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EIT and the average conductivity
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Abstract. We prove the instability of averages of the conductivity in the inverse boundary value
problem of Calderón, also known as the inverse conductivity problem or EIT.
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1. Introduction

Given a bounded connected open set Ω ∈ Rn, n ≥ 2, with boundary ∂Ω, and given
K ≥ 1, let γ ∈ L∞(Ω) be a function (which we shall call conductivity) such that

0 < K−1 ≤ γ ≤ K , a. e. in Ω . (1.1)

For any ϕ ∈ H1/2(∂Ω), let u ∈ H1(Ω) be the unique weak solution to{
div(γ∇u) = 0 in Ω ,

u = ϕ on ∂Ω .
(1.2)

Let Λγ : H1/2(∂Ω) → H−1/2(∂Ω) be the so–called Dirichlet-to-Neumann map asso-
ciated to the Dirichlet problem (1.2), that is the linear mapping defined by

〈Λγϕ, v|∂Ω〉 =
∫

Ω

γ∇u · ∇v, (1.3)

for every ϕ ∈ H1/2(∂Ω) and every v ∈ H1(Ω), and with u solution to (1.2). Here,
〈·, ·〉 denotes the dual pairing between H1/2(∂Ω) and H−1/2(∂Ω), based on the L2

scalar product. Calderón [6] posed the problem of finding γ given Λγ . This problem
has gained popularity in the last two decades also under the name of EIT (electrical
impedance tomography), see for instance the review articles [7, 5]. At present, it is
known that, when n > 2, Λγ uniquely determines γ if γ is a–priori known to be suffi-
ciently smooth, see the fundamental results by Kohn and Vogelius [13] and Sylvester
and Uhlmann [18], see also, for recent developments, [15]. When n = 2, Astala and
Päivärinta proved that uniqueness holds true with no further assumption, [4].

However it is also well–known that the problem is severely ill–posed, and we refer
to [1] for an account on the available examples of instability and results of conditional
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stability. A rather basic question, [3], which until now has remained unanswered is the
following

Does the average conductivity 1
|Ω|
∫

Ω
γ depend continuously upon Λγ?

In this note we prove, by an explicit example, that the answer to this question is no.
Before stating the result in detail we need some preparation. For the sake of simplic-

ity, we limit ourselves to the case n = 2. For our example, we shall choose Ω = B1(0).
Let us fix two distinct numbers a, b such that

K−1 ≤ a , b ≤ K . (1.4)

let g : R2 → R be the function 1–periodic in x and y separately, such that in the unit
square Q = {(x, y) ∈ R2||x| ≤ 1

2 , |y| ≤
1
2} is defined as follows

g(x, y) =

{
a if xy ≥ 0 ,

b if xy < 0 .
(1.5)

For any positive integer h, we define a conductivity function γh : B1 → R as follows

γh(x, y) =

{
1 if (x, y) ∈ B1 \B 1

2
,

g(hx, hy) if (x, y) ∈ B 1
2

,
(1.6)

here,and in what follows, we denote by Br the disk of radius r centered at the origin.
Next we introduce a further conductivity function γ : B1 → R given by

γ(x, y) =

{
1 if (x, y) ∈ B1 \B 1

2
,√

ab if (x, y) ∈ B 1
2

.
(1.7)

We can now state our main Theorem.

Theorem 1.1. We have
lim
h→∞

Λγh
= Λγ , (1.8)

in the L(H1/2(∂B1), H−1/2(∂B1))–norm, whereas

lim
h→∞

∫
B1

γh =
π

4

(
a+ b

2

)
+

3π
4
6= π

4

(√
ab
)

+
3π
4

=
∫
B1

γ . (1.9)

The underlying theme behind this Theorem is the theory of G–convergence initiated
by Spagnolo and De Giorgi [16, 9], see Section 2 for a brief account of the basic facts,
that we shall need, of this theory. Keeping aside, for the moment, the deep nature of
this concept, it suffices to say that the scheme of the proof of Theorem 1.1 will be to
show that

(i) γ is the G–limit of the sequence {γh}, see Proposition 2.5,
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(ii) due to the special geometry and since γ ≡ γh ≡ 1 near ∂B1 we also obtain
Λγh
→ Λγ in the natural operator norm, see Proposition 2.6.

Step (i) is a minor variant of a well–known fact in the theory of homogenization.
Step (ii) seems instead to be new.

It may be worth noticing that (1.9) can be verified directly, but at the same time
it can be derived by the more general observation that the sequence {γh} introduced
above has indeed a limit in the weak∗–topology of L∞(B1) given by

γ∗(x, y) =

{
1 if (x, y) ∈ B1 \B 1

2
,

1
2(a+ b) if (x, y) ∈ B 1

2
.

(1.10)

By the same token, also the sequence { 1
γh
} has a weak∗–limit in L∞(B1), which is

given by
1
γ∗

(x, y) =

{
1 if (x, y) ∈ B1 \B 1

2
,

1
2( 1
a + 1

b ) if (x, y) ∈ B 1
2

.
(1.11)

Therefore, under the same assumptions of Theorem1.1, we also obtain.

Corollary 1.2. For every w ∈ L1(B1) such that
∫
B 1

2

w 6= 0 we have

lim
h→∞

∫
B1

γhw =
∫
B1

γ∗w 6=
∫
B1

γw , (1.12)

and also
lim
h→∞

∫
B1

1
γh
w =

∫
B1

1
γ∗
w 6=

∫
B1

1
γ
w . (1.13)

That is, in particular, for any weight function w ∈ L1(B1) such that w > 0 almost
everywhere in B1, the weighted average of the conductivity γ, or of the resistivity 1

γ ,
does not depend continuously upon the Dirichlet to Neumann map.

In another direction, we recall that a well–known special case of EIT is when it is
a–priori assumed that the conductivity γ has the structure

γ = 1 + (k − 1)χD , (1.14)

where D ⊂⊂ Ω is unknown and k 6= 1, K−1 ≤ k ≤ K is also possibly unknown.
Uniqueness under a–priori topological and smoothness assumptions has been proved
by Isakov [11]. A corresponding stability result has been obtained in [2].

The example provided in Theorem 1.1 shows also that, when the conductivity value
k within the inclusion D is considered as an unknown and no a–priori regularity as-
sumption is made, the measure (area) of the inclusion D is not continuous with respect
to Λγ . In fact we may fix a = 1, b = k > 1 and setting

Dh = {(x, y) ∈ B 1
2
|γh(x, y) = k} , (1.15)

we can represent the conductivity introduced in (1.6) as

γh = 1 + (k − 1)χDh
. (1.16)



4 Giovanni Alessandrini and Elio Cabib

Moreover, setting D = B 1
2

we have that the conductivity given by (1.7) can also be
written as

γ = 1 + (
√
k − 1)χD , (1.17)

and therefore
lim
h→∞

|Dh| =
π

8
6= |D| , (1.18)

where | · | denotes measure.

2. Proof of Theorem 1.1

Let us recall here the basic notions and some important properties of the G-convergence.
A wide literature is available on this subject, we refer for example to the classical pa-
pers [9, 14, 16, 17] and to the books by Jikov, Kozlov and Oleı̆nik [12] and by Dal
Maso [8]. For any given K ≥ 1, and a given a bounded connected open set Ω in Rn,
n ≥ 2, we consider the class of tensors

MK = {σ ∈ L∞(Ω,Mn×n) | K−1|ξ|2 ≤ σ(x)ξ·ξ ≤ K|ξ|2 , for every ξ ∈ Rn , x ∈ Ω} ,
(2.1)

here Mn×n denotes the set of n× n symmetric matrices.

Definition 2.1. A sequence {σh} ⊂ MK is said to G–converge to σ ∈ MK , and we
write σh

G→ σ, if for every f ∈ H−1(Ω) the corresponding sequence {uh} ⊂ H1
0 (Ω) of

solutions to the inhomogeneous problems

− div(σh∇uh) = f in Ω , uh = 0 on ∂Ω , (2.2)

converges weakly in H1
0 (Ω) to the solution u ∈ H1

0 (Ω) of the problem

− div(σ∇u) = f in Ω , u = 0 on ∂Ω . (2.3)

It may be worth recalling, first of all, that the L1
loc-strong convergence implies the

G-convergence, [16, Proposition 5], [17, Remark 11].
It is well known thatMK , with the topology ofG–convergence, is a compact metriz-

able space, [17, Remark 4].
The property of convergence of the energies is also well-known, [17] [8, Theorem

22.9]. More precisely, if σh
G→ σ, then for every f ∈ H−1(Ω) and for every ϕ ∈

H1/2(∂Ω) we have ∫
Ω

σh∇uh · ∇uh →
∫

Ω

σ∇u · ∇u , (2.4)

where uh, u ∈ H1(Ω) are the weak solutions to

− div(σh∇uh) = f in Ω , uh = ϕ on ∂Ω , (2.5)

− div(σ∇u) = f in Ω , u = ϕ on ∂Ω , (2.6)
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respectively.
Another important feature of G–convergence that we shall use is the property of

localization, [12, p. 152] [8, Proposition 22.7]. Namely, if σh
G→ σ, and E is an open

connected subset of Ω then we also have σh|E
G→ σ|E .

We now begin with a Lemma which provides a first connection betweenG–convergence
and convergence of Dirichlet-to-Neumann maps. In what follows, in the case of isotropic
(scalar) conductivities γh, γ, we understand γh

G→ γ if we have γhId G→ γId where Id
denotes the identity matrix.

Lemma 2.2. Let γh, γ ∈ L∞(Ω) , h = 1, 2, . . . satisfy (1.1). Let Λγh
,Λγ be the cor-

responding Dirichlet-to-Neumann maps as defined in (1.3). If γh
G→ γ, then for every

ϕ,ψ ∈ H1/2(∂Ω)
lim
h→∞

〈Λγh
ϕ,ψ〉 = 〈Λγϕ,ψ〉 , (2.7)

Proof. By (1.3) and by the above mentioned convergence of energies (2.4), we have

lim
h→∞

〈Λγh
ϕ,ϕ〉 = 〈Λγϕ,ϕ〉 , for every ϕ ∈ H1/2(∂Ω) , (2.8)

and (2.7) immediately follows by polarization. 2

Let us observe that in general, it is not clear whether from the G–convergence of the
conductivities it does follow the convergence of the Dirichlet-to-Neumann maps in the
strong operator norm.

For the purposes of Theorem 1.1, where we are just interested in obtaining one
example, we shall also assume n = 2, Ω = B1 and that the sequence {γh} is such that
γh ≡ 1 in the annulusB1\B 1

2
. By the localization property, it is evident that if γh

G→ γ,
then we also have γ ≡ 1 in B1 \ B 1

2
. Under such hypotheses we obtain the following

bound.

Lemma 2.3. For every ϕ ∈ H1/2(∂B1), let u be the weak solution to (1.2). There
exists C > 0, only depending on K, such that

‖(Λγh
− Λγ)ϕ‖H−1/2(∂B1) ≤ C

∫
B 1

2

|∇u|2 , (2.9)

Proof. Let uh be the weak solution to (1.2) when γ is replaced with γh. Setting v =
uh − u, we have that v is the weak solution to{

div(γh∇v) = div((γ − γh)∇u) in B1 ,

v = 0 on ∂B1 .
(2.10)

We have

‖(Λγh
− Λγ)ϕ‖2

H−1/2(∂B1) = ‖∂v
∂ν
‖2
H−1/2(∂B1) ≤ c

∫
B1

|∇v|2 , (2.11)
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where ν denotes the exterior unit normal to ∂B1 and c is an absolute constant. On the
other hand,∫

B1

|∇v|2 ≤ K
∫
B1

γh∇v · ∇v ≤ K‖γh − γ‖L∞(B1)

∫
B 1

2

|∇u||∇v| ≤

≤ (K2 − 1)
∫
B 1

2

|∇u||∇v| , (2.12)

and thus, by Schwarz inequality,∫
B1

|∇v|2 ≤ (K2 − 1)2
∫
B 1

2

|∇u|2 . (2.13)

Hence the thesis follows. 2

In the following Lemma, we further restrict our attention to the case when, in addition
to γh ≡ 1 in B1 \ B 1

2
, we also assume γ = 1 + (k − 1)χB 1

2
, where k ∈ [K−1,K] is a

given constant. We shall denote, for every m ∈ Z, ϕm(eiϑ) = eimϑ, ϑ ∈ [0, 2π].

Lemma 2.4. We have

‖(Λγh
− Λγ)ϕm‖H−1/2(∂B1) ≤ C|m|2

−2|m| , for every m ∈ Z , (2.14)

where C > 0 only depends on K.

Proof. It suffices to compute, by separation of variables, the solution um to (1.2) when
ϕ = ϕm and then to apply the previous Lemma 2.3. 2

The proof of Theorem 1.1 will be an immediate consequence of the following two
Propositions.

Proposition 2.5. Let γh, γ be given by (1.6), (1.7), respectively, then

γh
G→ γ . (2.15)

Proof. The starting point is a well–known result in homogenization of checkerboard
composites, due to Dykhne [10], which says that, given the periodic function g intro-
duced in (1.5), the sequence {gh}, defined by gh(x, y) = g(hx, hy), satisfies

gh
G→
√
ab . (2.16)

Consequently, by the localization property, and by the definitions (1.6), (1.7), we de-
duce that

γh|B 1
2

G→ γ|B 1
2
, (2.17)
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on the other hand, we obviously have

γh|B1\B 1
2

G→ γ|B1\B 1
2
. (2.18)

It is also a well–known consequence of the localization property and of compactness,
[12, p. 165], that the separate G–convergence on the two disjoint domains B 1

2
and

B1 \B 1
2

implies the global G–convergence on their union, and (2.15) follows. 2

Proposition 2.6. If we assume γh ≡ 1 in B1 \ B 1
2
, γ = 1 + (k − 1)χB 1

2
, with k ∈

[K−1,K] constant and also γh
G→ γ, then we have

lim
h→∞

‖Λγh
− Λγ‖L(H1/2(∂B1),H−1/2(∂B1)) = 0 . (2.19)

Proof. Being Λγh
, Λγ selfadjoint operators between the dual Hilbert spaces

H1/2(∂B1) , H−1/2(∂B1) , it suffices to prove that

sup{〈(Λγh
− Λγ)ϕ,ϕ〉 |ϕ ∈ H1/2(∂B1) , ‖ϕ‖H1/2(∂B1) = 1} → 0 , (2.20)

as h→∞. Let us fix ϕ ∈ H1/2(∂B1) such that ‖ϕ‖H1/2(∂B1) = 1 . Let

ϕ(eiϑ) =
∑
l∈Z

ale
ilϑ (2.21)

be its Fourier series representation. With no loss of generality, we may assume a0 = 0
and we have ∑

l∈Z
|l||al|2 = ‖ϕ‖2

H1/2(∂B1) = 1 . (2.22)

On the other hand, using again the notation ϕm(eiϑ) = eimϑ we have

〈(Λγh
− Λγ)ϕ,ϕ〉 =

∑
l,m∈Z

alam 〈(Λγh
− Λγ)ϕl, ϕm〉 . (2.23)

For any fixed N ∈ N, we split the summation on the right hand side above as follows

〈(Λγh
− Λγ)ϕ,ϕ〉 = S1 + S2 + S3 , (2.24)

where
S1 =

∑
|l|,|m|≤N

alam 〈(Λγh
− Λγ)ϕl, ϕm〉 , (2.25)

S2 =
∑

|m|≤|l|,|l|>N

alam 〈(Λγh
− Λγ)ϕl, ϕm〉 , (2.26)

S3 =
∑

|l|<|m|,|m|>N

alam 〈(Λγh
− Λγ)ϕl, ϕm〉 , (2.27)
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and we trivially have

|S2 + S3| ≤ 2
∑

|m|≤|l|,|l|>N

|al||am|| 〈(Λγh
− Λγ)ϕl, ϕm〉 | , (2.28)

now, recalling Lemma 2.4, we obtain

|S2 + S3| ≤ C
∑

|m|≤|l|,|l|>N

|al||am|
√
|l|2−|l|

√
|m| ≤

≤ C
∑
|l|>N

|al|
√
|l|2−|l|

∑
|m|≤|l|

|am|
√
|m| ≤

≤ C
∑
|l|>N

|al|
√
|l|2−|l|

(∑
m∈Z
|m||am|2

) 1
2
 ∑

0<|m|≤|l|

1

 1
2

≤

≤ C
∑
|l|>N

|al|
√
|l|2−|l|‖ϕ‖H1/2(∂B1) (2|l|)

1
2 ≤

≤ C N2−N , (2.29)

where it is understood that the constant C > 0 may vary from line to line. Therefore,
for every N ∈ N, we have

| 〈(Λγh
− Λγ)ϕ,ϕ〉 | ≤ |

∑
|l|,|m|≤N

alam 〈(Λγh
− Λγ)ϕl, ϕm〉 |+ C N2−N . (2.30)

Given ε > 0, let N be such that

C N2−N <
ε

2
, (2.31)

next, by Lemma 2.2, there exists H > 0 such that, for every h > H , we have

| 〈(Λγh
− Λγ)ϕl, ϕm〉 | ≤

ε

4N
, for every |l|, |m| ≤ N . (2.32)

Consequently, for every ε > 0, we have found H > 0 such that for every h > H , we
have

| 〈(Λγh
− Λγ)ϕ,ϕ〉 | ≤

ε

4N

∑
|l||≤N

|al|
∑
|m|≤N

|am|+
ε

2
≤

≤ ε

2

 1
2N

 ∑
|l||≤N

1
|l|

(∑
l∈Z
|l||al|2

)
+

 ≤ ε , (2.33)

and (2.19) follows. 2
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