, d(µ(s), x) > ε}
have 0-density at t for every ε > 0.

Remark 5. It is easily seen that for every t ∈ I \ Sµ, the limits µ+(t) and µ−(t) exist and
they coincide with the approximate limit of µ in t.
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Let µ ∈ L1(I;X) be a summable curve, we define its essential total variation as

(2.11) |Dµ|(I) = sup

{
k∑

i=0

d(µ(ti), µ(ti+1)) : 0 < t0 < · · · < tk+1 < T

}
,

where the supremum is taken over all finite partitions of I \ Sµ.
We then say that µ has bounded variation if |Dµ|(I) < +∞ and we write BV (I;X) to

indicate the space of curves of bounded variation, with values in the metric space X. This
is clearly a metric space, too, with distance given by

dBV (µ1, µ2) = d1(µ1, µ2) +
∣∣|Dµ1|(I)− |Dµ2|(I)

∣∣, µ1, µ2 ∈ BV (I;X).

Curves of bounded variation posses left and right approximate limits at every point: we
give a proof of this fact (see also [16], 2.5.16).

Lemma 3. If µ ∈ BV (I;X), then for every t ∈ (0, T ) there exist µ+(t) and µ−(t). Fur-
thermore, the same conclusion holds for µ+(0) and µ−(T ).

Proof. We define the nondecreasing function

V (t) = |Dµ|([0, t]), t ∈ I,
then for every t ∈ I we have V (t−) ≤ V (t) ≤ V (t+), where

V (t−) = sup{V (s) : s < t} = lim
s→t−

V (s),

V (t+) = inf{V (s) : s > t} = lim
s→t+

V (s).

We just prove that µ−(t) exists for every t ∈ (0, T ]: the other part of the statement can be
proved in the same way. Indeed, observe that

d(µ(s1), µ(s2)) ≤ V (t−)− V (s1), s1, s2 ∈ I \ Sµ such that s1 < s2 < t,

which implies, by means of the completeness of X, the existence of

lim
s→t−

µ(s) ∈ X.

This has to coincide with the approximate limit µ−(t), concluding the proof. ¤

Remark 6. For every p ∈ [1,+∞], if µ ∈ ACp(I;X) we have

|Dµ|(I) = Var(µ; I).

In particular, from Lemma 2 it follows that ACp(I;X) ⊂ BV (I;X) and

|Dµ|(I) =
∫

I
|µ′|(t) dt, µ ∈ ACp(I;X).

We conclude this section with a metric variation of a classical compactness result on BV
functions: the proof can be found in [1] (see Theorem 2.4).



CURVES OF MINIMAL ACTION OVER METRIC SPACES 11

Theorem 4. Let (X, d) be a locally compact, complete and separable metric space. Let
{µn}n∈N ⊂ BV (I;X) be a sequence such that

sup
n∈N

dBV (µn, x0) < +∞,

for some x0 ∈ X. Then there exists a subsequence {µnk
}k∈N converging in L1(I;X) to

µ ∈ BV (I;X) and
|Dµ|(I) ≤ lim inf

k→+∞
|Dµnk

|(I).

3. Some preliminary semicontinuity results

We start with the following basic result:

Lemma 4. Let p ∈ [1,+∞], for every measurable subset B ⊂ I such that L 1(B) > 0, the
functional

(3.1) µ 7→
∫

B
|µ′|(t) dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology.

Proof. Let B ⊂ I be any measurable subset such that L 1(B) > 0 and take {µn}n∈N ⊂
ACp(I;X) a sequence weakly converging to µ ∈ ACp(I;X). We can assume that the
sequence {|µ′n|}n∈N ⊂ Lp(I;R) weakly (∗-weakly if p = +∞) converges to a function
v ∈ Lp(I;R).

Then we have

d(µ(s), µ(t)) = lim
n→+∞ d(µn(s), µn(t)) ≤ lim

n→∞

∫ t

s
|µ′n|(r) dr

=
∫ t

s
v(r) dr, for every s, t ∈ I such that s ≤ t,

which clearly shows by Lebesgue Differentiation Theorem that

(3.2) |µ′|(t) ≤ v(t), for L 1-a.e. t ∈ I.
This in turn implies that∫

B
|µ′|(t) dt ≤

∫

B
v(t) dt = lim inf

n→∞

∫

B
|µ′n|(t) dt,

which gives the lower semicontinuity of (3.1). ¤

With a little extra work, Lemma 4 can be improved as follows:

Lemma 5. Let p ∈ [1,+∞], for every measurable subset B ⊂ I such that L 1(B) > 0 and
every measurable function ϕ : B → R+, the functional

(3.3) µ 7→
∫

B
ϕ(t)|µ′|(t) dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology.
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Proof. Take {µn}n∈N ⊂ ACp(I;X) a sequence weakly converging to µ ∈ ACp(I;X) and
call v ∈ Lp(I;R) the weak (∗-weak if p = +∞) limit of {|µ′n|}n∈N. If we assume for the
moment that ϕ ∈ L∞(B;R+), using (3.2) we get

(3.4)
∫

B
ϕ(t)|µ′|(t) dt ≤

∫

B
ϕ(t)v(t) dt = lim

n→∞

∫

B
ϕ(t)|µ′n|(t) dt.

In the general case of ϕ measurable and positive, it is enough to define the sequence

ϕk(t) = min {ϕ(t), k}, t ∈ B,
so that ϕk ∈ L∞(B;R+) and applying (3.4), we get

lim inf
n→∞

∫

B
ϕ(t)|µ′n|(t) dt ≥ lim inf

n→∞

∫

B
ϕk(t)|µ′n|(t) dt

≥
∫

B
ϕk(t)|µ′|(t)dt, k ∈ N.

If we now let k → ∞, we can conclude the proof, by means of the monotone convergence
theorem. ¤

Finally, we get a semicontinuity result for general affine functionals. Before this, we
need the following definition.

Definition 1. A function h : I ×X → R ∪ {+∞} is said to be a Carathéodory integrand
if the following are satisfied:

(i) h is L 1 ⊗m-measurable;
(ii) h(t, ·) is finite and continuous on X, for L 1-a.e. t ∈ I.

Lemma 6. Let a : I × X → R and b : I × X → R+ be two Carathéodory integrands. If
p ∈ [1,+∞], then for every measurable subset B ⊂ I such that L 1(B) > 0, the functional

(3.5) µ 7→
∫

B

[
a(t, µ(t)) + b(t, µ(t))|µ′|(t)] dt, µ ∈ ACp(I;X),

is sequentially l.s.c on ACp(I;X), with respect to the weak topology.

Proof. The sequential semicontinuity of the term

µ 7→
∫

B
a(t, µ(t)) dt, µ ∈ ACp(I;X),

is straightforward: indeed, it is just a consequence of Fatou Lemma. For the term

µ 7→
∫

B
b(t, µ(t))|µ′|(t) dt, µ ∈ ACp(I;X),

we observe that, taken a weakly convergent sequence µn ⇀ µ, if we set

gk
n(t) = min{k, b(t, µn(t))}, t ∈ B,

and
gk(t) = min{k, b(t, µ(t))}, t ∈ B,
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by means of the assumptions on b, we have that gk
n → gk L 1-a.e. on B. Moreover,

{gk
n}n∈N is equi-bounded in L∞(B;R): Lebesgue Dominated Convergence Theorem implies

that gk
n → gk strongly, let’s say in L

p
p−1 (B;R), while |µ′n| weakly (∗-weakly if p = +∞)

converges in Lp(B;R), so that

lim inf
n→∞

∫

B
gk
n(t)|µ′n|(t) dt = lim inf

n→∞

∫

B
gk(t)|µ′n|(t) dt.

This, Lemma 5 and the positivity of b imply∫

B
gk(t)|µ′|(t) dt ≤ lim inf

n→∞

∫

B
gk(t)|µ′n|(t) dt ≤ lim inf

n→∞

∫

B
b(t, µn(t))|µ′n| dt,

which gives the thesis, passing to the limit as k →∞. ¤

We recall that a metric space is said to be proper if its closed balls are compact: in
particular, a proper metric space is locally compact (the converse is not true) . As we
will see when dealing with absolutely continuous curves over a space which is not proper
(Section 5 and 7), it is of interest also the case of a metric space with different topologies
defined on it. First of all, we introduce some definitions.

Definition 2. Let (X, τ) be a topological space and d : X ×X → [0,+∞) a metric. We
say that d is lower semicontinuous on (X, τ) if the following holds: whenever xn

τ→ x and
yn

τ→ y, then
d(x, y) ≤ lim inf

n→∞ d(xn, yn).

Definition 3. Given a space X with two different metrics d1 and d2, we set X1 = (X, d1)
and X2 = (X, d2). We indicate with |µ′|d1 and |µ′|d2 the metric derivative with respect to
d1 and d2, respectively. Then a sequence {µn}n∈N ⊂ ACp(I;X1) is said to be d2-weakly
convergent if:

(i) max
t∈I

d2(µn(t), µ(t)) → 0;

(ii) the sequence {|µ′n|d1}n∈N is equi-bounded in Lp(I;R) and equi-integrable.

We indicate this convergence by µn
d2⇀ µ.

Then we can prove the following slight modification of Lemma 6.

Lemma 7. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. For every pair of Carathéodory integrands a : I×X2 → R, b : I×X2 →
R+ and every measurable subset B ⊂ I such that L 1(B) > 0, the functional defined on
ACp(I;X1) by

µ 7→
∫

B
[a(t, µ(t)) + b(t, µ(t))|µ′|d1(t)] dt,

is sequentially l.s.c. with respect to the d2-weak convergence.
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Proof. First of all, we have to show that ACp(I;X1) is closed with respect to the d2-

weak convergence. Indeed if {µn}n∈N ⊂ ACp(I;X1) is such that µn
d2⇀ µ, then by the

semicontinuity of d1 we get

d1(µ(s), µ(t)) ≤ lim inf
n→∞ d1(µn(s), µn(t)) ≤ lim inf

n→∞

∫ t

s
|µ′n|d1(r) dr,

so that we can still prove property (3.2), that is

(3.6) |µ′|d1(t) ≤ v(t), for L 1-a.e. t ∈ I,
where as above v ∈ Lp(I;R) is the weak (∗-weak if p = +∞) limit of {|µ′n|d1}n∈N: this
precisely means that µ ∈ ACp(I;X1).

As in the previous case, the key fact is to show that the functional defined on ACp(I;X1)
by

µ 7→
∫

B
|µ′|d1(t) dt,

is sequentially l.s.c. with respect to the d2-weak convergence. At this end, it is sufficient to
use (3.6): then we can repeat the proof of Lemma 5 and Lemma 6 and get the thesis. ¤

4. Semicontinuous action functionals over ACp(I;X)

We now want to consider a generic action functional defined on ACp(I;X) of the form

(4.1) A(µ) =
∫

I
f(t, µ(t), |µ′|(t)) dt, µ ∈ ACp(I;X),

for some function f : I ×X × R→ R ∪ {+∞}, satisfying the following:

(4.2) f is L 1 ⊗m⊗L 1-measurable;

(4.3) f(t, ·, ·) is l.s.c. on X × R for every t ∈ I;
(4.4) f(t, x, ·) is convex and increasing on R for every t ∈ I, x ∈ X.
We provide some semicontinuity results for such functionals, with respect to the weak
convergence in ACp(I;X).

Remark 7. Let us briefly discuss the monotonicity assumption for the function f : at a first
glance, assuming (4.4) could be seem restrictive. Anyway, if you think to the Euclidean
case X = RN , then g(z) = f(t, x, z) would be a function of the modulus |z|, that has to be
(if we want to ensure the l.s.c. of functional (4.1)) convex in z. Clearly, this is possible if
and only if g is convex and increasing (see Figure 3).

As usual, the idea is to seek affine approximations of the function f , satisfying (4.2), (4.3)
and (4.4): if this can be done, then semicontinuity of A will result from the application of
Lemma 6.

The following is a crucial result: it is just an adaptation of a classical result, valid in an
Euclidean setting (see Lemma 2.2.4 and Remark 2.2.5 of [11]).
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Figure 3. A convex function of |z|, that is not convex in z

Lemma 8. Let f : I×X×R→ R∪{+∞} be a function satisfying assumptions (4.2), (4.3)
and (4.4). Assume further that for every t ∈ I the function f(t, ·, ·) satifies the following
condition:

there exists a function θ : R→ R such that

lim
z→+∞

θ(z)
z

= +∞ and f(t, x, z) ≥ θ(|z|), for every x ∈ X, z ∈ R.(4.5)

Then, there exist two sequences of bounded Carathéodory integrands an : I ×X → R and
bn : I ×X → [0,+∞), such that

f(t, x, z) = sup
n∈N

{an(t, x) + bn(t, x)z}, for every t ∈ I, x ∈ X, z ∈ R.

The next general Lemma will be useful in proving our semicontinuity result: the proof
can be found in [11] (Lemma 2.3.2).

Lemma 9. Let Ω ⊂ RN be any measurable subset and g, {gn}n∈N be measurable functions
from Ω to R ∪ {+∞}, such that g = sup {gn : n ∈ N} and gn ≥ ϕ, for a suitable
ϕ ∈ L1(Ω;R). Then

∫

Ω
g(x) dx = sup

{∑

i∈I

∫

Bi

gi(x) dx

}
,

where the supremum is taken over all finite partitions of Ω, by pairwise disjoint measurable
subsets Bi.

The semicontinuity result now reads as follows:

Theorem 5. Let p ∈ [1,+∞] and let f : I ×X ×R→ R ∪ {+∞} be a function satisfying
(4.2), (4.3) and (4.4). Assume further that there exist two positive constants α, β, a point
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x ∈ X and a function h ∈ L1(I;R) such that f satisfies the following estimate

(4.6) f(t, x, z) ≥ −α|z| − βd(x, x)r − h(t),

for some r > 0. Then the functional

(4.7) A(µ) =
∫

I
f(t, µ(t), |µ′|(t)) dt, µ ∈ ACp(I;X),

is well-defined, takes its values in R ∪ {+∞} and is sequentially l.s.c. on ACp(I;X), with
respect to the weak topology.

Proof. The fact that the functional A is well-defined and takes its values in R ∪ {+∞},
follows from (4.6).

We now proceed to the proof of the sequential lower semicontinuity: let us first assume
that f verifies hypothesis (4.5) of Lemma 8, so that we have

f(t, x, z) = sup {an(t, x) + bn(t, x)z : n ∈ N},
for suitable sequences of bounded Carathéodory integrands {an}n∈N and {bn}n∈N, with
bn ≥ 0. By Lemma 9, to conclude the proof we can restrict ourselves to prove that for
every n ∈ N and B ⊂ I measurable, the functional

µ 7→
∫

B
[an(t, µ(t)) + bn(t, µ(t))|µ′|(t)] dt, µ ∈ ACp(I;X),

is sequentially l.s.c. on ACp(I;X), with respect to the weak topology: this is just a
straightforward consequence of Lemma 6.

We now remove assumption (4.5) on f and assume for the moment that f ≥ 0. Let
{µn}n∈N ⊂ ACp(I;X) be a weakly convergent sequence: {|µ′n|}n∈N is equi-integrable, so
there exists a function θ : R→ R such that

lim
t→∞

θ(t)
t

= +∞ and sup
n∈N

∫

I
θ(|µ′n|(t)) dt ≤ 1.

For every ε > 0, we set
fε(t, x, z) = f(t, x, z) + εθ(|z|),

so that fε verifies hypothesis (4.5) of Lemma 8 and we can thus obtain∫

I
f(t, µ(t), |µ′|(t)) dt ≤

∫
fε(t, µ(t), |µ′|(t)) dt

≤ lim inf
n→∞

∫

I
fε(t, µn(t), |µ′n|(t)) dt

= ε lim inf
n→∞

∫

I
θ(|µ′n|)(t) dt+ lim inf

n→∞

∫

I
f(t, µn(t), |µ′n|(t)) dt

≤ ε+ lim inf
n→∞

∫

I
f(t, µn(t), |µ′n|(t)) dt,

proving the semicontinuity of A, by the arbitrariness of ε.
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Finally, in the general case of a function f satisfying (4.6), we proceed as follows:
for every k ∈ N, we define

fk(t, x, z) = max{f(t, x, z),−k},
and, taken a weakly convergent sequence {µn} ⊂ ACp(I;X) such that µn ⇀ µ, we set

gn(t) = α|µ′n|(t) + βd(µn(t), x)r + h(t), t ∈ I,
Ak,n = {t ∈ I : f(t, µn(t), |µ′n|(t)) < −k}.

We first observe that
Ak,n ⊂ {t ∈ I : gn(t) > k},

and that gn is equi-integrable, so we obtain

(4.8) lim
k→∞

∫

Ak,n

gn(t) dt = 0, for every n ∈ N.

Being fk bounded from below and using (4.6), we get
∫

I
f(t, µ(t), |µ′|(t)) dt ≤

∫

I
fk(t, µ(t), |µ′|(t)) dt

≤ lim inf
n→∞

∫

I
fk(t, µn(t), |µ′n|(t)) dt

= lim inf
n→∞

[∫

I
f(t, µn(t), |µ′n|(t)) dt−

∫

Ak,n

f(t, µn(t), |µ′n|(t)) dt
]

≤ lim inf
n→∞

∫

I
f(t, µn(t), |µ′n|(t)) dt+ lim sup

n→∞

∫

Ak,n

gn(t) dt,

and this, taking the limit as k → ∞ and taking into account (4.8), implies the semiconti-
nuity of A. ¤

Remark 8. In the case p > 1, we can weaken assumption (4.6) of Theorem 5, by requiring
that there exist two positive constants α, β, a point x ∈ X and a function h ∈ L1(I;R)
such that

f(t, x, z) ≥ −α|z|m − βd(x, x)r − h(t),

for m < p and for r > 0. As in the Euclidean case, we cannot expect any semicontinuity
result, if the previous is verified with m = p > 1 (see [19]).

Note that Theorem 5 can be used to prove lower semicontinuity of geodesic functionals,
that is functionals of the type

µ 7→
∫

I
g(µ(t))|µ′|(t) dt, µ ∈ Lip(I;X) = AC∞(I;X),

with g : X → [0,+∞] lower semicontinuous, which have been studied in detail in the
papers [3] and [10].
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We conclude this section, giving some refinements of Theorem 5 which we will need in
the sequel.

The first is the following: (X, dX) and (Y, dY ) are two Polish spaces and we have an
integral functional of the type

(4.9) A(ν, µ) =
∫

I
f(t, ν(t), |µ′|X(t)) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X),

where |µ′|X stands for the metric derivative of µ, with respect to the metric dX . It is
straightforward to extend the semicontinuity result of Theorem 5 to this case.

Theorem 6. Fix p ∈ [1,+∞] and let f : I × Y × R→ R ∪ {+∞} be a function satisfying
hypotheses (4.2), (4.3) and (4.4). Suppose moreover that there exist two positive constants
α, β, a point y ∈ Y and h ∈ L1(I;R) such that f satisfies the following estimate

(4.10) f(t, y, z) ≥ −α|z| − βdY (y, y)− h(t).

Then the functional A : L1(I;Y )×ACp(I;X) → R∪{+∞} defined by (4.9) is well defined
and sequentially lower semicontinuous on L1(I;Y )×ACp(I;X), with respect to the strong
topology on L1(I;Y ) and the weak topology on ACp(I;X).

In the case of a metric space equipped with two different metrics, the following result
will be useful: the proof is the same of Theorem 5, with Lemma 7 in place of Lemma 6.

Theorem 7. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. Let f : I ×X2 × R → R ∪ {+∞} be a function satisfying (4.2), (4.3)
and (4.4). Assume further that there exist two positive constants α, β, a point x ∈ X and
a function h ∈ L1(I;R) such that f satisfies the following estimate

(4.11) f(t, x, z) ≥ −α|z| − βd2(x, x)r − h(t),

for some r > 0. Then the functional

(4.12) A(µ) =
∫

I
f(t, µ(t), |µ′|d1(t)) dt, µ ∈ ACp(I;X1),

is well-defined, takes its values in R∪{+∞} and is sequentially l.s.c. on ACp(I;X1), with
respect to the d2-weak convergence.

Finally, we can easily obtain a variant of Theorem 6 for spaces endowed with two metrics:
this is motivated by applications to metric spaces which are not proper.

Theorem 8. Let X1 = (X, d1) and X2 = (X, d2) be two Polish spaces such that d1 is lower
semicontinuous on X2.

Fix p ∈ [1,+∞]. Let f : I × Y × R → R ∪ {+∞} be a function satisfying hypotheses
(4.2), (4.3) and (4.4). Suppose moreover that there exist two positive constants α, β, a
point y ∈ Y and h ∈ L1(I;R) such that f satisfies the following estimate

(4.13) f(t, y, z) ≥ −α|z| − βdY (y, y)− h(t).
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Then the functional

(4.14) A(ν, µ) =
∫

I
f(t, ν(t), |µ′|d1(t)) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X1),

is well-defined, takes its values in R ∪ {+∞} and is sequentially l.s.c. on L1(I;Y ) ×
ACp(I;X1), with respect to the strong topology on L1(I;Y ) and the d2-weak topology on
ACp(I;X1).

5. Minimizing curves

We now turn to the problem of finding a curve minimizing the general cost functional

(5.1) A(µ) =
∫

I
f(t, µ(t), |µ′|(t)) dt,

among all curves µ ∈ ACp(I;X) with fixed endpoints. For every p ∈ [1,+∞] and x0, x1 ∈
X, we define

(5.2) Cp(x0, x1) = {µ ∈ ACp(I;X) : µ(0) = x0, µ(T ) = x1}.

Remark 9. In the particular case of f(t, µ, |µ′|) = |µ′|, the problem of minimizing the length
functional

`(µ) =
∫ T

0
|µ′| dt,

in Cp(x0, x1) admits a solution, which is given by every geodesic in X joining x0 and x1,
provided that Cp(x0, x1) 6= ∅ and that X is proper (see [4]).

In [10] the authors consider the case with f(t, µ, |µ′|) = g(µ)|µ′|: as already pointed out,
this can now be seen as the problem of finding the geodesics in X, with the respect to some
sort of Riemannian distance, whose coefficient is given by g. They prove the following:

Theorem 9. Let X be a proper metric space. If g : X → [0,+∞] is a lower semicontinuos
function, bounded from below by a constant c > 0, we define

`g(µ) =
∫

I
g(µ(t))|µ′|(t) dt, µ ∈ AC∞(I;X).

Then for every pair of points x0, x1 ∈ X, the problem of minimizing `g in C∞(x0, x1) admits
a solution, provided that there exists µ ∈ C∞(x0, x1) such that `g(µ) is finite.

The proof is based on the Reparametrization Lemma, the functional considered being
invariant under reparametrization. Observe that this clearly also implies that

inf
Cp(x0,x1)

∫

I
g(µ(t))|µ′|(t) dt = inf

C∞(x0,x1)

∫

I
g(µ(t))|µ′|(t) dt.

For the case of absolutely continuous curve with finite p-energy, with the general cost
functional A given by (5.1), our existence result reads as follows.



20 LORENZO BRASCO

Theorem 10. Fix p ∈ (1,+∞). Let X be a proper metric space and let f : I ×X × R→
R ∪ {+∞} be a function satisfying (4.2), (4.3) and (4.4). Assume further that there exist
a point x ∈ X and a function h ∈ L1(I;R) such that

(5.3) f(t, x, z) ≥ |z|p − β(t)d(x, x)r − h(t),

where 0 < r < p and β ∈ L
p

p−r (I;R+). Then for every pair of points x0, x1 ∈ X, the
problem of minimizing A in Cp(x0, x1) admits a solution, provided that there exists µ ∈
Cp(x0, x1) with finite A.

Proof. Let {µn}n∈N ⊂ ACp(I;X) be some minimizing sequence, we can suppose that, up
to a subsequence, there exists M such that

A(µn) ≤M, for every n ∈ N.
Thanks to the assumptions on f , we immediately obtain that the sequence {|µ′n|}n∈N is
equi-bounded in Lp(I;R). Indeed, it is enough to use Poincaré-Wirtinger inequality (2.5)

∫

I
d(µn(t), x)p dt ≤ C

∫

I
|µ′n|(t)p dt+A,

with A depending only on x and the enpoints of µn, which are fixed. Then we observe that
for every ε > 0, applying Young inequality, we get

∫

I
β(t)d(µn(t), x)r dt ≤

(
1− r

p

)
ε

r
r−p

∫

I
β(t)

p
p−r dt+

r

p
ε

∫

I
d(µn(t), x)p dt,

so that, if we now set

C̃(ε) =
(

1− r

p

)
ε

r
r−p

∫

I
β(t)

p
p−r dt+

∫

I
h(t) dt+

r

p
Aε,

then condition (5.3) implies

M ≥ A(µn) ≥
(

1− r

p
Cε

) ∫

I
|µ′n|p(t) dt− C̃(ε).

With a suitable choice of ε, we obtain the boundedness of {|µ′n|}n∈N.

This in turn implies that the minimizing sequence is equi-Hölder continuous: in fact by
the very definition of absolutely continuous curve and Hölder inequality, we get

d(µn(t), µn(s)) ≤
∫ t

s
|µ′n|(r) dr ≤ |t− s| p−1

p

(∫

I
|µ′n|p(t) dt

) 1
p

≤ C|t− s| p−1
p , for every n ∈ N, t, s ∈ I.

Moreover, this sequence is also pointwise relatively compact, because X is proper and there
holds

d(µn(t), x0) = d(µn(t), µn(0)) ≤
∫ t

0
|µ′n|(t) dt ≤ C, for every n ∈ N, t ∈ I.
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We can thus apply Theorem 3 to obtain that µn ⇀ µ, up to subsequences, where
µ ∈ Cp(x0, x1).

Finally, observe that condition (5.3) implies (4.6), so that by means of Theorem 5 the
functional A is l.s.c. on ACp(I;X), leading us to

A(µ) ≤ lim inf
n→∞ A(µn) = inf

µ∈Cp(x0,x1)
A(µ),

which concludes the proof. ¤

Remark 10. If condition (5.3) is verified with r = p, then Theorem 10 is still valid, provided
that the time interval [0, T ] is small enough, that is we have to guarantee that T is such
that

C(p, T ) < 1,
where C(p, T ) is the constant given by (2.6) in Poincaré-Wirtinger inequality.

The hypothesis that (X, d) is proper can be a very severe one and it could be relaxed
somehow, by substituting it with the request that on X there exists another topology τ ,
such that:

(τ1) there exists a metric dτ ≤ d which metrizes the topology τ on τ -compact sets;
(τ2) closed balls of (X, d) are τ -compact;
(τ3) d is l.s.c. with respect to τ .

This is a quite standard procedure, which can be also found in [4], for example. A typical
case in which this occurs is when X is the dual of a separable Banach space, equipped with
the norm topology: in this case, τ is just the ∗-weak topology.

The previous considerations lead us to the following result.

Theorem 11. Let p ∈ (1,+∞) and X1 = (X, d) be a Polish space. Suppose that X can
be equipped with another topology τ such that X2 = (X, τ) satisfies properties (τ1)-(τ3).
Let f : I ×X2 × R → R ∪ {+∞} be a function satisfying (4.2), (4.3) and (4.4). Assume
further that there exist a point x ∈ X and a function h ∈ L1(I;R) such that

(5.4) f(t, x, z) ≥ |z|p − β(t)dτ (x, x)r − h(t),

where 0 < r < p and β ∈ L
p

p−r (I;R+). Then for every pair of points x0, x1 ∈ X, the
problem of minimizing

A =
∫

I
f(t, µ(t), |µ′|d(t)) dt,

in Cp(x0, x1) admits a solution, provided that there exists µ ∈ Cp(x0, x1) with finite A.

Proof. Taking a minimizing sequence {µn}n∈N ⊂ ACp(I;X1) and arguing as in the proof
of Theorem 10 (one has to use (5.4) in combination with −dτ ≥ −d), we can obtain that
{|µ′n|d}n∈N is equi-bounded in Lp(I;R), which in turn implies that for every n ∈ N and
every t ∈ I we have

µn(t) ∈ {x ∈ X : d(x, x0) ≤ R} = B,
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for a suitable R > 0. We now use the fact that (B, dτ ) is a compact metric space and that,
due to the fact that dτ ≤ d, we have {µn}n∈N ∈ ACp(I;B) ∩ACp(I;X1).

Then we apply Ascoli-Arzelà Theorem again: this implies that {µn}n∈N dτ -weakly con-
verges.

It remains to observe that by Theorem 7 the functional A is lower semicontinuous with
respect to the dτ -weak convergence, thus concluding the proof. ¤

Remark 11. We remark that, despite being more general than the case with X proper,
Theorem 11 does not cover some interesting and changelling cases: for example, it does
not apply to the case of a functional of the type

(5.5) A(µ) =
∫

I
[|µ′|p(t)− β(t)d(µ(t), x0)r] dt,

because of the fact that, when equipped with the weaker topology τ , the term

µ(t) 7→ −
∫

I
β(t)d(µ(t), x0)r dt,

is not τ -l.s.c., due to the lower semicontinuity of d with respect to this topology and to the
presence of the − sign.

A remarkable particular case of (5.5) is the following: we choose (X, d) = (W2(RN ), w2),
the 2-Wasserstein metric space (see next Section for more details), and we take the action

A(µ) =
1
2

∫

I

[|µ′|2(t)− w2(µ(t), ν0)2
]
dt, µ ∈ AC2(I;W2(RN )),

for a given reference probability measure ν0.
An action like this is considered in the recent paper [17] by Gangbo, Nguyen and Tu-

dorascu: the main interest of such a study is that one can write down explicitely an
Euler-Lagrange equation for the action A and this coincides with the so-called Euler-
Monge-Ampère system.

Moreover, when N = 1, the minimizers of this action, connecting two prescribed mea-
sures µ0 and µ1, do exist (provided that T < π) and they are solutions of the 1-dimensional
Euler-Poisson system.

We point out that in the present case, neither Theorem 10 nor Theorem 11 can be
applied, in fact W2(RN ) is not locally compact, which implies that it is not proper. Then
one can think to equip W2(RN ) with the narrow topology given by the duality with Cb(RN )
(continuous and bounded functions): the fact that w2 is only l.s.c. with respect to this
topology, as already observed, implies that the objective functional is no more l.s.c. with
respect to this weaker topology.

We thank the referee for having pointed out to us reference [17].

6. The case of measures: evolution pairings

We now leave the general setting of metric spaces, particularizing the results of the
previous sections to the case of action functionals over the space of probability measures.
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In particular, we will consider action functionals of the following type (see Theorem 6 and
8):

A(ν, µ) =
∫

I
f(t, ν(t), |µ′|X(t)) dt, (ν, µ) ∈ L1(I;Y )×ACp(I;X),

where X and Y will be suitable spaces of measures which will be made precise in a while.
The main application we have in mind is to provide a dynamical formulation of mass

transportation problems, specifically in the context of branching transport (see the Intro-
duction for more details).

We warn the reader that this section contains some technicalities which can be avoided
at a first reading: the main fact is the definition of evolution pairing (see Definition 4).

Let (Ω, d) be a generic locally compact, complete and separable metric space, not nec-
essarily a subset of RN . From now on, we make the following choice for the two Polish
spaces X and Y :

• given q ∈ [1,+∞], X is the q-Wasserstein metric space Wq(Ω), that is the space of
all Borel probability measures µ over Ω, having finite q-momentum

‖d(·, x0)‖Lq(Ω,µ) < +∞,

(by means of the triangular inequality, property above does not depend on the
choice of x0 ∈ Ω), equipped with the q-Kantorovich-Rubinstein-Wasserstein dis-
tance

wq(µ1, µ2) = min
γ∈Γ(µ1,µ2)

‖d(·, ·)‖Lq(Ω×Ω,γ), µ1, µ2 ∈ Wq(Ω),

where Γ(µ1, µ2) is the set of transport plans between µ1 and µ2, that is

Γ(µ1, µ2) = {γ ∈ P(Ω× Ω) : (π1)]γ = µ1, (π2)]γ = µ2},
with π1(x, y) = x and π2(x, y) = y.

• Y is the space M+
1 (Ω) of positive finite Radon measures over Ω having total vari-

ation less than or equal to 1, equipped with the distance

(6.1) d(ν1, ν2) =
∞∑

k=1

1
2k

∣∣∣∣
∫

Ω
ϕk d(ν1 − ν2)

∣∣∣∣ , ν1, ν2 ∈M+
1 (Ω),

where {ϕk}k∈N is a dense subset of {ϕ ∈ C0(Ω) : ϕ ≥ 0, ‖ϕ‖∞ ≤ 1}, and as usual
C0(Ω) is the completion of the space of compactly supported continuous functions
over Ω, with respect to the sup-norm ‖ · ‖∞.

It is well known that d metrizes the ∗-weak convergence on the space M+
1 (Ω).

Moreover, M+
1 (Ω) is a compact metric space, so that d is bounded, which means

that

(6.2) L0(I;M+
1 (Ω)) := {ν : I →M+

1 (Ω) : ν is Borel measurable} = L∞(I;M+
1 (Ω)).
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Remark 12. We recall that Wq(Ω) is a Polish space which is neither compact nor locally
compact, unless Ω itself is compact and q 6= +∞. Moreover, for every q > 1, as an easy
consequence of Hölder inequality we have

w1(µ1, µ2) ≤ wq(µ1, µ2), µ1, µ2 ∈ Wq(Ω),

and in the case Ω is bounded, then it is possible to obtain the reverse inequalities

wq(µ1, µ2) ≤ diam(Ω)
q−1

q w1(µ1, µ2)
1
q , µ1, µ2 ∈ Wq(Ω),

for every 1 < q <∞.
For the basic properties of mass transportation problems and Wasserstein spaces, we

refer to [2] and [24]: a fairly complete treatment of the supremal mass transportation
problem, that is the one corresponding to w∞, can be found in [15]. Finally, we want to
point out the reference [21], where an application of the space W∞(Ω) is given.

It is clear that by means of Stone-Weierstrass Theorem, we can take the functions ϕk

to be Lipschitz in the definition (6.1). So, for our purposes it is better to work with the
following modified distance

(6.3) d(ν1, ν2) =
∞∑

k=1

1
2kαk

∣∣∣∣
∫

Ω
ϕk d(ν1 − ν2)

∣∣∣∣ ,

where αk = 1 + Lip(ϕk). This distance still metrizes the ∗-weak convergence on M+
1 (Ω)

and it can be compared with wq. In fact, we have the following:

Lemma 10. For every µ1, µ2 ∈ Wq(Ω), there holds d(µ1, µ2) ≤ wq(µ1, µ2).

Proof. It is clearly sufficient to prove the thesis in the case q = 1. We recall the duality
formula of Monge-Kantorovich problem with cost c(x, y) = d(x, y), which reads as (see
Theorem 1.14 of [24], for example)

min
γ∈Γ(µ1,µ2)

∫

Ω×Ω
d(x, y) dγ(x, y) = sup

ϕ∈Lip1(Ω)

∫

Ω
ϕ(x) d(µ1(x)− µ2(x)),

where Lip1(Ω) is the space of 1-Lipschitz functions over Ω. Then, for every µ1, µ2 ∈ Wq(Ω)
we have∣∣∣∣

∫

Ω
ϕk(x) d(µ1(x)− µ2(x))

∣∣∣∣ ≤ αk sup
ϕ∈Lip1(Ω)

∫

Ω
ϕ(x) d(µ1(x)− µ2(x)) = αk w1(µ1, µ2),

being Lip(ϕk/αk) ≤ 1, so that multiplying by 2−kα−1
k and summing up, we get

d(µ1, µ2) ≤
∞∑

k=1

1
2k
w1(µ1, µ2) = w1(µ1, µ2),

proving the assertion. ¤
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Remark 13. By Lemma 10, we obtain for every p ∈ [1,+∞] the inclusion ACp(I;Wq(Ω)) ⊂
ACp(I;M+

1 (Ω)), with

(6.4) |µ′|d(t) ≤ |µ′|wq(t), L 1-a.e. t ∈ I, µ ∈ ACp(I;Wq(Ω)).

Remark 14. It is worthwile to point out that if p = q ∈ [1,+∞), then the elements of
ACp(I;Wp(Ω)) can be completely characterized in terms of those of ACp(I; Ω). Roughly
speaking, the idea is that defining the evaluation map

et : C(I; Ω) → Ω
σ 7→ σ(t)

then for every probability measure Q ∈ P(C(I; Ω)) such that Q(C(I; Ω) \ACp(I; Ω)) = 0,
the push-forward of Q through et defines a curve of probability measures, that is

(6.5) µ(t) := (et)]Q ∈ ACp(I;Wp(Ω)),

which additionally satisfies

(6.6) |µ′|(t) ≤ ‖|σ′|(t)‖(Lp(C(I;X));Q), for L 1-a.e. t ∈ I;
conversely, given µ ∈ ACp(I;Wp(Ω)), then we can construct Q ∈ P(C(I; Ω)) which is
concentrated on ACp(I; Ω) and such that (6.5) is valid and equality holds in (6.6).

We point out that no compactness properties of Ω are needed for these results to hold:
see [20], Theorem 4 and 5, for more details.

We now introduce the key concept of evolution pairing, which formalizes the idea of
associating to every curve of probability measures, a curve which describes the mass that
is effectively moving.

Definition 4. Let (ν, µ) ∈ L0(I;M+
1 (Ω)) × ACp(I;Wq(Ω)) be two curves of measures,

such that the following are satisfied:
(E1) ν(t) ≤ µ(t) in the sense of measures, for L 1-a.e. t ∈ I;
(E2) µ(t)−ν(t) is monotone nondecreasing, that is: there exists an L 1-negligible subset

M ⊂ I such that

µ(s)− ν(s) ≤ µ(t)− ν(t), for every s, t ∈ I \M, with s < t;

Then we say that (ν, µ) is an evolution pairing and we write ν ¹ µ.

Remark 15. We can think of ν as the moving mass, while µ is the total mass: in this sense,
condition (E2) means that the mass that has actually reached its final destination must
increase, while (E1) simply states that the moving mass is always less than or equal to the
total mass.

Observe also that the increasing monotonicity of the arrived mass µ − ν, implies the
monotonicity of the quantity

t 7→ |ν(t)|(Ω),
while it does not imply that ν has a monotone decreasing (in the sense of measures)
behaviour. As an easy counterexample, let us take

σ1(t) = (1− t)x0 + tx1, t ∈ [0, 1],
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and

σ2(t) =
{

(1− 2t)x0 + 2tx2, t ∈ [0, 1/2],
x2, t ∈ [1/2, 1],

and consider the curve of probability measures

µ(t) = mδσ1(t) + (1−m)δσ2(t), t ∈ [0, 1],

joining µ0 = δx0 and µ1 = mδx1 + (1 −m)δx2 , with x0, x1, x2 ∈ RN pairwise distinct and
m ∈ (0, 1). If we take

ν(t) =
{

µ(t), t ∈ [0, 1/2],
mδσ1(t), t ∈ [1/2, 1]

then it is easy to verify that ν ¹ µ, but

ν(t+ h) 6≤ ν(t), t ∈ I, h > 0.

This example should also clarify that in general the curve ν has no continuity properties.

We exploit the more relevant consequence of evolution pairings in the next Lemma.

Lemma 11. Let (ν, µ) ∈ L0(I;M+
1 (Ω)) × ACp(I;Wq(Ω)) be an evolution pairing. Then

ν ∈ BV (I;M+
1 (Ω)) and in particular we get

(6.7) |Dν|d(I) ≤ |DΦ|(I) +
∫

I
|µ′|wq(t) dt,

where Φ : I → R+ is the monotone nondecreasing function defined by

Φ(t) = d(ν(t), µ(t)).

Proof. Before proving the main assertion, we first collect some easy consequences of the
definition of evolution pairing:

if the pair (ν, µ) satisfies (E1), this means that
∫

Ω
ϕk dν(t) ≤

∫

Ω
ϕk dµ(t), for L 1-a.e.t ∈ I, for every k ∈ N.

If we now take ν̃ ∈M+
1 (Ω) such that ν̃ ≤ ν(t) for L 1-a.e. t ∈ I, we obtain

0 ≤
∫

Ω
ϕk d(ν(t)− ν̃) ≤

∫

Ω
ϕk d(µ(t)− ν̃),

and so, multiplying by 2−kα−1
k and summing up, we get

(6.8) d(ν(t), ν̃) ≤ d(µ(t), ν̃), for L 1-a.e. t ∈ I.
By hypothesis (E2), we also get

0 ≤
∫

Ω
ϕk d(µ(s)− ν(s)) ≤

∫

Ω
ϕk d(µ(t)− ν(t)), for every s < t ∈ I \M,

that is Φ(t) = d(ν(t), µ(t)) is a real monotone nondecreasing function of a real variable.
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To obtain that ν ∈ BV (I;M+
1 (Ω)), it is sufficient to write

ν(t)− ν(s) = [ν(t)− µ(t)]− [ν(s)− µ(s)] + [µ(t)− µ(s)], s, t ∈ I \M,

and then we use again (E2), so that for every ϕk∣∣∣∣
∫

Ω
ϕk d(ν(t)− ν(s))

∣∣∣∣ ≤ Φ(t)− Φ(s) +
∣∣∣∣
∫

Ω
ϕk d(µ(t)− µ(s))

∣∣∣∣ , for every s < t ∈ I \M.

Again, multiplying by 2−kα−1
k and summing up, we get

(6.9) d(ν(t), ν(s)) ≤ Φ(t)− Φ(s) + d(µ(t), µ(s)), s < t ∈ I \M.

Finally, we observe that

|DΦ|(I) = lim
t→T−

Φ(t)− lim
t→0+

Φ(t) = Φ−(T )− Φ+(0),

then it follows from (6.9) and the definition of essential total variation that
k∑

i=0

d(ν(ti), ν(ti+1)) ≤
k∑

i=0

[Φ(ti+1)− Φ(ti)] +
k∑

i=0

d(µ(ti), µ(ti+1))

≤ Φ−(T )− Φ+(0) +
∫

I
|µ′|wq(t) dt,

for every finite partitions 0 < t0 < · · · < tk+1 < 1 of I \ (M ∪ Sν), proving (6.7). ¤

Remark 16. We observe that ν+(0) and ν−(T ) are well defined, thanks to Lemma 3.
Moreover, by the very definition of evolution pairings, we have that if ν ¹ µ, then ν+(0) ≤
µ(0) and ν−(T ) ≤ µ(T ), in the sense of measures. Indeed, let us prove the first: suppose
that there exist ϕ ∈ C0(Ω;R+) and ε > 0 such that∫

Ω
ϕ dν+(0) =

∫

Ω
ϕ dµ(0) + 4ε.

We can clearly assume that ‖ϕ‖∞ ≤ 1 and we observe that t 7→ ∫
Ω ϕ dµ(t) is a uniformly

continuous real function of one variable: then there exists r0 < T such that∫

Ω
ϕ dµ(t) <

∫

Ω
ϕ dµ(0) + ε, t ∈ (0, r0),

which implies∫

Ω
ϕ dν(t) ≤

∫

Ω
ϕ dµ(t) <

∫

Ω
ϕ dν+(0)− 3ε, for L 1-a.e. t ∈ (0, r0).

Then

3ε <
∫

Ω
ϕ dν+(0)−

∫

Ω
ϕ dν(t) =

∫

Ω
ϕ d(ν+(0)− ν(t)), for L 1-a.e. t ∈ (0, r0),

and if ϕm is such that ‖ϕ− ϕm‖∞ < ε, the previous yields

ε(3− |ν+(0)− ν(t)|(Ω)) ≤
∫

Ω
ϕm d(ν+(0)− ν(t)), for L 1-a.e. t ∈ (0, r0).
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It is enough to observe that ν+(0)− ν(t) is a signed Radon measure, with total variation
less than or equal to 2, so that we simply obtain

ε ≤
∫

Ω
ϕm d(ν+(0)− ν(t)), for L 1-a.e. t ∈ (0, r0),

and multiplying the terms on both sides by c = 2−mα−1
m , we have

c ε ≤ d(ν(t), ν+(0)), for L 1-a.e. t ∈ (0, r0).

So, if we denote
X+

ε (0) = {t > 0 : d(ν(t), ν+(0)) > c ε},
we have proved (up to an L 1-negligible set) the inclusion (0, r0) ⊂ X+

ε (0): this in turn
contradicts the fact that, by definition of ν+(0), the set X+

ε (0) must have 0-density.
The fact that ν−(T ) ≤ µ(T ) can be proved in the same way.

As already observed, the space Wq(Ω) is not locally compact, which in particular means
that it is not proper. However, this is not a great trouble, as far as we can endow it with
the weaker topology given by d and conditions (τ1)-(τ3) of Section 5 are satisfied. This is
the content of the next Lemma.

Lemma 12. The distance wq is d-lower semicontinuous. Moreover, all bounded sets in
Wq(Ω) are d-relatively compact.

Proof. The proof is the same as in [10] (Lemma 4.2 and Lemma 4.3), the only difference
being the fact that d metrizes the ∗-weak convergence, instead of the narrow convergence,
which is the one induced by the duality with the space Cb(Ω) of continuous and bounded
functions over Ω. Anyway, having assumed that Ω is locally compact, we have that at the
level of probability measures, ∗-weak and narrow convergence are actually equivalent:

let us take {µ1
n}n∈N, {µ2

n}n∈N ⊂ Wq(Ω) such that

µi
n

∗
⇀ µi ∈ Wq(Ω), i = 1, 2.

The two sequences are equi-tight (here we use the equivalence between ∗-weak and narrow
convergence), so that if for every n ∈ N we take γn ∈ Γ(µ1

n, µ
2
n) to be an optimal transport

plan, that is
wq(µ1

n, µ
2
n) = ‖d(·, ·)‖(Lq(Ω×Ω);γn),

then the equi-tightness of the marginals, implies that of {γn}n∈N ⊂ P(Ω × Ω). Thus by
Prokhorov Theorem we have that, up to a subsequence, γn narrowly converges to γ and
clearly γ ∈ Γ(µ1, µ2). This yields

wq(µ1, µ2) ≤ ‖d(·, ·)‖(Lq(Ω×Ω);γ) ≤ lim inf
n→∞ ‖d(·, ·)‖(Lq(Ω×Ω);γn)

= lim inf
n→∞ wq(µ1

n, µ
2
n),

proving the first statement.
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For the second statement, let us take x0 ∈ Ω: we observe that setting

B = {µ ∈ Wq(Ω) : wq(µ, δx0) < R},
then every {µn}n∈N ⊂ B is equi-tight, by means of Markov Inequality: using again
Prokhorov Theorem, we get that µn

∗
⇀ µ (up to subsequences). It remains to observe

that µ has finite q-momentum: this is just a consequence of the lower semicontinuity of
the functional

µ 7→ wq(µ, δx0),
thus concluding the proof. ¤

7. Minimizing evolution pairings

Let p ∈ [1,+∞], for every pair µ0, µ1 ∈ Wq(Ω), we define the following subset of
L0(I;M+

1 (Ω))×ACp(I;Wq(Ω)):

Dp,q(µ0, µ1) = {ν ¹ µ : µ(0) = µ0, µ(T ) = µ1}.
We are interested in the existence of an evolution pairing (ν, µ) minimizing

(7.1) A(ν, µ) =
∫

I
f(t, ν(t), |µ′|wq(t)) dt,

over the set Dp,q(µ0, µ1): at this end, we have to prove that the latter set is closed, with
respect to some reasonable topology.

Lemma 13. Let {(νn, µn)} ⊂ Dp,q(µ0, µ1) be such that νn → ν L 1-a.e. and µn
d
⇀ µ, then

(ν, µ) ∈ Dp,q(µ0, µ1).

Proof. We first show that (ν, µ) is an evolution pairing: for every k ∈ N we have∫

Ω
ϕk dν(t) = lim

n→∞

∫

Ω
ϕk dνn(t) ≤ lim

n→∞

∫

Ω
ϕk dµn(t)

=
∫

Ω
ϕk dµ(t), for L 1-a.e. t ∈ I,

so (ν, µ) verifies (E1).

Then let Mn ⊂ I be the L 1-negligible set corresponding to νn in (E2) and define
M =

⋃
n∈NMn: this is still an L 1-negligible subset of I, on which we have

∫

Ω
ϕk d(µ(s)− ν(s)) = lim

n→∞

∫

Ω
ϕk d(µn(s)− νn(s))

≤ lim
n→∞

∫

Ω
ϕk d(µn(t)− νn(t))

=
∫

Ω
ϕk d(µ(t)− ν(t)), for every s, t ∈ I \M, such that s < t,

proving property (E2).
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It remains to show that µ ∈ ACp(I;Wq(Ω)) and that it still verifies the conditions
on the endpoints: the first is just a consequence of the fact that wq is d-l.s.c., while the
second straightforwardly follows from the uniform convergence, together with the fact that
µn(0) = µ0 and µn(T ) = µ1, for every n ∈ N. ¤

We are in position to obtain the existence of a minimal evolution pairing, under the
usual appropriate growth conditions on the integrand f .

Theorem 12. Fix p ∈ (1,+∞). Let f : I ×M1
+(Ω) × R → R ∪ {+∞} be a function

satisfying hypotheses (4.2), (4.3) and (4.4). Assume further that there exist a measure
ν ∈M+

1 (Ω) and a summable function h such that

(7.2) f(t, ν, z) ≥ |z|p − β(t)d(ν, ν)r − h(t),

where 0 < r < p and β ∈ L p
p−r (I;R+). Then for every pair µ0, µ1 ∈ Wq(Ω), the minimiza-

tion problem
inf

(ν,µ)∈Dp,q(µ0,µ1)
A(ν, µ),

admits a solution, provided there exists (ν, µ) ∈ Dp,q(µ0, µ1) with finite A, where A is
defined by (7.1).

Proof. Take a minimizing sequence {(νn, µn)}n∈N ⊂ Dp,q(µ0, µ1) and suppose that

A(νn, µn) ≤ L, for every n ∈ N.
We consider on Wq(Ω) the weaker topology given by d: then we can repeat the same
arguments of Theorem 11, in combination with Lemma 12, to get the d-weak convergence
in ACp(I;Wq(Ω)) (up to a subsequence) of {µn}n∈N to µ̂ ∈ ACp(I;Wq(Ω)).

In order to get the convergence of {νn}n∈N, we want to use Theorem 4: indeed, it is
trivially true that

sup
n∈N

∫

I
d(νn(t), 0) dt < +∞.

If we want to obtain a bound on the total variations, we can simply use the fact that every
(νn, µn) is an evolution pairing: if we indicate

Φn(t) = d(νn(t), µn(t)), t ∈ I, n ∈ N,
we have already seen that these are monotone increasing functions. Moreover, they are
equi-bounded, because of the boundedness of d.

This, together with Lemma 11, implies that {νn}n∈N ∈ BV (I;M+
1 (Ω)), with a uniform

bound on the total variations. Indeed we have

sup
n∈N

|Dνn|d(I) ≤ sup
n∈N

(Φ−n (T )− Φ+
n (0)) + sup

n∈N

∫

I
|µ′n|wq(t) dt < +∞,

where we have used that
sup

∫

I
|µ′n|wq(t) dt < +∞,
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by the first part of the proof.
So we can apply Theorem 4, obtaining the convergence of {νn}n∈N in L1(I;M+

1 (Ω)) (up
to a subsequence) to a curve ν̂ ∈ BV (I;M+

1 (Ω)).
It only remains to observe that, by Lemma 13 we have (ν̂, µ̂) ∈ Dp,q(µ0, µ1), while by

Theorem 8 the functional A is lower semicontinuous, so that

A(ν̂, µ̂) ≤ lim inf
n→+∞A(νn, µn) = min

(ν,µ)∈Dp,q(µ0,µ1)
A(ν, µ),

concluding the proof. ¤

Finally, as far as the case p = +∞ is concerned, we can prove an analogue of Theorem
9: namely, we have the existence of an evolution pairing minimizing a geodesic functional

(7.3) ˜̀
g(ν, µ) =

∫

I
g(ν(t))|µ′|wq(t) dt.

Theorem 13. Suppose that g : M+
1 (Ω) → [0,+∞] is lower semicontinuous and bounded

from below by a positive constant c > 0. Then for every µ0, µ1 ∈ Wq(Ω), the problem

inf
(ν,µ)∈D∞,q(µ0,µ1)

˜̀
g(ν, µ),

admits a solution, provided that there exists an evolution pairing in D∞,q(µ0, µ1), with finite
energy.

Proof. Indeed, taking a minimizing sequence {(νn, µn)}n∈N, it should be clear that it is
sufficient to obtain the convergence of {µn}n∈N: then one can argue as in Theorem 12.

We suppose
˜̀
g(νn, µn) ≤ C,

otherwise the result is trivial.
The functional under consideration is invariant by reparametrization and moreover, we

observe that if ν ¹ µ and µ̃ = µ ◦ t is a reparametrization of µ, then ν ◦ t = ν̃ ¹ µ̃. So up
to reparametrization, we can suppose that

|µ′n|wq(t) ≡ Ln,

then
cLn = c

∫

I
|µ′n|wq(t) dt ≤ ˜̀

g(νn, µn) ≤ C,

giving that {µn}n∈N is equi-Lipschitz (with respect to wq) and

µn(t) ∈ {µ : wq(µ, µ0) ≤ R}, n ∈ N, t ∈ I,
for a suitable R > 0. This implies the d-weak convergence of the sequence, with the same
line of reasoning of Theorem 11.

Then one can conclude by applying the semicontinuity result of Theorem 8. ¤
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