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Abstract. A quasistatic evolution problem for a phase transition model with
nonconvex energy density is considered in terms of Young measures. We focus
on the particular case of a finite number of phases. The new feature consists
in the usage of suitable regularity arguments in order to prove an existence
result for a notion of evolution presenting some improvements with respect to
the one defined in [13], for infinitely many phases.

1. Introduction. In the last years the energetic formulation of rate-independent
processes has been widely used to describe mesoscopic models for the isothermal
stress-induced transformation in crystalline materials (see, e.g. [2], [15], [19], [21],
[25], [26]).

Assuming that the reference configuration of the crystalline material is a bounded
region D ⊂ Rd, the state of the system is determined by two functions: the defor-
mation v : D → RN and the internal variable z : D → Z ⊂ R, which takes into
account the phase transformations of the material.

In our framework, Z is a finite set {1, . . . , q}, representing the different phases
(or phase variants) of the crystal, and z represents the phase distribution of the
material. Then the stored energy of the system can be written as:

W(z, v) :=

∫

D
W (z(x),∇v(x)) dx.

From a physical point of view, the energy functional should also depend on the
temperature, but we omit this dependence since we are dealing with isothermal
transformations. We assume that changes of the phase distribution of the material
lead to an energy dissipation, which is represented by

∫

D
H(znew(x), zold(x)) dx,

where H is a metric distance on Z, zold is the old phase distribution and znew

the new one. Moreover, we require that the admissible deformations satisfy a pre-
scribed time-dependent boundary condition ϕ(t), which we impose on the whole
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boundary ∂D to avoid some technical difficulties; for the same reason, we neglect
any contribution due to external forces.

The natural form for the stored-energy density W is a multiple-well potential
form (see [30], [29], [19], [15], [27], [28]), more in general we deal with a density
which does not satisfy any convexity assumption with respect to z. As in [13], this
lack of convexity gives rise to many technical difficulties, making unsolvable in usual
functional spaces the incremental minimum problems used in the construction of
approximate solutions (see [23] and references therein); it is also responsible for
the formation of microstructures (see, e.g., [19], [22], [31]). To overcome these
difficulties, many authors have proposed to introduce suitable regularizing terms in
the energy functional (see [2], [15], [20]).

To avoid any artificial regularization, in this paper we follow the same approach
of [13], and set the problem in a suitable space of Young measures, where the
incremental minimum problems can be solved.

Since we are assuming that the internal variable takes only a finite number of
values, we are able to give a more explicit description of the Young measure ν which
is going to substitute the pair (z,∇v) in our extended setting: ν can be written as

ν =
q

∑

α=1

bα(δα ⊗ λα),

for suitable families (λα)α of Young measures on D with values in RN×d, and
(bα)α in L∞(D; [0, 1]), with

∑

α bα = 1 a.e. in D. The energy associated to a pair
(b, λ) = (bα, λα)α of family of coefficients and Young measures will be indicated
with 〈W, (b, λ)〉.

In our language, when a Young measure with values in Z is representable by a
function z, the corresponding family of coefficients b is defined by

bα = 1{x∈D : z(x)=α} for every α.

In this case the Young measure representation can be interpreted in the following
way: the material assumes a pure phase distribution, i.e., to every point x is associ-
ated a pure phase α ∈ Z. While in the general case we say that the material has a
mixed phase distribution meaning that at each point x we have a mixture of phases
α with volume fractions bα(x).

Many authors have proposed relaxation of nonconvex problems in terms of Young
measures (see [19], [24], [22], [26], [28], [6], [4], [5], [32]). A key point in the analysis
of our model is related to the relaxation of the dissipation functional.

In order to express the energy dissipated between two times s and t in terms of
Young measures, we need to deal with a measure on D×Z2, coupling the measures
µs and µt associated to s and t respectively. To this end, some authors consider
a measure coupling µs and µt in an “independent” or “non-correlated” way (i.e.,
a measure with disintegration (µx

s ⊗ µx
t )x), or the Wasserstein distance between µs

and µt (see, e.g., [19], [27], and [22]). In these cases, the dissipation distance is
univocally determined by µs and µt (in our language, by (bs

α)α and (bt
α)α).

We adopt, instead, the approach proposed in [7], and followed in [8] and in [13],
based on the notion of compatible systems of Young measures, introduced in [9].
Our discrete setting again allows us to deal with a more explicit expression for these
objects: every compatible system of Young measures µ on D, with time set A and
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values in Z can be written as

µt1...tm
=

∑

(α1,...,αm)

bt1...tm
α1...αm

δ(α1,...,αm),

for a suitable family (bt1...tm

α1...αm
)(α1,...,αm) in L∞(D; [0, 1]) satisfying

∑

(α1,...,αm)

bt1...tm

α1...αm
= 1 a.e. in D,

for every t1 < · · · < tm in A (for the precise definition of compatible systems of
Young measures, see Section 3, p. 6). According to our statistical interpretation,
if we consider two time instants s < t, bst

αβ(x) represents the volume fraction at x
undergoing the phase transition from α at time s to β at time t, and the energy
dissipated between s and t is given by

< H, bst >:=
∑

αβ

H(β, α)

∫

D
bst

αβ(x) dx.

The knowledge of bs
α and bt

β separately does not keep the complete information
about the energy spent in the transition. Indeed, if we consider the case of a
homogeneous phase distribution bs

α = 1/q for every α, and we suppose that the
material undergoes a transition from s to t just permuting the phases and leaving
the volume fractions unchanged, we have bt = bs; hence the dissipation computed
using only bs and bt is 0, while the dissipation energy computed using bst depends
on the permutation and it is different from zero. Therefore, our description seems
to give a more realistic picture of the dissipation phenomenon, if compared with the
one proposed in [19], [27], and [22], which only take into account the contribution
of single time instants.

The aim of the paper is to prove an existence result for the quasistatic evolution
in a time interval [0, T ], defined as a pair (b, λ) formed by a family of coefficients and
a family of Young measures, and satisfying an admissibility condition, a suitably
reformulated stability condition, and an energy balance.

The admissibility condition requires suitable approximation properties by means
of functions which satisfy the boundary condition. Due to the technicalities in
this condition, we do not want to enter in the details of these properties here (see
Section 5); we just point out that they guarantee the Young measure

∑

α bt
αλt

α is
a “Gradient Young Measure”. This means that it can be generated by a sequence
of gradients; in particular it satisfies the conditions proven in the characterization
provided by Kinderlehrer and Pedregal in [18]. Unfortunately, in our case these
properties are not enough to describe the elements of the admissible set of solutions.
Indeed we do not only ask the measure

∑

α bt
αλt

α to be a Gradient Young Measure,
but we also need a connection between the sequence of gradients approximating
∑

α bt
αλt

α, and the sequence of functions approximating bt1...tm for subsequent times
t1 < · · · < tm, in order to preserve some good properties of the set of admissible
solutions.

The stability condition is a global minimality condition satisfied by the evolution
at each time t, but the set of competitors is a proper subset of the admissible pairs;
for this reason we call this condition partial-global stability.

A natural class of tests for the minimality condition can be obtained by modifying
the evolution (b, λ) at time t with permutations of the phase volume fractions (bt

α)α
and the measures (λt

α)α. The competitors (b̃, λ̃) constructed in this way can be
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written in the form (M · bt, M · λt), where M is a q × q matrix with entries equal
to 0 or 1 and exactly one nonzero entry on each column and row: M · bt, M · λt

represent the product of the matrix M and the vectors (bt
α)α, (λt

α)α respectively.
The minimality condition for this class of competitors is as follows

〈W, (bt, λt)〉 ≤ 〈W, (b̃, λ̃)〉+ H(b̃, bt), (1.1)

where

H(b̃, bt) :=
∑

αβ

H(β, α)

∫

D
Mβαbt

α(x) dx.

The class of tests can be enlarged by including the pairs obtained with the trans-
lation of the measures (λ̃β)β by gradients of functions ũ ∈ H1

0 (D; RN ): hence (1.1)
holds true for (b̃, λ̃) = (M · bt, T̃∇ũ(M · λt)). A further extension of the class of
competitors is possible: we are able to prove the minimality not only with respect
to permutations (i.e. Mβα = 0, 1) but also with respect to rearrangements of the
phase volume fractions (bt

α)α and the measures (λt
α)α: in this case M is a measur-

able map on D with values in a special set of q × q real matrices. The elements of
this set are the matrices with nonnegative entries such that the sum of the entries of
each column is 1; in probabilistic language they are called stochastic matrices (see,
e.g., [1, Part 2]), and their entries Mβα represent the probability of a transition
from phase α to phase β. In our model, Mβα(x) is the proportion of the volume
fraction at x originally in phase α undergoing a phase transition to β. According
to the picture described so far, the quantity

H(β, α)Mβα(x)bt
α(x)

can be interpreted as the energy density dissipated at the point x by the phase
transition from α to β. Therefore, the following expression

H(b̃, bt) =
∑

α,β

H(β, α)

∫

D
Mβα(x)bt

α(x) dx

represents the energy which would be dissipated on the whole domain D, if we
performed the microscopic phase transition determined by M .

We observe that any other phase distribution (̃bβ)β can be obtained by the action
of a suitable stochastic matrix: indeed, it is enough to choose Mβα(x) := b̃β(x) for
every α, β.

From the stability property we can deduce a pointwise condition. If we call
active at x the phases α for which bt

α(x) > 0, then the Euler equation for the
internal variable can be written as follows: for a.e. x with active phase α, we have

∫

RN×d

W (α, F ) d(λt
α)x(F ) ≤

∫

RN×d

W (β, F ) d(λt
α)x(F ) + H(β, α),

for every β. According to the above physical picture, this condition can be inter-
preted as an optimality condition of the active phases. Clearly, an Euler equation
for the deformation can be derived as well: it is the classical equilibrium condition
on the stress σ (see Remark 5.5 for the definition of σ).

The energy equality expressed in terms of (b, λ) takes the following form:

〈W, (bt, λt)〉+ DissH(b; 0, t) = W(z0, v0) +

∫ t

0
〈σ(s),∇ϕ̇(s)〉2 ds,
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for every t ∈ [0, T ], where ϕ is the time-dependent boundary condition. The dissi-
pation DissH(b; 0, t) is defined by

DissH(b; 0, t) := sup
k

∑

i=1

∑

αβ

H(β, α)

∫

D
b

si−1si

αβ (x) dx,

where the supremum is taken over all partitions 0 = s0 < · · · < sk = t of the
interval [0, t].

The proof of the existence theorem (Theorem 6.3) follows the classical scheme
of time-discretization, resolution of incremental minimum problems, and passage to
the limit in the sequence of approximate solutions.

The main new feature concerns the choice of the solutions to the discretized
minimum problems. In the spirit of [11], we use the Ekeland Principle to choose
minimizers satisfying special approximability properties. Then the regularity results
for quasi-minima of integral functionals (see [16]) are used to prove a uniform bound
on the moments of order 2r > 2 of the selected minimizers, and consequently of
the approximate solutions (bt

n, λt
n). As a by-product of this selection, we get the

continuity of the functional

(bt
n, λt

n) *→ 〈W, (bt
n, λt

n)〉.

Thanks to this continuity, we are able to obtain in the limit the stability condition
and the energy equality written above, which improve the notion of quasistatic
evolution proposed in [13]. Under weaker assumptions on W than in [13], we can
obtain a better notion of stability, since the minimality property is now satisfied
with a quite large set of competitors including all possible rearrangements of the
phase distribution. Moreover we can obtain not only an upper energy estimate as
in [13], but a complete energy balance.

One technical point in the proof of the stability condition is the approximation
of the right hand-side of (1.1) by integrals corresponding to functions satisfying
the prescribed boundary condition. This is done by adapting to our problem the
classical Riemann-Lebesgue Lemma.

The proof of the lower energy estimate requires a more delicate argument than
in the standard case (see e.g. [15, Step 5, p. 7]). Usually the proof of this estimate
is based on a suitable minimality property guaranteed by the stability condition.
In our case, due to the restriction of the set of competitors in the partial-global
stability, we can only prove a weaker version of this minimality property, using
the continuity provided by the regularity argument. This fact makes more delicate
the last step of the proof, where we need to approximate a Lebesgue integral with
Riemann sums.

The outline of this paper is as follows. In Section 2 and 3 we provide some
mathematical preliminaries and technical tools. In Section 4 we fix the setting
of the problem. In Section 5 we describe the admissible set where we look for the
quasistatic evolution, which is defined in Section 6. Section 7 is devoted to the proof
of the existence theorem, and finally in Section 8 we derive the Euler equations for
the partial-stability condition.

2. Mathematical preliminaries. The symbol 1B indicates the characteristic func-
tion of a subset B of Rd. The Lebesgue measure on Rd, d ≥ 1, is denoted by Ld; we
sometimes use the notation |E| for the Lebesgue measure of a measurable subset
E of Rd. The Borel σ-algebra on D is denoted by B(D). For 1 ≤ p ≤ +∞, ‖ · ‖p
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is the usual norm on Lp, while W 1,p(D; RN ) denotes the usual Sobolev space of
all Lp functions from an open domain D ⊆ Rd into RN with Lp first derivatives.
We indicate W 1,2(D; RN ) with H1(D; RN ). The symbol 〈·, ·〉2 denotes the duality
product in L2. Given a function f ∈ L1(D) and a measurable subset Q ⊆ D, the
mean value of f over Q is denoted by (f)Q , i.e.

(f)Q :=
1

|Q|

∫

Q
f(x) dx.

We recall the well-known following lemma.

Lemma 2.1. Let f ∈ L2(D), and consider a finite measurable partition (Di)I
i=1 of

D. The projection of f onto the space

K := {g ∈ L2(D) : g|Di
is constant for every i = 1, . . . , I}

is

PK(f) :=
I

∑

i=1

(f)Di1Di .

The symbol M
q×q
St denotes the set of all stochastic matrices of size q× q, i.e. the

set of all matrices (Mβα)β,α with

• 0 ≤ Mβα ≤ 1 for every α, β,
•

∑

β Mβα = 1, for every α.

For the notion of quasi-minimum and the related results, we refer to the Appen-
dix.

3. Young measures and discrete sets of values. For the mathematical pre-
liminaries about measures and Young measures we refer to [13, Section 2 and 4].
Here we just recall a definition and fix some notation.

Given a sequence (µk)k of Young measures in Y (D; Rn), we say that µk ⇀ µ
p-weakly*, for 1 < p ≤ ∞, if

• µk ⇀ µ in the weak* topology of the space of bounded Radon measures on
D × Rn,

• the p-moments of (µk)k
∫

D×Rn

|ξ|p dµk(x, ξ),

are equibounded.

Let (Ω,F) be a measure space, Ξ a finite dimensional Hilbert space, and µ ∈
Y (D; Ξ). For every bounded measurable function g : D → R, the product gµ is
defined by

∫

D×Ξ
φ(x, ξ) d(gµ)(x, ξ) :=

∫

D×Ξ
g(x)φ(x, ξ) dµ(x, ξ),

for every bounded Borel function φ : D×Ξ→ R. For every B(D×Ξ)-F -measurable
function f : D×Ξ→ Ω, the image measure, defined by µ(f−1(B)) for every measur-
able set B ⊆ Ω, will be denoted by f(µ). In particular, if we define the translation
map TG associated to a function G ∈ L1(D; Ξ) by

TG(x, ξ) := (x, ξ + G(x)), for a.e. x ∈ D and every ξ ∈ Ξ, (3.1)
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for every measure µ ∈ Y (D; Ξ) we can consider the translated measure TG(µ),
defined by

∫

D×Ξ
φ(x, ξ) dTG(µ)(x, ξ) =

∫

D×Ξ
φ(x, ξ + G(x)) dµ(x, ξ), (3.2)

for every bounded Borel function φ : D × Ξ → R. If µ = (µi)I
i=1 is a finite family

in Y (D; Ξ), we denote by T̃G(µ) the family of translated measures (TG(µi))I
i=1.

Given ξ0 ∈ Ξ, the measure δξ0
∈ Mb(Ξ) is defined by

∫

Ξ
f(ξ) dδξ0

(ξ) = f(ξ0),

for every bounded Borel function f : Ξ→ R; fixed a B(D)-B(Ξ)-measurable function
u : D → Ξ, the Young measure δu ∈ Y (D; Ξ) is defined by

∫

D×Ξ
g(x, ξ) dδu(x, ξ) =

∫

D
g(x, u(x)) dx,

for every bounded Borel function g : D × Ξ → R. In particular δξ0
is the Young

measure associated to the constant function u(x) ≡ ξ0, which should not be confused
with the measure δξ0

.
We recall the statement of a lemma which will be useful in the regularization

of the approximate solutions. We will use the statement of Fonseca, Müller, and
Pedregal (see [14, Lemma 1.2]).

Lemma 3.1. (Decomposition Lemma) Let (vj)j be a bounded sequence in H1(D; Ξ).
Then there exist a subsequence (vjk )k of (vj)j , and a bounded sequence (wk)k in
H1(D; Ξ), such that (|∇wk|2)k is equiintegrable and

Ld({vjk 0= wk or ∇vjk 0= ∇wk}) → 0, (3.3)

as k →∞.

In the whole paper D is a bounded connected open subset of Rd with Lipschitz
boundary; Z denotes a nonempty finite subset {1, . . . , q} of Rm, and H is a metric
on Z; A ⊆ R denotes a set of indices.

The space of Young measures on D with values in Z is indicated with Y (D; Z)
and the space of compatible systems on D with time set A and values in Z is denoted
by SY (A, D; Z). We recall that a compatible system of Young measures on D with
time set A and values in Z is a family µ = (µt1...tm

)t1...tm of Young measures
µt1...tm

∈ Y (D; Zm), with t1 < · · · < tm varying among all strictly increasing finite
sequences of elements of A, satisfying the following projection property:

π̃t1...tm
s1...sn

(µt1...tm
) = µs1...sn

,

whenever {s1, . . . , sn} ⊆ {t1, . . . , tm}, where π̃t1...tm
s1...sn

: D× Zm → D× Zn is defined
by π̃t1...tm

s1...sn
(x, αt1 , . . . , αtm) = (x, αs1

, . . . , αsn).
It is easy to see that µ ∈ Y (D; Z) if and only if it can be written as

µ =
q

∑

α=1

bαδα, (3.4)

where bα are functions in L∞(D; [0, 1]) satisfying the condition
q

∑

α=1

bα(x) = 1, for a.e. x ∈ D. (3.5)
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In disintegrated form, formula (3.4) can be written as

µx =
q

∑

α=1

bα(x)δα for a.e. x ∈ D.

Therefore Y (D; Z) can be identified with the set of all families b = (bα)q
α=1 in

L∞(D; [0, 1]) satisfying condition (3.5).
Set A n

q := {1, . . . , q}n. If µ ∈ SY (A, D; Z), then for every t1 < · · · < tn
in A there exists a finite family bt1...tn = (bt1...tn

α1...αn
)(α1,...,αn)∈A

q
n

in L∞(D; [0, 1]),
satisfying the property

∑

(α1,...,αn)∈A n
q

bt1...tn
α1...αn

(x) = 1, for a.e. x ∈ D, (3.6)

and such that

µt1...tn
=

∑

(α1,...,αn)∈A n
q

bt1...tn
α1...αn

δ(α1,...,αn), (3.7)

for every finite sequence t1 < · · · < tn in A. The projection property of compatible
systems can be reformulated in a simpler way using this language: given any finite
sequence t1 < · · · < tn in A, we have

bt1...ti−1ti+1...tn
α1...αi−1αi+1...αn

=
q

∑

β=1

b
t1...ti−1titi+1...tn

α1...αi−1βαi+1...αn
, (3.8)

a.e. in D, for every (α1, . . . , αi−1, αi+1, . . . , αn) ∈ A n−1
q and every i = 1, . . . , n.

Therefore we can identify the space SY (A, D; Z) with the set S(A, D, q) of all
families b = (bt1...tn)t1<···<tn , with t1 < · · · < tn varying in A, such that bt1...tn =
(bt1...tn

α1...αn
)(α1,...,αn)∈A n

q
satisfy properties (3.6) and (3.8).

If A is a finite set with n elements, we write ∆(D, n, q) to indicate the set of
all families of coefficients (bα1...αn)(α1,...,αn)∈A n

q
in L∞(D; [0, 1]) satisfying (3.6).

∆(D, n, q) can be seen as a generalized version of the Gibbs simplex associated
with the pure phases ê1, . . . , êqn ∈ Rqn

, where êj is the jth unit vector.
Let A = [0, T ]. Using the previous identification, we can rewrite the H-variation

of a compatible system µ ∈ SY (A, D; Z) in the interval [c, d] ⊆ [0, T ] (see [13, (4.9)])
in terms of the family b corresponding to µ: VarH(µ; c, d) = DissH(b; c, d), with

DissH(b; c, d) := sup
k

∑

i=1

∑

αβ

H(β, α)

∫

D
bti−1ti

αβ (x) dx, (3.9)

where the supremum is taken over all finite partitions c = t0 < · · · < tk = d of the
interval [c, d] (with the convention DissH(b; c, d) = 0, if c = d).

It is easy to see that given a sequence (µk)k = (
∑q

α=1 bk
αδα)k in Y (D; Z), µk ⇀

µ =
∑q

α=1 bαδα weakly* in Y (D; Z) if and only if bk
α ⇀ bα L∞-weakly*, for every

α = 1, . . . , q. Therefore a compatible system µ ∈ SY ([0, T ], D; Z) is left continuous
if and only if the correspondent b ∈ S([0, T ], D, q) satisfies the following property:
for every finite sequence t1 < · · · < tn in [0, T ]

bs1...sn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly*, (3.10)

as si → ti, with si ∈ [0, T ] and si ≤ ti, for every (α1, . . . , αn) ∈ A n
q . We denote the

set of all b ∈ S([0, T ], D, q) satisfying (3.10) by S−([0, T ], D, q).
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Definition 3.2. Fixed a sequence 0 = t1 < · · · < tm = T in [0, T ], and given
a family (bα1...αm)(α1,...,αm)∈A m

q
in L∞(D; [0, 1]) with

∑

(α1,...,αm) bα1...αm = 1 a.e.

in D, we define bpwc ∈ S([0, T ], D, q) as the family corresponding to the piecewise
constant interpolation of the measure µ =

∑

(α1...αm) bα1...αmδ(α1,...,αm), as defined
in [13, Definition 4.12].

More in details, for every finite sequence τ1 < · · · < τn in [0, T ] such that for
every j = 1, . . . , m there exists i = 1, . . . , n with tj ≤ τi < tj+1, we have

(bpwc)τ1...τn
β1...βn

:=











0 if βi 0= βi+1 with tj ≤ τi < τi+1 < tj+1

for some i and j

bα1...αm otherwise,

for every (β1, . . . , βn) ∈ A n
q .

We can reformulate Helly’s Theorem for compatible systems of Young measures
(see [13, Theorem 4.10]) in the discrete setting as follows.

Theorem 3.3. Let (bk)k be a sequence in S([0, T ], D, q) such that DissH(bk; 0, T ) ≤
C, for a finite constant C > 0 independent of k. Then there exist a subsequence,
still denoted by (bk)k, a set T ⊆ [0, T ] containing 0 and such that [0, T ] \ T is at
most countable, and b ∈ S−([0, T ], D, q) with DissH(b; 0, T ) ≤ C, such that

(bk)t1...tn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly*, (3.11)

as k → ∞, for every finite sequence t1 < · · · < tn in T , and every (α1, . . . , αn) ∈
A n

q .

Now we state a lemma to describe the canonical form of the space Y p(D; Z ×
RN×d) of all Young measures on D with values in Z ×RN×d and finite p-moments,
for 1 < p < +∞.

Lemma 3.4. A measure ν is an element of Y p(D; Z ×RN×d) if and only if it can
be written as

ν =
q

∑

α=1

bα(δα ⊗ λα), (3.12)

where (bα)q
α=1 is a family in L∞(D; [0, 1]) satisfying (3.5) and, for every α =

1, . . . , q, λα is a Young measure on D with values in RN×d such that
∫

D×RN×d

bα(x)|F |p dλα(x, F ) < ∞, (3.13)

for every α = 1, . . . , q.

Proof. For every α = 1, . . . , q, let us consider bα ∈ L∞(D; [0, 1]) and a Young
measure λα ∈ Y (D; RN×d), satisfying (3.5) and (3.13). It is immediate to see that
the measure defined by (3.12) is an element of Y p(D; Z × RN×d).

On the other hand, if ν belongs to ∈ Y p(D; Z × RN×d) and (νx)x∈D is its
disintegration, for a.e. x ∈ D and every α = 1, . . . , q we define

bα(x) := νx({α} × R
N×d); (3.14)

let us fix a probability measure ω on RN×d; for α = 1, . . . , q and for a.e. x ∈ D let
us define a probability measure λx

α on RN×d by setting for every Bα ∈ B(RN×d)

λx
α(Bα) :=

{

νx({α}×Bα)
bα(x) if bα(x) 0= 0

ω(Bα) if bα(x) = 0
(3.15)
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By construction bα is measurable with nonnegative values for everyα,
∑q

α=1 bα(x) =
νx(Z × RN×d) = 1 for a.e. x ∈ D, and (λx

α)x is a measurable family of probability
measures satisfying (3.13), for every α . It is now immediate to see that the measure
ν̃ whose disintegration is given by

ν̃x =
q

∑

α=1

bα(x)(δα ⊗ λx
α) for a.e. x ∈ D, (3.16)

is exactly ν. Indeed every Borel subset B of Z ×RN×d can be written as the union
of disjoint sets of the form {α} × Bα, for suitable Bα ∈ B(RN×d), for α = 1, . . . , q;
hence we have

ν̃x(B) =
q

∑

α=1

bα(x)λx
α(Bα)

=
q

∑

α=1

bα(x)
νx({α} ×Bα)

bα(x)
= νx(B).

Remark 3.5. The functions bα and the measures bαλα, α = 1, . . . , q, satisfying
the properties described in the previous lemma are uniquely determined by ν. In
particular if we consider the disintegration of λα, (λx

α)x∈D, we obtain that λx
α is

uniquely determined for a.e. x in {x ∈ D : bα(x) > 0}.

Remark 3.6. Let νk =
∑

α bk
α(δα⊗λk

α), ν =
∑

α bα(δα⊗λα) belong to Y p(D; Z×
RN×d). A simple computation shows that a sequence (νk)k in Y p(D; Z × RN×d)
p-weakly* converges to ν ∈ Y p(D; Z × RN×d) if and only if

bk
αλ

k
α ⇀ bαλα p-weakly* (3.17)

for every α = 1, . . . , q.

Remark 3.7. For every α = 1, . . . , q, let (bh
α, λh

α)h be a sequence in L∞(D; [0, 1])×
Y (D; RN×d), satisfying (3.5) for every h, and

sup
h

∫

D×RN×d

bh
α(x)|F |p dλh

α(x, F ) ≤ C,

for a positive constant C, for every α. Then there exists (bα, λα) ∈ L∞(D; [0, 1])×
Y (D; RN×d), for every α, satisfying (3.5) and (3.13), and such that, up to a subse-
quence,

bh
α ⇀ bα L∞-weakly*

bh
αλ

h
α ⇀ bαλα p-weakly*,

as h →∞.

4. The mechanical model. The reference configuration is the set D introduced
in the previous section.

We indicate the deformation with v and the internal variable with z.
We denote the stored energy density by W : Z × RN×d → [0, +∞) and the dis-

sipation rate density by H : Z2 → [0, +∞). For every α ∈ Z and F ∈ RN×d, we
make the following assumptions:
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(W.1) there exist two positive constants c, C such that

c|F |2 − C ≤ W (α, F ) ≤ C(1 + |F |2);

(W.2) W (α, ·) is of class C1 and
∣

∣

∣

∂W

∂F
(α, F )

∣

∣

∣
≤ C(1 + |F |);

(H.1) H is a metric on Z2.

Let W be the functional

W(z, v) :=

∫

D
W (z(x),∇v(x)) dx,

for every z ∈ L∞(D; Z) and every v ∈ H1(D; RN ), and H the functional

H(z, z̃) :=

∫

D
H(z(x), z̃(x)) dx,

for every z, z̃ ∈ L∞(D; Z).
Given two distinct times s < t, the global dissipation of a function z : [0, T ] →

L∞(D; Z) in the interval [s, t] will be

VarH(z; s, t) := sup
k

∑

i=1

H(z(τi), z(τi−1)),

where the supremum will be taken among all finite partitions s = τ0 < τ1 < · · · <
τk = t.

The prescribed boundary datum on ∂D at time t is denoted by ϕ(t); we assume
ϕ ∈ AC([0, T ]; W 1,p(D; RN )), with 2 < p < +∞.

The kinematically admissible values at time t for v are those which make the total
energy finite and satisfy the boundary condition, i.e., v = ϕ(t) on ∂D Hd−1-a.e. (in
the sense of traces).

5. Admissible set in terms of Young measures.

Definition 5.1. Given A ⊂ R and w : A → H1(D; RN ), we define the admissible
set for the time set A and the boundary datum w, Ad(A, q, w), as the set of all
pairs (b, λ) ∈ S(A, D, q) × (Y (D; RN×d)q)A such that property (3.13) (for p = 2)
is satisfied by bt

αλt
α, for every α and t, and the following condition holds: for every

finite sequence t1 < · · · < tn in A, for every i = 1, . . . , n, and every k ∈ N, there
exist a measurable partition (Di,k

α )q
α=1 of D and a function vk

i ∈ w(ti)+H1
0 (D; RN )

such that:

(1) for every (α1, . . . , αn) ∈ A q
n

1D1,k
α1

· · · 1Dn,k
αn

⇀ bt1...tn
α1...αn

L∞-weakly*, as k →∞;

(2) for every i = 1, . . . , n there exists a subsequence (ki
j)j , possibly depending on

i, such that

1
D

i,ki
j

α

δ∇vi
ki

j

⇀ bti
α λti

α 2-weakly*, as j →∞

for every α = 1, . . . , q.

The following remark compares the notion of Ad(A, q, w) with the notion of
admissible set in terms of Young measures AY (A, Z,w), as defined in [13, Section
6.2].



268 ALICE FIASCHI

Remark 5.2. Given A ⊂ R and w : A → H1(D; RN ), let us consider (b, λ) ∈
S(A, D, q)×(Y (D; RN×d)q)A, with (bt, λt) satisfying (3.13) (for p = 2), and (ν, µ) ∈
Y 2(D; Z × RN×d)A × SY (A, D; Z), satisfying

νti =
q

∑

α=1

bti
α (δα ⊗ λti

α ), for every t ∈ A

µt1...tn
=

∑

(α1,...,αn)

bt1...tn
α1...αn

δ(α1,...,αn) for every t1 < · · · < tn in A.

Then (b, λ) ∈ Ad(A, q, w) if and only if (ν, µ) ∈ AY (A, Z,w), i.e. for every finite
sequence t1 < · · · < tn in A there exist sequences (zk

i )k ∈ L∞(D; Z), (vk
i )k ⊂

w(ti) + H1
0 (D; RN ), for i = 1, . . . , n such that

(app1)Z we have

δ(zk
1 ,...,zk

n) ⇀ µt1...tn
weakly*, (5.1)

as k →∞;
(app2)Z for every i = 1, . . . , n, there exists a sequence of integers (ki

j)j , possibly
depending on i, such that

δ
(z

ki
j

i ,∇v
ki

j
i )

⇀ νti 2-weakly*, (5.2)

as j →∞.

Indeed, given (Di,k
α )αsatisfying the approximation property for bti

α we define zk
i by

zk
i (x) = α whenever x ∈ Di,k

α , or equivalently, given zk
i satisfying the approximation

property for νti , we consider Di,k
α := {x ∈ D : zk

i (x) = α}, for α = 1, . . . , q.

The closure properties of Ad(A, q, w) are described by the following lemma, which
is the formulation in our discrete setting of [13, Lemma 6.7].

Lemma 5.3. Let (wj)j be a sequence of functions from A into H1(D, Rm), such
that wj(t) → w(t) strongly in H1, for every t ∈ A and let (b, λ) ∈ S(A, D, q) ×
(Y (D; RN×d)q)A with (bt, λt) satisfying (3.13) for p = 2, for every t ∈ A. Assume
that for every finite sequence t1 < · · · < tn in A there exists a sequence (bj , λj) ∈
Ad({t1, . . . , tn}, q, wj) such that

(bj)t1...tn
α1...αn

⇀ bt1...tn
α1...αn

L∞-weakly*, (5.3)

as j → ∞ for every (α1, . . . , αn) ∈ A q
n , and such that for every i there exists a

sequence of integers (ji
h)h, possibly depending on i, satisfying

((bji
h)ti

α (λji
h)ti

α ) ⇀ bti
α λti

α , 2-weakly*, (5.4)

as h →∞ for every α = 1, . . . , q. Then (b, λ) ∈ Ad(A, q, w).

The following lemma will be used in order to provide a class of competitors for
the discretized minimum problem in Section 7.1.

Lemma 5.4. Let 0 ≤ t1 < · · · < tm ≤ T be a finite sequence in A. For every
j = 1, . . . , m, let us consider vj ∈ w(tj) + H1

0 (D; RN ) and a measurable partition
(Dj

α)q
α=1 of D. Let M : D → M

q×q
St , x *→ (Mβα(x))βα be a measurable map, and ũ

an element of H1
0 (D; RN ).
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Let (ν, µ) ∈ Y 2(D; Z × RN×d){t1,...,tm} × SY 2({t1, . . . , tm}, D; Z) be defined by

νtm :=
∑

α,β

Mβα1Dm
α

δ(β,∇vm+∇ũ),

νtj :=
q

∑

α=1

1Dj
α
δ(α,∇vj) for every j < m,

µt1...tm
:=

∑

α1,...,αm−1,α,β

Mβα1D1
α1

· · · · · 1Dm−1
αm−1

· 1Dm
α

δ(α1,...,αm−1,β).

Then (ν, µ) ∈ AY ({t1, . . . , tm}, Z, w).

Proof. Let us consider first the particular case of M : D → M
q×q
St constant.

Fix α ∈ {1, . . . , q} and define a measure να
tm

on D × Z × RN×d by

να
tm

:=
∑

β

Mβα1Dm
α

δ(β,∇ṽm),

where ṽm := vm + ũ. Consider a measurable partition (Sα
β )β of the unitary cube

[0, 1]d, with |Sα
β | = Mβα for every β (it is possible to find such a partition since

0 ≤ Mβα ≤ 1 and
∑

β Mβα = 1, by the hypotheses on M). Let us now define a

measurable function z̃α : [0, 1]d → Z by setting

z̃α(x) = β for a.e. x ∈ Sα
β ,

for every β = 1, . . . , q, and extend it by periodicity to all Rd. For every δ > 0, the
function z̃α

δ : Rd → Z defined by z̃α
δ (x) := z̃α(x

δ ), for a.e. x ∈ Rd, is δ-periodic. By
the Riemann Lebesgue Theorem, we have

1{x∈Rd : z̃α
δ (x)=β} ⇀ Mβα L∞-weakly*,

as δ → 0. Let now ψ ∈ C0(D × Z × RN×d) = C0(D × RN×d)Z ; we have

1Dm
α

(x)ψ(x, z̃α
δ (x),∇ṽm(x)) = 1Dm

α
(x)

q
∑

β=1

ψ(x, β,∇ṽm(x))1{x∈Rd :z̃α
δ (x)=β}(x),

for a.e. x ∈ D, and the function x *→ 1Dm
α

(x)ψ(x, β,∇ṽm(x)) is in L1(D) for every
β. Hence we can deduce that

∫

D×Z×RN×d

ψ(x, γ, F ) d(1Dm
α

δ(z̃α
δ ,∇ṽm))(x, γ, F )

=

∫

D
1Dm

α
(x)ψ(x, z̃α

δ (x),∇ṽm(x)) dx

=
∑

β

∫

D
1Dm

α
(x)ψ(x, β,∇ṽm(x))1{x∈D :z̃α

δ (x)=β}(x) dx

δ→0−→
∑

β

∫

D
Mβα1Dm

α
(x)ψ(x, β,∇ṽm(x)) dx

=

∫

D×Z×RN×d

ψ(x, γ, F ) d(να
tm

)(x, γ, F ).

Defined z̃δ : D → Z by z̃δ(x) := z̃α
δ (x) if x ∈ Dm

α , we can conclude that δ(z̃δ,ṽm) ⇀
νtm 2-weakly*, as δ → 0.
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We observe that

µt1...tm
:=

∑

α1,...,αm−1,α,β

Mβα1D1
α1

· · · 1Dm−1
αm−1

· 1Dm
α

δ(α1,...,αm−1,β)

=
∑

αβ

Mβα1Dm
α

δ(z1,...,zm−1,β),

where zj(x) := α whenever x ∈ Dj
α, for j = 1, . . . , m− 1. Therefore, we can apply

the same argument used for νtm to µt1...tm
and deduce that δ(z1,...,zm−1,z̃δ) ⇀ µt1...tm

weakly* as δ → 0. Hence it is enough to consider a sequence δk → 0, and, for every
k, zk

j = zj for j < m, zk
m = z̃δk , vk

j = vj for j < m, and vk
m = ṽm to obtain the

required approximation properties considered in Remark 5.2.

Consider now the case of Mβ,α in C1(D). Fixed a positive parameter ε, consider

a finite family (Qi
ε)

I(ε)
i=1 of disjoint cubes in Rd, with diameter ε, covering D, and set

(Mβα)i
ε := (Mβα)Qi

ε∩D =
1

|Qi
ε ∩D|

∫

Qi
ε∩D

Mβα(x) dx,

for every i = 1, . . . , I(ε), and every α, β. For a fixed α, we can define a measure να
ε

on Rd × Z × RN×d by setting

να
ε :=

I(ε)
∑

i=1

q
∑

β=1

(Mβα)i
ε1Qi

ε
1Dm

α
δ(β,∇ṽm).

Let us fix i = 1, . . . , I(ε) and reproduce the arguments used in the constant case:
consider a measurable partition ((Si

ε)
α
β )β of the unitary cube [0, 1]d, with |(Si

ε)
α
β | =

(Mβα)i
ε, for every β (it is possible to find such a partition since

∑

β(Mβα)i
ε =

1
|Qi

ε∩D|

∫

Qi
ε∩D(

∑

β Mβα)(x) dx = 1, by the hypotheses on M), and define the map

(z̃α)i
ε : Rd → Z as the 1-periodic measurable function satisfying

(z̃α)i
ε(x) = β for a.e. x ∈ (Si

ε)
α
β ,

for every β = 1, . . . , q. For every δ > 0, consider the function (z̃α)i
ε,δ : Rd → Z

defined by (z̃α)i
ε,δ(x) := (z̃α)i

ε(
x
δ ), for a.e. x ∈ Rd. Fixed ε, we obtain as before that

1Dm
α

δ(z̃α
ε,δ,ṽm) ⇀ να

ε 2-weakly*, (5.5)

as δ → 0, where z̃α
ε,δ : Rd → Z is the function defined by z̃α

ε,δ :=
∑I(ε)

i=1 1Qi
ε
(z̃α)i

ε,δ.
Now we want to show that να

ε ⇀ να
tm

2-weakly* as ε→ 0.
For every ψ ∈ C0(D × Z × RN×d), we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, γ, F ) dνα
tm

(x, γ, F )−
∫

D×Z×RN×d

ψ(x, γ, F ) dνα
ε (x, γ, F )

∣

∣

∣

=
∣

∣

∣

∑

β

∫

Dm
α

[

(Mβα(x)−
I(ε)
∑

i=1

1Qi
ε
(x)(Mβα)i

ε(x)
]

ψ(x, β,∇ṽm(x)) dx
∣

∣

∣
.

Since for every x ∈ Dm
α there exists a unique ix = 1, . . . , I(ε) with x ∈ Qix

ε , we have

|Mβα(x)−
I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)i
ε| = |Mn

βα(x) − (Mβα)ix
ε | ≤ ‖∇Mβα‖∞ε,
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for every x ∈ Dm
α and every β = 1, . . . , q. Therefore we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, γ, F ) dνα
tm

(x, γ, F )−
∫

D×Z×RN×d

ψ(x, γ, F ) dνα
ε (x, γ, F )

∣

∣

∣

≤
∑

β

‖∇Mβα‖∞‖ψ‖∞|D|ε,

which tends to 0 as ε→ 0.
Since Y (D; Z×RN×d) is contained in a bounded subset of the dual of a separable

Banach space, it is metrizable with respect to the weak* topology. Let us denote
by d a metric inducing on Y (D; Z × RN×d) the weak* topology, so that we have

• d(να
ε , να

tm
) → 0 as ε→ 0;

• for every fixed ε, d(1Dm
α

δ(z̃α
ε,δ,∇ṽ), ν

α
ε ) → 0 as δ → 0.

Applying as before the same argument to µt1...tm
, we deduce, using a diagonal-

ization argument, that there exist sequences δk → 0 and εk → 0 such that

(1) for every α, 1Dm
α

δ(z̃α
εk,δk

,∇vm+∇ũ) ⇀ να
tm

2-weakly* as k →∞;

(2) for every α, we have

1Dm
α

δ(z1,...,zm,z̃α
εk,δk

) ⇀
∑

α1,...,αm−1,β

Mβα1D1
α1

· · · 1Dm−1
αm−1

· 1Dm
α

δ(α1,...,αm−1,β)

weakly*, as k →∞.

Now it is enough to define z̃ε,δ : D → Z, by z̃ε,δ :=
∑

α 1Dm
α

z̃α
ε,δ, to prove the thesis.

It remains only to treat the general case of Mβα ∈ L∞(D). We can reproduce the
same construction proposed in the C1-case; the only difference is that we have to use
an approximation argument to show that να

ε ⇀ να
tm

2-weakly*. Indeed it is enough
to consider, for every β, a sequence (Mn

βα)n in C1(D), with Mn
αβ → Mβα strongly in

L1(D), as n →∞, and let (Mn
βα)i

ε := (Mn
βα)Qi

ε∩D. For every ψ ∈ C0(D×Z×RN×d),
we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, γ, F ) dνα
tm

(x, γ, F )−
∫

D×Z×RN×d

ψ(x, γ, F ) dνα
ε (x, γ, F )

∣

∣

∣

=
∣

∣

∣

∫

Dm
α

∑

β

Mβα(x)ψ(x, β,∇ṽm(x)) dx

−
∫

Dm
α

I(e)
∑

i=1

1Qi
ε
(x)

∑

β

(Mβα)i
εψ(x, β,∇ṽm(x)) dx

∣

∣

∣

≤
∣

∣

∣

∑

β

∫

Dm
α

[

(Mβα −Mn
βα)(x) −

I(e)
∑

i=1

1Qi
ε
(x)(Mβα −Mn

βα)i
ε

]

ψ(x, β,∇ṽm(x)) dx
∣

∣

∣

+
∣

∣

∣

∑

β

∫

Dm
α

[

(Mn
βα(x)−

I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)i
ε(x)

]

ψ(x, β,∇ṽm(x)) dx
∣

∣

∣
.

We know that

|Mn
βα(x)−

I(ε)
∑

i=1

1Qi
ε
(x)(Mn

βα)i
ε| = |Mn

βα(x) − (Mn
βα)ix

ε | ≤ ‖∇Mn
βα‖∞ε,
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for every x ∈ Dm
α and every β = 1, . . . , q. On the other hand, using Lemma 2.1, we

can deduce that
∫

Dm
α

|(Mβα −Mn
βα)(x) −

I(ε)
∑

i=1

1Qi
ε
(x)(Mβα −Mn

βα)i
ε)| dx

≤
∫

Dm
α

|Mβα −Mn
βα(x)| dx.

Let us now fix η > 0; choosing n̄ such that
∑

β ‖Mβα−M n̄
βα‖1‖ψ‖∞ ≤ η/2, we have

∣

∣

∣

∫

D×Z×RN×d

ψ(x, γ, F ) dνα
tm

(x, γ, F )−
∫

D×Z×RN×d

ψ(x, γ, F ) dνα
ε (x, γ, F )

∣

∣

∣
≤ η,

for every ε ≤ εη := η(2
∑

β ‖∇M n̄
βα‖∞‖ψ‖∞|D|)−1; therefore we obtain that να

ε ⇀
να

tm
2-weakly* as ε→ 0 and we can prove the thesis as in the previous case.

Remark 5.5. If (b, λ) ∈ Ad(A, q, w), for every t ∈ A there exists a unique function
v(t) ∈ w(t) + H1

0 (D; RN ) such that ∇v(t) =
∑

α bt
αbar(λt

α); moreover, for every
t ∈ A, the function σ(t) representing the stress and defined by

σ(t, x) :=
q

∑

α=1

bt
α(x)

∫

RN×d

∂W

∂F
(α, F ) d(λt

α)x(F ) for a.e. x ∈ D

belongs to L2(D; RN×d).

6. Definition of quasistatic evolution and main result. First of all we fix
some notation and give the definition of quasistatic evolution in the discrete setting.

We will use the following compact notation: given an admissible pair (b, λ) ∈
Ad(A, q, ϕ), we will write

〈W, (bt, λt)〉 :=
∑

α

∫

D×RN×d

bt
α(x)W (α, F ) dλt

α(x, F ),

H(bt, bs) = 〈H, bst〉 :=
∑

α,β

H(β, α)

∫

D
bst

αβ(x) dx,

for every s < t in A. To describe the set of competitors for the stability condition
satisfied by the quasistatic evolution, we need to introduce some other notation.
Given a measurable map M : D → M

q×q
St , we consider the following operators:

MM : ∆(D, 1, q) −→ ∆(D, 2, q)

(bα)α *−→ (Mβαbα)(α,β)

and

(M1
M ,M2

M ) : ∆(D, 1, q)× Y (D; RN×d)q −→ ∆(D, 1, q)× Y (D; RN×d)q

(b, λ) *−→ (M1
M (b),M2

M (b, λ)),

where

(M1
M (b))β :=

∑

α

(MM (b))αβ =
∑

α

Mβαbα a.e. in D

(M2
M (b, λ))x

β :=

∑

α Mβα(x)bα(x)λx
α

∑

α Mβα(x)bα(x)
if

∑

α

Mβα(x)bα(x) > 0,

for a.e. x ∈ D and every β = 1, . . . , q.
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Given b ∈ ∆(D, 1, q) and M ∈ L∞(D;Mq×q
St ), we set

H(M1
M (b), b) := 〈H,MM (b)〉 =

∑

α,β

H(β, α)

∫

D
Mβα(x)bα(x) dx. (6.1)

Remark 6.1. If we want to consider a modification of (b, λ) due to a permutation of
phase distributions and Young measures, the corresponding M will be independent
on x, with entries equals to 0 or 1, and with exactly one nonzero entry on each
row. In this case M1

M (b) is the product M · b between the matrix M and the vector
(bα)α, while (M2

M (b, λ))β = (M · λ)β for a.e. x ∈ D such that (M · b)β(x) > 0.

Definition 6.2. Given ϕ ∈ AC([0, T ]; W 1,p(D; RN )), for 2 < p < +∞, T > 0, z0 ∈
L∞(D; Z), and v0 ∈ A(0), a quasistatic evolution of Young measures with boundary
datum ϕ and initial condition (z0, v0), in the time interval [0, T ], is a pair (b, λ) ∈
Ad([0, T ], q, ϕ), with b ∈ S−([0, T ], D, q), satisfying the following conditions:

(ev0) initial condition: with D0
α := {x ∈ D : z0(x) = α}, we have b0

α = 1D0
α

and

(λ0
α)x = δ∇v0(x) if x ∈ D0

α, for every α;

(ev1) partial-global stability: for every t ∈ [0, T ], we have

〈W, (bt, λt)〉 ≤ 〈W, (b̃, λ̃)〉+ H(b̃, bt),

for (b̃, λ̃) varying in the set

{(M1
M (bt), T̃∇ũ(M2

M (bt, λt))) : ũ ∈ H1
0 (D; RN ), M ∈ L∞(D;Mq×q

St )},

where H(b̃, bt) = H(M1
M (bt), bt) is defined as in (6.1);

(ev2) energy equality: if σ is the function defined in Remark 5.5, then the map

t *→ 〈σ(t),∇ϕ̇(t)〉2 (6.2)

is integrable on [0, T ], and for every t ∈ [0, T ]

〈W, (bt, λt)〉+ DissH(b; 0, t) = W(z0, v0) +

∫ t

0
〈σ(s),∇ϕ̇(s)〉2 ds,

where DissH(b; 0, t) is defined by (3.9).

Theorem 6.3. Let ϕ ∈ AC([0, T ]; H1(D; RN )) and T > 0. Assume that the partial-
global stability condition is satisfied by (z0, v0) ∈ L∞(D; Z)× (ϕ(0) + H1

0 (D; RN )).
Then there exists a quasistatic evolution of Young measures with boundary datum
ϕ and initial condition (z0, v0) in the time interval [0, T ].

7. Proof of the main theorem. The proof is obtained via time-discretization,
resolution of incremental minimum problems, and passing to the limit.

7.1. The incremental minimum problem. The first step of the proof consists
in the definition of an approximate solution via an inductive minimization process.

Let us fix a sequence of subdivisions of [0, T ], 0 = t0n < t1n < · · · < tk(n)
n = T , such

that supi=1,...,k(n) τ
i
n → 0, as n →∞, where τ i

n := tin−ti−1
n , for every i = 1, . . . , k(n).

For every i = 0, 1, . . . , k(n) we set ϕi
n := ϕ(tin).

We define (bi
n, λi

n) ∈ Ad({t0n, . . . , tin}, q, ϕ) by induction on i: set

(b0
n)α(λ0

n)α := 1D0
α
δ∇v0

,

where D0
α := {x ∈ D : z0(x) = α}; for i > 0 we define (bi

n, λi
n) as a pair satisfying

the following properties:
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(min) (bi
n, λi

n) is a minimizer of the functional

〈W, (bti
n , λti

n)〉+ 〈H, bti−1
n ti

n〉 =

=
∑

α

∫

D
bti

n
α (x)

(

∫

RN×d

W (α, F ) d(λti
n

α )x(F )
)

dx+

+
∑

α,β

H(β, α)

∫

D
b

ti−1
n ti

n
αβ (x) dx,

(7.1)

over the set Ai
n(bi−1

n , λi−1
n ) of all (b, λ) ∈ Ad({t0n, . . . , tin}, q, ϕ) satisfying

∑

β

b
t0n...ti

n
α0...αi−1β = (bi−1

n )
t0n...ti−1

n
α0...αi−1 a.e. in D, for every (α0, . . . , αi−1) ∈ A

q
i (7.2)

λtj
n

α = (λi−1
n )

tj
n

α , for every j < i and every α; (7.3)

(reg) there exist two constants r > 1 and γ > 0, both independent of i and n, such
that

q
∑

α=1

∫

D×RN×d

(bi
n)

ti
n

α (x)|F |2r d(λi
n)

ti
n

α (x, F )

≤γ
[

1 +
(

q
∑

α=1

∫

D×RN×d

(bi
n)

ti
n

α (x)|F |2 d(λi
n)

ti
n

α (x, F )
)r]

.

(7.4)

The existence of such a pair (bi
n, λi

n) is proven in Lemma 7.2 below.

Lemma 7.1. For every i > 1 and every (bi−1, λi−1) ∈ Ad({t0n, . . . , ti−1
n }, q, ϕ), the

set Ai
n(bi−1, λi−1) is nonempty.

Proof. Fixed (bi−1, λi−1) ∈ Ad({t0n, . . . , ti−1
n }, q, ϕ), let b be the unique element of

S({t0n, . . . , tin}, D, q) satisfying

bt0n...ti−1
n ti

n
α0...αi−1αi

:=

{

(bi−1)
t0n...ti−1

n
α0...αi−1 if αi = αi−1

0 otherwise;
(7.5)

for every (α0, . . . , αi) ∈ A
q
i+1; define λ ∈ ((Y (D; RN×d)q){t0n,...,ti

n} by

λtj
n

α :=(λi−1)
tj
n

α if j < i, for every α,

λti
n

α :=T∇ϕi
n−∇ϕi−1

n
((λi−1)

ti−1
n

α ),
(7.6)

where the translated measure T∇ϕi
n−∇ϕi−1

n
((λi−1)

ti−1
n

α ) is defined as in (3.2). It is

immediate to see that (b, λ) satisfy the properties (7.2) and (7.3). By construction

btj
n

α λtj
n

α ∈ Y 2(D; RN×d), for every α and every j = 0, . . . , i: indeed for j < i it is
obvious, while for i we have

bti
n

α =
∑

(α0...αi−1)

bt0n...ti−1
n ti

n
α0...αi−1α

=
∑

(α0...αi−2)

(bi−1)
t0n...ti−1

n
α0...αi−2α = (bi−1)

ti−1
n

α ,
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for every α, therefore
∫

D
bti

n
α (x)

(

∫

RN×d

|F |2 d(λti
n

α )x(F )
)

dx

=

∫

D
(bi−1)

ti−1
n

α (x)
(

∫

RN×d

|F +∇ϕi
n(x) −∇ϕi−1

n (x)|2 d((λi−1)
ti−1
n

α )x(F )
)

dx

≤
∫

D
(bi−1)

ti−1
n

α (x)
(

∫

RN×d

|F |2 d((λi−1)
ti−1
n

α )x(F )
)

dx + ‖∇ϕi
n‖2

2 + ‖∇ϕi−1
n ‖2

2 < +∞,

for every α. It is now easy to prove the approximations properties (1) and (2) of
Definition 5.1 for (b, λ) defined by (7.5) and (7.6). Suppose that for every k and
every j = 0, . . . , i− 1, ((Di−1)j,k

α )α is a measurable partition of D and (vi−1)j,k is a
function in ϕj

n + H1
0 (D; RN ), which satisfy conditions (1) and (2) for (bi−1, λi−1).

Then (Dj,k
α )α and vj,k, defined by

Dj,k
α := (Di−1)j,k

α for j < i

Di,k
α := (Di−1)i−1,k

α

vj,k := (vi−1)j,k for j < i

vi,k := (vi−1)i−1,k + ϕi
n − ϕi−1

n ,

for every α and every k, satisfy (1) and (2) for (b, λ).

Lemma 7.2. There exist constants γ > 0 and r > 1, such that for every n, every
i = 1, . . . , k(n), and every (bi−1, λi−1) ∈ Ad({t0n, . . . , ti−1

n , q, ϕ), the functional (7.1)
has a minimizer over Ai

n(bi−1, λi−1), which satisfies (7.4).

Proof. Let (bh, λh)h be a minimizing sequence. By the bounds on W we have

c
∑

α

∫

D
(bh)

ti
n

α (x)
(

∫

RN×d

|F |2 d((λh)
ti
n

α )x(F )
)

dx− C

≤〈W, ((bh)ti
n(λh)ti

n))〉 ≤ C′,

(7.7)

for every h, for a positive constant C′ independent of h. Moreover, we have

sup
h
‖(bh)

t0n...ti
n

α0...αi‖∞ ≤ 1,

for every (α0, . . . , αi) ∈ A
q
i+1. Therefore, we can deduce that there exists

(b(α0...αi))(α0...αi) ∈ (L∞(D; [0, 1]))qi+1

satisfying (3.6) and

(bh)
t0n...ti

n
α0...αi ⇀ bα0...αi L∞-weakly*,

as h →∞, up to a subsequence. In particular,

(bh)
ti
n

α ⇀
∑

(α0...αi−1)

bα0...αi−1α L∞-weakly*. (7.8)

From (7.7), we can deduce using Remark 3.7 and (7.8) that there exists
λ ∈ Y (D; RN×d)q such that

∫

D×RN×d

∑

(α0,...,αi−1)

bα0...αi−1α(x)|F |2 dλα(x, F ) < ∞,
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and

(bh)
ti
n

α (λh)
ti
n

α ⇀
∑

(α0...αi−1)

bα0...αi−1αλα 2-weakly*,

as h →∞, up to a subsequence. We now define

λtj
n

α := (λi−1)
tj
n

α , for every j < i and every α,

λti
n

α := λα for every α,

and b as the unique element in S({t0n, . . . , tin}, D, q) satisfying

bt0n...ti
n

α0...αi
:= bα0...αi for every (α0 . . . αi) ∈ A

q
i+1.

It is immediate to see that the hypotheses of Lemma 5.3 are satisfied by (b, λ),
hence (b, λ) ∈ Ad({t0n, . . . , tin}, q, ϕ). Moreover (b, λ) satisfies (7.2) and (7.3), by
construction; hence (b, λ) ∈ Ai

n(bi−1, λi−1).
The term of (7.1) containing W is lower semicontinuous with respect to the 2-

weak* convergence of Young measures, while the one containing H is L∞-weakly*
continuous; therefore the functional (7.1) is lower semicontinuous with respect to
the convergence we are considering, and this implies that (b, λ) is a solution of our
minimum problem.

Now we want to construct from (b, λ) a new minimizer (b, λ̄) satisfying property
(7.4). Let us set

(νi
n)ti

n
:=

q
∑

α=1

(bi
n)

ti
n

α (δα ⊗ (λi
n)

ti
n

α ),

(µi
n)t0n...ti

n
:=

∑

(α0,...,αi)

(bi
n)

t0n...ti
n

α0...αiδ(α0,...,αi).

From the definition of Ai
n(bi−1, λi−1) it follows that (νi

n, µi
n) ∈ AY ({t0n, . . . , tin}, Z, ϕ);

in particular there exist sequences (zi−1
n,k )k, (zi

n,k)k in L∞(D; Z), and (vi
n,k)k in A(tin)

satisfying

δ(zi−1

n,k ,zi
n,k) ⇀ (µi

n)ti−1
n ti

n
weakly*,

δ(zi
n,k,∇vi

n,k) ⇀ (νi
n)ti

n
2-weakly*,

as k → ∞. Thanks to Lemma 3.1, we can assume, without loss of generality,
that (|∇vi

n,k|2)k are equiintegrable; hence by the Fundamental Theorem for Young
measures (see, e.g., [3]) we may assume that

sup
k
‖∇vi

n,k‖2
2 ≤

∫

D×Z×RN×d

|F |2 d(νi
n)ti

n
(x, α, F ) + 1, (7.9)

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx →

∫

D×Z×RN×d

W (α, F ) d(νi
n)ti

n
(x, α, F ). (7.10)
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Denote by Ii
n the minimum value of (7.1) over Ai

n(bi−1, λi−1). Thanks to (7.10),
we can deduce that

lim
k

[

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx +

∫

D
H(zi

n,k(x), zi−1
n,k (x)) dx

]

=

∫

D×Z×RN×d

W (α, F ) d(νi
n)ti

n
(x, α, F )

+

∫

D×Z2

H(αi, αi−1) d(µi
n)ti−1

n ti
n
(x, αi−1, αi) = Ii

n.

Now we want to consider the following auxiliary minimum problem, for every k:

Ii
n,k := inf

v∈ϕi
n+H1

0

∫

D
W (zi

n,k(x),∇v(x)) dx+

∫

D
H(zi

n,k(x), zi−1
n,k (x)) dx. (7.11)

For every k, we choose v̂i
n,k ∈ ϕi

n + H1
0 (D; RN×d) such that

∫

D
W (zi

n,k(x),∇v̂i
n,k(x)) dx +

∫

D
H(zi

n,k(x), zi−1
n,k (x)) dx ≤ Ii

n,k + 1
k . (7.12)

Using vi
n,k as competitor in (7.11), we can easily deduce, from (7.12) and the growth

hypothesis on W , that

‖∇v̂i
n,k‖2

2 ≤ Ĉ(1 + ‖∇vi
n,k‖2

2),

for a suitable positive constant Ĉ, independent of n. Hence, thanks to (7.9),
supk ‖∇v̂i

n,k‖2
2 is bounded; in particular there exists ν̄i

n ∈ Y 2(D; Z × RN×d) such

that, up to a subsequence, δ(zi
n,k,∇v̂i

n,k) ⇀ ν̄i
n 2-weakly* as k → ∞. Thanks to

Lemma 3.1 we can assume, up to a subsequence, that |∇v̂i
n,k|2 is equiintegrable in

k.
Since πD×Z(ν̄i

n) =
∑

α(bi
n)

ti
n

α δα, by Remark 3.5 there exists a family of Young
measures λ̄i

n = ((λ̄i
n)α)α such that it holds

ν̄i
n =

q
∑

α=1

(bi
n)

ti
n

α (δα ⊗ (λ̄i
n)α); (7.13)

since ν̄i
n ∈ Y 2(D; Z × RN×d), (bi

n)
ti
n

α (λ̄i
n)α satisfies (3.13) for p = 2. We have

∫

D×Z×RN×d

W (α, F ) dν̄i
n(x, α, F ) +

∫

D×Z2

H(αi, αi−1) d(µi
n)ti−1

n ti
n
(x, α, β)

≤ lim inf
k

[

∫

D
W (zi

n,k(x),∇v̂i
n,k(x)) dx +

∫

D
H(zi

n,k(x), zi−1
n,k (x)) dx

]

≤ lim inf
k

[Ii
n,k + 1/k]

≤ lim inf
k

[

∫

D
W (zi

n,k(x),∇vi
n,k(x)) dx +

∫

D
H(zi

n,k(x), zi−1
n,k (x)) dx

]

= Ii
n.

(7.14)

The construction of ν̄i
n implies that the pair (b, λ̄), with

λ̄ := (λt0n , . . . ,λti−1
n , λ̄i

n)

= ((λi−1)t0n , . . . , (λi−1)ti−1
n , λ̄i

n),
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is an element of Ad({t0n, . . . , tin}, q, ϕ); moreover it satisfies the “memory properties”
(7.2) and (7.3) required to be in Ai

n(bi−1, λi−1). Hence

Ii
n ≤

∫

D×Z×RN×d

W (α, F ) dν̄i
n(x, α, F ) +

∫

D×Z2

H(αi, αi−1) d(µi
n)ti−1

n ti
n
(x, α, β); (7.15)

we can deduce from (7.14) and (7.15) that (b, λ̄) is a minimizer of (7.1) on the set
Ai

n(bi−1, λi−1).
Now we want to apply Ekeland Principle in order to construct a more regular

sequence (v̄i
n,k)k which, together with zi

n,k, generates ν̄i
n.

We define ûi
n,k as the function v̂i

n,k − ϕi
n ∈ H1

0 (D; RN ). Consider the functional

E defined on the Banach space W 1,1
0 (D; RN ) by

E(u) :=

{

∫

D W (zi
n,k(x),∇ϕi

n(x) +∇u(x)) dx if u ∈ H1
0 (D; RN );

+∞ otherwise.

This functional is strongly lower semicontinuous with respect to the W 1,1
0 topology,

it is positive and not infinite everywhere: hence we apply Ekeland Principle (see [12,
Corollary 6.1, p. 30]) to W 1,1

0 (D; RN ) endowed with the norm ‖u‖W 1,1
0

:= ‖∇u‖1,

and we deduce that there exists ūi
n,k ∈ H1

0 (D; RN ) with the following properties:
∫

D
W (zi

n,k(x),∇ϕi
n(x) +∇ūi

n,k(x)) dx

≤ inf
u∈W 1,1

0 (D;RN )
E(u) + 1/k =

= inf
u∈H1

0 (D;RN )

∫

D
W (zi

n,k(x),∇ϕi
n(x) +∇u(x)) dx + 1/k

≤ inf
v∈ϕi

n+H1
0 (D:RN )

∫

D

[

W (zi
n,k(x),∇v(x)) dx + H(zi

n,k(x), zi−1
n,k (x))

]

dx

+ 1/k = Ii
n,k + 1/k;

(7.16)

‖∇ūi
n,k −∇ûi

n,k‖1 ≤
1√
k

; (7.17)

∫

D
W (zi

n,k(x),∇ϕi
n(x) +∇ūi

n,k(x)) dx

≤
∫

D

[

W (zi
n,k(x),∇ϕi

n(x) +∇u(x)) +
1√
k
|∇u −∇ūi

n,k|
]

dx,
(7.18)

for every u ∈ H1
0 (D; RN ).

In particular these properties imply that

sup
k
‖∇ūi

n,k‖2
2 ≤ C̄(1 + sup

k
‖∇ûi

n,k‖2
2), (7.19)

for a suitable positive constant C̄ independent of k, n, and i, and

δ(zi
n,k,∇ϕi

n+∇ūi
n,k) ⇀ ν̄i

n 2-weakly*,

as k →∞.
Using the growth hypotheses on W , it is easy to deduce from (7.18) that, for k

sufficiently large, v̄i
n,k is a Q-quasi-minimum of the functional F : H1(D; RN ) → R
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defined by F(v) =
∫

D(1 + |∇v(x)|2) dx, for a suitable positive constant Q indepen-
dent of k, n, and i. Indeed, let us consider a cube QR ⊂ Rd and a function w such
that v̄i

n,k −w ∈ H1
0 (D ∩QR; RN ). We can extend w to D \QR by setting w = v̄i

n,k

a.e. in D \ QR and this extension (not relabeled) is in ϕi
n + H1

0 (D; RN ). If we take
w as a competitor in (7.18), we obtain

∫

D\QR

W (zi
n,k(x),∇v̄i

n,k(x)) dx +

∫

D∩QR

W (zi
n,k(x),∇v̄i

n,k(x)) dx ≤

≤
∫

D\QR

W (zi
n,k(x),∇v̄i

n,k(x)) dx +

∫

D∩QR

W (zi
n,k(x),∇w(x)) dx+

+
1√
k

∫

D∩QR

|∇w(x) −∇v̄i
n,k(x)| dx;

using the growth hypotheses on W , the previous inequality implies
∫

D∩QR

(c|∇v̄i
n,k(x)|2 − C) dx ≤

∫

D∩QR

C(|∇w|2 + 1) dx

+
1√
k

∫

D∩QR

|∇w(x) −∇v̄i
n,k(x)| dx.

Now we have

|∇w(x) −∇v̄i
n,k(x)| ≤ |∇w(x) −∇v̄i

n,k(x)|2 + 1 ≤ 2(|∇w(x)|2 + |∇v̄i
n,k(x)|2) + 1;

hence
∫

D∩QR

c|∇v̄i
n,k(x)|2 dx ≤

∫

D∩QR

C(|∇w|2 + 2) dx

+
1√
k

∫

D∩QR

[2(|∇w(x)|2 + |∇v̄i
n,k(x)|2) + 1] dx.

We can rewrite the previous inequality as follows:

(c−
2√
k

)

∫

D∩QR

(|∇v̄i
n,k(x)|2 + 1) dx ≤

≤(C +
2√
k

)

∫

D∩QR

(|∇w(x)|2 + 1) dx +

∫

D∩QR

(C + c−
3√
k

) dx;

hence, if k is sufficiently large we can assume that c/2 ≤ c − (3/
√

k) < c, so that
we obtain

∫

D∩QR

(|∇v̄i
n,k(x)|2 + 1) dx ≤

4(C + c)

c

∫

D∩QR

(|∇w(x)|2 + 1) dx,

which proves that v̄i
n,k is a 4(C + c)/c-quasi-minimum of F .

We can now apply Theorem 8.7, and conclude that there exist two constants
γ > 0 and r > 1, both independent of k, n, and i, such that

∫

D
|∇v̄i

n,k(x)|2r dx ≤ γ
[

1 +
(

∫

D
|∇v̄i

n,k(x)|2 dx
)r

]

,

for every k. In particular, thanks to (7.19), we have
∫

D
|∇(v̄i

n)k(x)|2r dx ≤γ
[

1 + ‖∇(v̄i
n)k‖2r

2

]

≤

≤γ̃
[

(1 + ‖∇(v̂i
n)k‖2r

2

]

,
(7.20)



280 ALICE FIASCHI

for a suitable constant γ̃ > 0 independent of k, n, and i. Thanks to the equiinte-
grability of |∇v̂i

n,k|2, using the Fundamental Theorem for Young measures we can
deduce that

q
∑

α=1

∫

D×RN×d

bti
n

α (x)|F |2r dλ̄i
n(x, F )

≤ lim inf
k

∫

D
|∇v̄i

n,k(x)|2r dx

≤γ̃[1 + (lim
k

∫

D
|∇v̂i

n,k|2 dx)r ]

=γ̃[1 + (
∑

α

∫

D×RN×d

bti
n

α (x)|F |2 dλ̄i
n(x, F ))r ].

This concludes the proof.

Using the minimization process described so far, it is possible to construct in-
ductively (bi

n, λi
n), for every i = 1, . . . , k(n) and every n.

Set τn(s) := tin, whenever tin ≤ s < ti+1
n , where we set tk(n)+1

n := T + 1
n .

For every i and n we set

σi
n(x) :=

q
∑

α=1

∫

RN×d

(bi
n)

ti
n

α (x)
∂W

∂F
(α, F ) d((λi

n)
ti
n

α )x(F ),

and define

σn(t, x) := σi
n(x), (7.21)

for a.e. x ∈ D, whenever tin ≤ t < ti+1
n .

For every α = 1, . . . , q, we define (λn)α ∈ Y (D; RN×d)[0,T ] by

(λn)s
α := (λi

n)
ti
n

α , (7.22)

whenever tin = τn(s), for every s ∈ [0, T ]; we define also bn ∈ S([0, T ], D; Rm) as
the piecewise constant interpolation of bk(n)

n (see Definition 3.2).
Note that (bn, λn) ∈ Ad([0, T ], q, ϕ(τn(·))) by construction.

7.2. A priori estimates. Set

(νi
n)ti

n
:=

q
∑

α=1

(bi
n)

ti
n

α (δα ⊗ (λi
n)

ti
n

α ),

(µi
n)t0n...ti

n
:=

∑

(α0,...,αi)

(bi
n)

t0n...ti
n

α0...αiδ(α0,...,αi),

for every i = 1, . . . , k(n), and

(νn)t :=
q

∑

α=1

(bn)t
α(δα ⊗ (λn)t

α),

(µn)t0...tm :=
∑

(α0,...,αm)

(bn)t0...tm
α0...αn

δ(α0,...,αm),

for every t ∈ [0, T ] and every t0 < · · · < tm in [0, T ].
As in [13, Section 7.2], we want to deduce a discrete version of the energy in-

equality for (bn, λn). We briefly recall the argument for the reader’s convenience.
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Using the competitor defined in the proof of Lemma 7.1, we have
∫

D×Z×RN×d

W (α, F ) d(νi
n)ti

n
(x, α, F )

+

∫

D×(Z)2
H(αi − αi−1) d(µi

n)ti−1
n ti

n
(x, α, β)

≤
∫

D×Z×RN×d

W (α, F ) d(νi−1
n )ti−1

n
(x, α, F )

+

∫

D×Z×RN×d

[W (α, F +∇ϕi
n(x) −∇ϕi−1

n (x)) −W (α, F )] d(νi−1
n )ti−1

n
(x, α, F ).

Let us fix t in (0, T ] and suppose that tin ≤ t < ti+1
n , for suitable i = 0, . . . , k(n)+

1; using
∫

D×Z×RN×d

[W (α, F +∇ϕi
n(x)−∇ϕi−1

n (x))−W (α, F )] d(νi−1
n )ti−1

n
(x, α, F )

=

∫ ti
n

ti−1
n

(

∫

D×Z×RN×d

∂W

∂F
(α, F + εn(s, x))∇ϕ̇(s, x) d(νn)s(x, α, F )

)

ds,

where εn(s, x) := ∇ϕ(s, x) − ∇ϕ(τn(s), x), for every s ∈ [0, T ] and every x ∈ D,
and iterating from i to 1, we obtain

∫

D×Z×RN×d

W (α, F ) d(νn)t(x, α, F ) + VarH(µn; 0, t)

≤W(z0, v0) +

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉2 ds

+

∫ τn(t)

0

(

∫

D×Z×RN×d

[∂W

∂F
(α, F + εn(s, x)) −

∂W

∂F
(α, F )

]

∇ϕ̇(s) d(νn)s(x, α, F )
)

ds.

(7.23)

From (7.23), we can deduce the following a priori estimates on (νn, µn).

Lemma 7.3. There exists a positive constant C, such that

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|F |2r d(νn)t(x, α, F ) ≤ C, (7.24)

sup
n

VarH(µn; 0, T ) ≤ C. (7.25)

Remark 7.4. Since Z is finite, (7.24) implies that

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|(α, F )|2r d(νn)t(x, α, F ) ≤ C. (7.26)

Proof of Lemma 7.3. Using the fact that
∫ T
0 ‖ϕ̇(t)‖H1 dt is finite, the hypotheses

on W and the inequality

sup
s∈[0,T ]

∫

D×Z×RN×d

|F |2 d(νn)s(x, α, F ) < ∞,
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(since νn are piecewise constant interpolations of Young measures with finite second
moments), we can deduce from (7.23) that, for n sufficiently large,

∫

D×Z×RN×d

|F |2 d(νn)t(x, α, F )

≤C̃ + C̃ sup
s∈[0,T ]

(

1 + c̃

∫

D×Z×RN×d

|F |2 d(νn)s(x, α, F )
)1/2

,

for suitable positive constants C̃ and c̃ independent of t and n.
Since this can be repeated for every t ∈ [0, T ], we deduce

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|F |2 d(νn)t(x, α, F ) ≤ C, (7.27)

Inequality (7.24) comes now from (7.27) and (7.4), while inequality (7.25) follows
from (7.27) and (7.23).

Using Lemma 7.3 and adapting the proof of [13, Lemma 7.5], we can deduce the
following discrete version of the energy inequality: for every t in (0, T ]

∫

D×Z×RN×d

W (α, F ) d(νn)t(x, α, F ) + VarH(µn; 0, t)

≤W(z0, v0) +

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉2 ds + ρn,

(7.28)

where ρn → 0 as n →∞.

7.3. Passage to the limit. Thanks to (7.25), we can apply Helly’s Theorem (The-
orem 3.3) to the sequence (bn)n and obtain a subsequence, still indicated with (bn)n,
a subset T of [0, T ], containing 0, with L1([0, T ] \ T ) = 0, and b ∈ S−([0, T ], D, q),
such that, for every finite sequence t1 < · · · < tl in T , we have

(bn)t1...tl
α1...αl

⇀ bt1...tl
α1...αl

L∞-weakly*, (7.29)

as n →∞, for every (α1, . . . , αl) ∈ A l
q . Denote by µ the element in SY−([0, T ], D; Z)

corresponding to b.
Let T ′ be a dense countable subset of T containing 0. Thanks to (7.26) and

Remark 3.7, we can find with a diagonalization process a subsequence of (λn)n,
still indicated by (λn)n, and λt = (λt

α)α ∈ Y (D; RN×d)q for every t ∈ T ′, such that

∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (7.30)

and

(bn)t
α(λn)t

α ⇀ bt
αλt

α 2r-weakly*, as n →∞, (7.31)

for every t ∈ T ′. Note that the family of coefficients b appearing here is the same as
in (7.29), because πD×Z((νn)t) = (µn)t for every t ∈ [0, T ] and thanks to Remark
3.5; moreover, by construction of (νn, µn) we have

b0
α = (bn)0α = 1D0

α
, (7.32)

(λ0
α)x = ((λn)0α)x = δ∇v0(x) for a.e. x ∈ D0

α, (7.33)

(7.34)

where D0
α := {x ∈ D : z0(x) = α}.
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For every t ∈ T \T ′, let us choose an increasing sequence of integers nt
k, possibly

depending on t, such that

lim sup
n

〈σn(t),∇ϕ̇(t)〉2 = lim
k
〈σnt

k
(t),∇ϕ̇(t)〉2 (7.35)

(this choice is crucial in order to apply the argument in [10, Section 7]). Again
by (7.26) and Remark 3.7, we can extract a further subsequence, still denoted by
(λnt

k
)k, satisfying (7.35) and such that there exists λt ∈ Y (D; RN×d)q with

∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (7.36)

(bnt
k
)t
α(λnt

k
)t
α ⇀ bt

αλt
α 2r-weakly*, as k →∞. (7.37)

Note that, thanks to (W.2), we have

lim sup
n

〈σn(t),∇ϕ̇(t)〉2 = 〈σ(t),∇ϕ̇(t)〉2, (7.38)

where

σ(t, x) :=
∑

α

bt
α(x)

∫

RN×d

∂W

∂F
(α, F ) d(λt

α)x(F ),

for every t ∈ T . This implies that the map (6.2) is measurable on [0, T ]; moreover
for every t ∈ T ′ we have

lim sup
n

〈σn(t),∇ϕ̇(t)〉2 = lim
n
〈σn(t),∇ϕ̇(t)〉2.

The family ν will denote the element of Y 2r(D; Z × RN×d)T corresponding to
(b, λ). Let t ∈ [0, T ] \ T , and fix a sequence sj in T converging to t with sj < t; by
(7.30), and (7.36), we have

sup
j

∫

D
bsj

α (x)
(

∫

RN×d

|F |2r d(λsj
α )x(F )

)

dx ≤ C;

for every j; again by Remark 3.7, we can find a subsequence, not relabeled, and
λt ∈ Y (D; RN×d) such that

∫

D×RN×d

bt
α(x)|F |2r dλt

α(x, F ) ≤ C, (7.39)

and

bsj
α λsj

α ⇀ bt
αλt

α 2r-weakly*, as j →∞. (7.40)

Note that, since πD×Z(νt) = µt for every t ∈ T , the left continuity of b defined
in (7.29) ensures that the family of coefficients appearing in (7.40) is the same as
in (7.29).

In this way we defined λ ∈ (Y (D; RN×d)q)[0,T ], and consequently ν ∈ Y 2r(D; Z×
RN×d)[0,T ]. It can be shown that (b, λ) ∈ Ad([0, T ], q, ϕ) using Lemma 5.3 and
adapting the argument in [13, Section 7.3].

By construction (b, λ) satisfies (ev0).
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7.4. Stability. Fix n and i = 1, . . . , k(n). Let

M : D → M
q×q
S

x *→ (Mβα(x))βα,

be a measurable map, and let ũ ∈ H1
0 (D; RN ). We define (ν̃i

n, µ̃i
n) ∈ Y 2(D; Z ×

RN×d){t0n,...,ti
n} × SY ({t0n, . . . , tin}, D, Z) by

(ν̃i
n)tj

n
:= (νi

n)tj
n

if j < i

(ν̃i
n)ti

n
:=

∑

α,β

Mβα(bi
n)

ti
n

α (δβ ⊗ T∇ũ(λi
n)

ti
n

α ),

(µ̃i
n)t0n...ti

n
:=

∑

α,β

Mβα(bi
n)

t0n...ti
n

α0...αi−1αδ(α0,...,αi−1,β),

where T∇ũ is defined as in (3.1).

Lemma 7.5. The pair (ν̃i
n, µ̃i

n) is in AY ({t0n, . . . , tin}, Z, ϕ).

Proof. Consider (νi
n, µi

n) ∈ AY ({t0n, . . . , tin}, Z, ϕ): for every j = 0, . . . , i, there
exist a sequence (vj

k)k contained in ϕ(tjn) + H1
0 (D; RN ), and a sequence ((Dj

α)k)α,
indexed by k, of measurable partitions of D, such that

(1) we have
∑

α0,...,αi

1(D0
α0

)k
· · · · · 1(Di

αi
)k

δ(α0,...,αi) ⇀ (µi
n)t0n...ti

n
weakly*,

as k →∞;
(2) for every j = 0, . . . , i, there exists a subsequence (kj

l )l, possibly dependent on
j, such that

q
∑

α=1

1(Dj
α)

k
j
l

δ(α,∇vj

k
j
l

) ⇀ (νi
n)tj

n
2-weakly*,

as l →∞.

In particular these conditions imply that
∑

α0,...,αi−1,α,β

Mβα1(D0
α0

)k
· · · 1(Di−1

αi−1
)k

· 1(Di
α)k

δ(α0,...,αi−1,β)
k→∞
⇀ (µ̃i

n)t0n...ti
n

weakly*;

∑

α,β

Mβα1(Di
α)ki

l

δ(β,∇vi
ki

l

+∇ũ)
l→∞
⇀ (ν̃i

n)ti
n

2-weakly*;

q
∑

α=1

1(Dj
α)

k
j
l

δ(α,∇vj

kj
l

)
l→∞
⇀ (ν̃i

n)tj
n

2-weakly*,

for every j < i. Thanks to Lemma 5.4, the pair (ν̃k, µ̃k) ∈ Y 2(D; Z×RN×d){t0n,...,ti
n}

× SY 2({t0n, . . . , tin}, D; Z), defined by

(ν̃k)ti
n

:=
∑

α,β

Mβα1(Di
α)k

δ(β,∇vi
k+∇ũ),

(ν̃k)tj
n

:=
q

∑

α=1

1(Dj
α)k

δ(α,∇vj
k) for every j < i,

(µ̃i
n)t0n...ti

n
:=

∑

α0,...,αi−1,α,β

Mβα1(D0
α0

)k
· · · · · 1(Di−1

αi−1
)k

· 1(Di
α)k

δ(α0,...,αi−1,β),
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is an element of AY ({t0n, . . . , tin}, Z, ϕ), for every k. Therefore the thesis can be
deduced using [13, Lemma 6.6].

Set

(b̃
i

n)
t0n...ti−1

n ti
n

α0...αi−1β :=
∑

α

Mβα(bi
n)

t0n...ti−1
n ti

n
α0...αi−1α,

(λ̃
i

n)
tj
n

β := (λi
n)

tj
n

β for every j < i,

and

((λ̃
i
n)

ti
n

β )x :=

∑

α Mβα(x)(bi
n)

ti
n

α (x)T∇ũ(x)(((λ
i
n)

ti
n

α )x)
∑

α Mβα(x)(bi
n)

ti
n

α (x)
if

∑

α

Mβα(x)(bi
n)

ti
n

α (x) > 0

for a.e. x ∈ D, for every β, and every (α0, . . . , αi−1) ∈ A i
q , where T∇ũ(x) : RN×d →

RN×d is the map defined in (3.1); since (b̃
i
n, λ̃

i
n) is the element corresponding to

(ν̃i
n, µ̃i

n), we immediately deduce from Lemma 7.5 that (b̃
i
n, λ̃

i
n) is in Ai

n(bi−1
n , λi−1

n ).
The minimizing property of (bi

n, λi
n) implies that

∑

α

∫

D
(bi

n)
ti
n

α (x)
(

∫

RN×d

W (α, F ) d((λi
n)

ti
n

α )x(F )
)

dx

+
∑

αγ

H(α, γ)

∫

D
(bi

n)
ti−1
n ti

n
γα (x) dx

≤
∑

α

∫

D
(b̃

i
n)

ti
n

α (x)
(

∫

RN×d

W (α, F ) d((λ̃
i
n)

ti
n

α )x(F )
)

dx

+
∑

βγ

H(β, γ)

∫

D
(b̃

i
n)

ti−1
n ti

n
γβ (x) dx;

in other words
∑

α

∫

D
(bi

n)
ti
n

α (x)
(

∫

RN×d

W (α, F ) d((λi
n)

ti
n

α )x(F )
)

dx

≤
∑

αβ

∫

D
Mβα(x)(bi

n)
ti
n

α (x)
(

∫

RN×d

W (β, F +∇ũ) d((λi
n)

ti
n

α )x(F )
)

dx

+
∑

αγβ

H(β, γ)

∫

D
Mβα(x)(bi

n)
ti−1
n ti

n
γα (x) dx−

∑

αγ

H(α, γ)

∫

D
(bi

n)
ti−1
n ti

n
γα (x) dx.

(7.41)

Since
∑

β Mβα(x) = 1 for a.e. x ∈ D and every α, we can deduce, using the triangle
inequality, that

∑

αβγ

H(β, γ)

∫

D
Mβα(x)(bi

n)
ti−1
n ti

n
γα (x) dx−

∑

αγ

H(α, γ)

∫

D
(bi

n)
ti−1
n ti

n
γα (x) dx

=
∑

αβγ

H(β, γ)

∫

D
Mβα(x)(bi

n)
ti−1
n ti

n
γα (x) dx−

∑

αβγ

H(α, γ)

∫

D
Mβα(x)(bi

n)
ti−1
n ti

n
γα (x) dx

≤
∑

αβ

H(β, α)

∫

D
Mβα(x)

∑

γ

(bi
n)

ti−1
n ti

n
γα (x) dx =

∑

αβ

H(β, α)

∫

D
Mβα(x)(bi

n)
ti
n

α (x) dx.
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Hence we deduce from (7.41) that

∑

α

∫

D
(bi

n)
ti
n

α (x)
(

∫

RN×d

W (α, F ) d((λi
n)

ti
n

α )x(F )
)

dx

≤
∑

αβ

∫

D
Mβα(x)(bi

n)
ti
n

α (x)
(

∫

RN×d

W (β, F +∇ũ(x)) d((λi
n)

ti
n

α )x(F )
)

dx

+
∑

αβ

H(β, α)

∫

D
Mβα(x)(bi

n)
ti
n

α (x) dx,

for every n and i = 1, . . . , k(n); we can rewrite the previous inequality in the
following form

∑

α

∫

D
(bn)t

α(x)
(

∫

RN×d

W (α, F ) d((λn)t
α)x(F )

)

dx

≤
∑

αβ

∫

D
Mβα(x)(bn)t

α(x)
(

∫

RN×d

W (β, F +∇ũ(x)) d((λn)t
α)x(F ) dx

+
∑

αβ

H(β, α)

∫

D
Mβα(x)(bn)t

α(x) dx,

(7.42)

for every t ∈ T \ {0} and every n. From (7.29) we can deduce that

∑

αβ

H(β, α)

∫

D
Mβα(x)(bn)t

α(x) dx

−→
∑

αβ

H(β, α)

∫

D
Mβα(x)bt

α(x) dx,
(7.43)

as n →∞, for every t ∈ T \ {0}.
Consider (ν̄n)t :=

∑

αβ Mβα(bn)t
α(δβ ⊗ (λn)t

α), for every t ∈ (0, T ]; we have

sup
n

sup
t∈(0,T ]

∫

D×Z×RN×d

|(α, F )|2r d(ν̄n)t(x, α, F )

= sup
n

sup
t∈(0,T ]

∫

D

∑

αβ

Mβα(x)(bn)t
α(x)

(

∫

RN×d

|(β, F )|2r d((λn)t
α)x(F )

)

dx

≤q sup
n

sup
t∈(0,T ]

∫

D

∑

α

(bn)t
α(x)

(

∫

RN×d

|(α, F )|2r d((λn)t
α)x(F )

)

dx

+ sup
α

|α|2r

=q sup
n

sup
t∈(0,T ]

∫

D×Z×RN×d

|(α, F )|2r d(νn)t(x, α, F ) + K,

for K := supα |α|2r; therefore we can deduce from (7.26) that

sup
n

sup
t∈[0,T ]

∫

D×Z×RN×d

|(α, F )|2r d(ν̄n)t(x, α, F ) ≤ K + qC.

In particular for every t ∈ T \ {0}, we deduce from (7.31) and (7.37) that

(ν̄nt
k
)t ⇀ ν̄t :=

∑

αβ

Mβαbt
α(δβ ⊗ λt

α) 2r-weakly*, (7.44)
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as k → ∞, where (b, λ) is the pair defined by (7.29), (7.31), and (7.37). Since
|W (α, F +∇ũ(x))| ≤ C(1+ |∇ũ(x)|2)+C|F |2, we can use a suitable version of [13,
Remark 4.3] in the case 2r instead of 2, to deduce from (7.44) that

∑

αβ

∫

D
Mβα(x)(bnt

k
)t
α(x)

(

∫

RN×d

W (β, F +∇ũ(x)) d((λnt
k
)t
α)x(F ) dx

−→
∑

αβ

∫

D
Mβα(x)bt

α(x)
(

∫

RN×d

W (β, F +∇ũ(x)) d(λt
α)x(F ) dx,

(7.45)

as k →∞. Analogously we deduce that
∑

α

∫

D
(bnt

k
)t
α(x)

(

∫

RN×d

W (α, F ) d((λnt
k
)t
α)x(F )

)

dx

−→
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (α, F ) d(λt
α)x(F )

)

dx,
(7.46)

as k → ∞; therefore using (7.42), (7.46), (7.45), and (7.43), we can deduce imme-
diately (ev1), for every t ∈ T \ {0}, while for t = 0 it is an obvious consequence of
(ev0) and the hypothesis on the initial datum. For t ∈ [0, T ]\T , (ev1) can be easily
proved using (7.40) and (ev1) for t ∈ T , as in [13, Section 7.3].

7.5. Upper energy estimate. Let us fix t ∈ T . We have
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (α, F ) d(λt
α)x(F )

)

dx + DissH(b; 0, t)

≤ lim inf
k

[

∑

α

∫

D
(bnt

k
)t
α(x)

(

∫

RN×d

W (α, F ) d((λnt
k
)t
α)x(F )

)

dx + DissH(bnt
k
; 0, t)

]

;

using (7.28), we can deduce that
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (α, F ) d(λt
α)x(F )

)

dx + DissH(b; 0, t)

≤W(z0, v0) + lim sup
n

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉2 ds;

since supt supn ‖σn(t)‖2 is finite, we have by Fatou Lemma

lim sup
n

∫ τn(t)

0
〈σn(s),∇ϕ̇(s)〉2 ds

≤
∫ T

0
lim sup

n
[1[0,τn(t)](s)〈σn(s),∇ϕ̇(s)〉2] ds

=

∫ t

0
〈σ(s),∇ϕ̇(s)〉2 ds.

Hence we have
∑

α

∫

D
bt

α(x)
(

∫

RN×d

W (α, F ) d(λt
α)x(F )

)

dx + DissH(b; 0, t)

≤W(z0, v0) +

∫ t

0
〈σ(s),∇ϕ̇(s)〉2 ds

(7.47)

Using (7.40), (7.40), and the left continuity of b, the same argument as in [13,
Section 7.3] proves (ev2) for t ∈ [0, T ] \ T .
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7.6. Lower energy estimate. The standard procedure to prove the lower energy
estimate uses a special minimality condition satisfied by the limit of the approx-
imate solutions thanks to the stability property (see [15, Step 5, p. 7]). In our
case, the partial-global stability is not powerful enough to guarantee this minimal-
ity property, because of the restriction on the set of competitors. Nevertheless, the
desired minimality can be partially recovered using the properties of the approxi-
mate solutions.

Let us consider first s < t with s ∈ T ′ and t ∈ T .
Thanks to the minimality property satisfied by the approximate solutions defined

in Subsection 7.1, and to the triangle inequality for H , we get

〈W, (bs
n, λs

n)〉 ≤ 〈W, (bt
n, T̃∇ϕ(τn(s))−∇ϕ(τn(t))(λ

t
n))〉+ 〈H, bst

n 〉. (7.48)

In other words, we have

∑

α

∫

D×RN×d

(bn)s
αW (α, F ) d(λn)s

α(x, F )

≤
∑

α

∫

D×RN×d

(bn)t
αW (α, F −∇ϕ(τn(t)) +∇ϕ(τn(s))) d(λn)t

α(x, F )

+
∑

αβ

H(β, α)

∫

D
(bn)st

αβ(x) dx.

We can rewrite the previous inequality as follows

∑

α

∫

D×RN×d

(bn)s
αW (α, F ) d(λn)s

α(x, F )

≤
∑

α

∫

D×RN×d

(bn)t
αW (α, F −∇ϕ(t) +∇ϕ(s)) d(λn)t

α(x, F )

+
∑

αβ

H(β, α)

∫

D
(bn)st

αβ(x) dx + ρ′n,

(7.49)

with

ρ′n :=
∣

∣

∣

∑

α

∫

D×RN×d

(bn)t
α

[

W (α, F −∇ϕ(τn(t)) +∇ϕ(τn(s))) +

−W (α, F −∇ϕ(t) +∇ϕ(s))
]

d(λn)t
α(x, F )

∣

∣

∣
.

Since s *→ ϕ(s) is continuous from [0, T ] into W 1,p(D; RN ), using (W.2), Hölder
inequality, and (7.24), we can easily deduce that ρ′n → 0, as n →∞.

Since s ∈ T ′ and t ∈ T , we will have

(bn)st
αβ ⇀ bst

αβ L∞-weakly* as n →∞
(bn)s

α(λn)s
α ⇀ bs

αλs
α 2r-weakly*, as n →∞,

(bnt
k
)t
α(λnt

k
)t
α ⇀ bt

αλt
α 2r-weakly*, as k →∞,
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for every α, β, where nt
k is the sequence of integers chosen in (7.35), if t /∈ T ′. Hence

passing to the limit in (7.49) we get

∑

α

∫

D×RN×d

bs
α(x)W (α, F ) dλs

α(x, F )

= lim
n

∑

α

∫

D×RN×d

(bn)s
α(x)W (α, F ) d(λn)s

α(x, F )

= lim
k

∑

α

∫

D×RN×d

(bnt
k
)s
α(x)W (α, F ) d(λnt

k
)s
α(x, F )

≤ lim
k

[

∑

α

∫

D×RN×d

(bnt
k
)t
α(x)W (α, F −∇ϕ(t) +∇ϕ(s)) d(λnt

k
)t
α(x, F )

+
∑

αβ

H(β, α)

∫

D
(bnt

k
)st
αβ(x) dx + ρ′nt

k

]

=
∑

α

∫

D×RN×d

bt
α(x)W (α, F −∇ϕ(t) +∇ϕ(s)) dλt

α(x, F )

+
∑

αβ

H(β, α)

∫

D
bst

αβ(x) dx.

(7.50)

Hence we have obtained

∑

α

∫

D×RN×d

bs
α(x)W (α, F ) dλs

α(x, F )

≤
∑

α

∫

D×RN×d

bt
α(x)W (α, F −∇ϕ(t) +∇ϕ(s)) dλt

α(x, F )

+
∑

αβ

H(β, α)

∫

D
bst

αβ(x) dx.

(7.51)

If τ ∈ [0, T ] \ T , thanks to the left continuity of b and to (7.40) there exists a
sequence sj in T with sj ≤ τ and converging to τ such that

bsj
α λsj

α ⇀ bτ
αλτ

α 2r-weakly*, as j →∞. (7.52)

For every j (7.51) holds true for t = sj, hence we use (7.52), (W.2), Hölder
inequality, and the continuity of the map t *→ ∇ϕ(t) to pass to the limit as j →∞
and to obtain (7.51) for s ∈ T ′ and τ ∈ [0, T ] \ T .

By changing the choice of the subsequence in (7.50), we can obtain (7.51) in the
case of s ∈ T and t ∈ T ′, and consequently for s ∈ [0, T ] and t ∈ T ′.

In particular, we observe that, unlike the classical case in which it comes from
the stability condition, we are not able to obtain (7.51) if both s and t do not belong
to T ′.

We can rewrite (7.51) as follows

〈W, (bs, λs)〉 ≤〈W, (bt, λt)〉+ 〈H, bst〉

−
∫ t

s
〈σ(t),∇ϕ̇(τ)〉2 dτ + ρ(s, t),

(7.53)
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where

ρ(s, t) :=

∫ t

s

{

∑

α

∫

D×RN×d

bt
α(x)

[

−
∂W

∂F
(α, F +∇ϕ(τ)−∇ϕ(t))

+
∂W

∂F
(α, F )

]

∇ϕ̇(τ) dλt
α(x, F )

}

dτ.

Let us now fix t ∈ [0, T ]. We consider a sequence of partitions 0 = s0
j < s1

j · · · <

s
ij

j = t with s1
j ≤ 1/j, t− s

ij−1
j ≤ 1/j and si

j − si−1
j = 1/j for i = 2, . . . , ij − 1; we

would like to choose these partitions in such a way that

for every i = 1, . . . , ij , si
j ∈ T ′ or si−1

j ∈ T ′; (7.54)

in this way (7.53) would hold true for si−1
j , si

j , for every i, and we could iterate it
between 0 and t and pass to the limit as j → ∞. Unfortunately, to recover the
lower energy estimate in the limit, we need to approximate a Lebesgue integral by
Riemann sums (see [15, 4, Step 5]): this can be done for a careful choice of the

sequence of partitions 0 = s0
j < s1

j · · · < s
ij

j = t (see e.g. [10, Lemma 4.12]), but
nothing guarantees that the appropriate sequence of partitions satisfies (7.54). We
recall the statement of the measure theoretic result for the reader’s convenience.

Lemma 7.6. Let X be a Banach space, and let F : [0, t] → X be a Bochner inte-
grable function. Then there exists a sequence of partitions S := {si

j , 0 ≤ i ≤ ij, j ∈
N} of the interval [0, t], with

0 = s0
k < · · · < s

ij−1

j < s
ij

j = t,

s1
j ≤ 1/j, t− s

ij−1
j ≤ 1/j, (7.55)

si
j − si−1

j = 1/j for i = 2, . . . , ij − 1, (7.56)

such that

lim
j

ij
∑

i=1

∫ si
j

si−1
j

‖F (si
j)− F (τ)‖ dτ = 0. (7.57)

We apply this Lemma to the functional defined by

F : [0, t] → L2(D; RN )× R

τ *→ (∇ϕ̇(τ), 〈σ(τ),∇ϕ̇(τ)〉2), (7.58)

in order to find a sequence of partitions S := {si
j, 0 ≤ i ≤ ij , j ∈ N} of [0, t]

satisfying (7.55) and (7.56), and such that

lim
j

ij
∑

i=1

∫ si
j

si−1
j

‖∇ϕ̇(si
j)−∇ϕ̇(τ)‖2 dτ = 0, (7.59)

lim
j

ij
∑

i=1

∫ si
j

si−1
j

|〈σ(si
j),∇ϕ̇(si

j)〉2 − 〈σ(τ),∇ϕ̇(τ)〉2| dτ = 0. (7.60)
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Whenever both si−1
j and si

j belong to [0, T ] \ T ′, we consider ti−1
j ∈ (si−1

j , si−1
j +

1/j2) ∩ T ′, so that (7.53) holds true for si−1
j , ti−1

j and ti−1
j , si

j . Hence we get

〈W, (bsi−1
j , λsi−1

j )〉 ≤〈W, (bsi
j , λsi

j )〉+ 〈H, bsi−1
j ti−1

j 〉+ 〈H, bti−1
j si

j 〉

−
∫ si

j

si−1
j

〈σ(si
j),∇ϕ̇(τ)〉2 dτ

−
∫ ti−1

j

si−1
j

〈σ(ti−1
j )− σ(si

j),∇ϕ̇(τ)〉2 dτ

+ ρ(si−1
j , ti−1

j ) + ρ(ti−1
j , si

j),

where

ρ(si−1
j , ti−1

j ) =

∫ ti−1
j

si−1
j

{

∑

α

∫

D×RN×d

b
ti−1
j

α (x)
[

−
∂W

∂F
(α, F +∇ϕ(τ) −∇ϕ(ti−1

j ))

+
∂W

∂F
(α, F )

]

∇ϕ̇(τ) dλ
ti−1
j

α (x, F )
}

dτ,

ρ(ti−1
j , si

j) =

∫ si
j

ti−1
j

{

∑

α

∫

D×RN×d

b
si

j
α (x)

[

−
∂W

∂F
(α, F +∇ϕ(τ) −∇ϕ(si

j))

+
∂W

∂F
(α, F )

]

∇ϕ̇(τ) dλ
si

j
α (x, F )

}

dτ.

We iterate now from 0 to t; using (ev0) and

ij
∑

i=1

(

〈H, bsi−1
j ti−1

j 〉+ 〈H, bti−1
j si

j 〉
)

≤ DissH(b; 0, t),

we get

W(z0, v0)− 〈W, (bt, λt)〉 −DissH(b; 0, t)

≤−
ij

∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(τ)〉2 dτ −

ij
∑

i=1

∫ ti−1
j

si−1
j

〈σ(ti−1
j )− σ(si

j),∇ϕ̇(τ)〉2 dτ

+

ij
∑

i=1

[

ρ(si−1
j , ti−1

j ) + ρ(ti−1
j , si

j)
]

.

Reasoning as in [13, Lemma 7.5], we can deduce that

ij
∑

i=1

[

ρ(si−1
j , ti−1

j ) + ρ(ti−1
j , si

j)
]

→ 0 as j →∞.
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Moreover, using Hölder inequality and the fact that supt ‖σ(t)‖2 is bounded, we
can deduce that

∣

∣

∣

ij
∑

i=1

∫ ti−1
j

si−1
j

〈σ(ti−1
j )− σ(si

j),∇ϕ̇(τ)〉2 dτ
∣

∣

∣

≤2 sup
t
‖σ(t)‖2

ij
∑

i=1

∫ ti−1
j

si−1
j

‖∇ϕ̇(τ)‖2 dτ

=2 sup
t
‖σ(t)‖2

∫

⋃ ij
i=1

[si−1
j ,ti−1

j ]
‖∇ϕ̇(τ)‖2 dτ.

Since L1(
⋃

i[s
i−1
j , ti−1

j ]) ≤ (tj + 2)/j2 → 0 as j → ∞, and ∇ϕ̇ ∈ L1([0, T ]; L2(D;

RN×d)), we get
∫

⋃

i[s
i−1
j ,ti−1

j ] ‖∇ϕ̇(τ)‖ dτ → 0 as j →∞.

Hence it remains only to prove that

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(τ)〉2 dτ −

∫ t

0
〈σ(τ)∇ϕ̇(τ)〉2 dτ −→ 0, (7.61)

as j →∞.
Let us first prove that

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(τ)〉2 dτ −

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(si

j)〉2 dτ −→ 0, (7.62)

as j →∞.
Thanks to (7.59), using Hölder inequality and the fact that supt∈[0,T ] ‖σ(t)‖2 is

finite we deduce that

∣

∣

∣

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(τ)〉2 dτ −

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(si

j)〉2 dτ
∣

∣

∣

≤
ij

∑

i=1

∫ si
j

si−1
j

‖σ(si
j)‖2‖∇ϕ̇(τ) −∇ϕ̇(si

j)‖2 dτ ≤

≤ sup
t∈[0,T ]

‖σ(t)‖2

ij
∑

i=1

∫ si
j

si−1
j

‖∇ϕ̇(τ) −∇ϕ̇(si
j)‖2 dτ → 0,

as j →∞.
Finally

∣

∣

∣

ij
∑

i=1

∫ si
j

si−1
j

〈σ(si
j),∇ϕ̇(si

j)〉2 dτ −
∫ t

0
〈σ(τ)∇ϕ̇(τ)〉2 dτ

∣

∣

∣
−→ 0, (7.63)

as j →∞, thanks to (7.60).

8. Euler conditions. In this section we derive the Euler equations for the partial-
global stability condition.
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Theorem 8.1. Let (b, λ) ∈ L∞(D; [0, 1])q × Y (D; RN×d)q satisfy (3.5) and (3.13)
with p = 2. Assume that (b, λ) satisfies

q
∑

α=1

∫

D
bα(x)

(

∫

RN×d

W (α, F ) dλx
α(F )

)

dx

≤
q

∑

α,β=1

∫

D
Mβα(x)bα(x)

(

∫

RN×d

W (β, F +∇ũ(x)) dλx
α(F )

)

dx

+
q

∑

α,β=1

H(β, α)

∫

D
Mβα(x)bα(x) dx,

(8.1)

for every ũ ∈ H1
0 (D; RN ) and every measurable map M : D → M

q×q
St , and denote

by σ the stress, i.e.,

σ(x) :=
q

∑

α=1

bα(x)

∫

RN×d

∂W

∂F
(α, F ) dλx

α(F ), for a.e. x ∈ D.

Then the following conditions are satisfied:

(ec)1 equilibrium condition: divσ(t) = 0;

(ec)2 optimality of active phases: for every α, β = 1, . . . , q and every t ∈ [0, T ], we
have

∫

RN×d

[W (α, F )−W (β, F )] dλx
α(F ) ≤ H(β, α),

for a.e. x ∈ D with bα(x) > 0.

Remark 8.2. We say that a phase α is active at x if bα(x) > 0. Hence the condition
(ec)2 can be rephrased as follows: if α is active at x, then α is a minimizer over Z
of the functional

β *→
∫

RN×d

W (β, F ) dλx
α(F ) + H(β, α)

This is the reason why we call (ec)2 optimality of active phases.

Remark 8.3. Note that from (ec)2 it descends immediately that
∑

α,β

Mβαbα(x)

∫

RN×d

[W (α, F )−W (β, F )−H(β, α)] dλx
α(F ) ≤ 0,

for a.e. x ∈ D and every stochastic matrix M ∈ M
q×q
St .

Proof of Theorem 8.1. Let (b, λ) satisfy the prescribed hypotheses. Choosing in
(8.1) the map M associating to every x ∈ D the identity matrix I, we obtain

∑

α

∫

D
bα(x)

[

∫

RN×d

[

W (α, F +∇ũ(x))−W (α, F )
]

dλα)x(F )
]

dx ≥ 0,

for every ũ ∈ H1
0 (D; RN ), which implies immediately (ec)1.

Let us denote by (eγ)q
γ=1 the canonical basis of the vector space Rq. Fixed α, β

in {1, . . . , q}, define M̄ ∈ M
q×q
St by

M̄eγ = eγ for every γ 0= α

M̄eα = eβ .
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Let us choose now in (8.1) ũ = 0 and M := I(1 − 1A) + M̄1A, for any measurable
subset A of D: we obtain

∫

A
bα(x)

[

∫

RN×d

[

W (α, F )−W (β, F )
]

dλx
α(F )

]

dx

≤
∫

A
H(β, α)bα(x) dx;

(8.2)

By the free choice of A among all measurable subsets of D, from (8.2) we deduce
immediately (ec)2.

Appendix. In this Appendix we briefly recall the notion of cubic quasi-minimum,
introduced by Giaquinta and Giusti in [16], and the related results.

Given ϕ ∈ H1(D; RN ), let G be the functional defined by

G(v) = G(v, D) :=

∫

D
G(x,∇v(x)) dx

for every v ∈ ϕ+ H1
0 (D; RN ), where G : D × RN×d → R is a function satisfying

|G(x, F )| ≤ L(|F |2 + 1)

for a suitable positive constant L, for every (x, F ) ∈ D × RN×d.

Definition 8.4. Let Q > 0. A function v ∈ H1(D; RN×d) is said to be a cubic
Q-quasi-minimum for the functional G if for every cube of side R, QR ⊂⊂ D, and
for every function w ∈ H1(D; RN×d), with supp(v − w) ⊆ QR, we have

G(v, QR) ≤ QG(w, QR).

We restrict our analysis to the particular case of G(F ) = 1 + |F |2, since this is
the integrand we will consider; for the reader’s convenience, we recall the statement
and the proof of the Caccioppoli inequality for quasi-minima of the corresponding
integral functional: for our purposes, we need a slightly different statement of the
result contained in [17, Theorem 6.5]; our statement does not involve the L2∗

-norm
of the quasi-minimum but it is valid for every cube QR. The precise result we will
use is the following.

Theorem 8.5. Let v ∈ H1(D; RN ) be a Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w|2) dx.

Then there exist a positive constant C > 0, depending only on Q, such that
∫

QR/2

−|∇v|2 dx ≤ C
{(

∫

QR

−|∇v|2m dx
)

1
m

+ 1
}

, (8.3)

for every cube QR ⊂⊂ D, where m =
d

2 + d
.

Proof. Let R/2 < t < s ≤ R. We consider a cut-off function η ∈ C∞
0 (Qs), with

0 ≤ η ≤ 1, η ≡ 1 on Qt, and |∇η| ≤ 2
s−t . Let φ := η(v − vs), where vs denotes

the mean value (v)Qs of v over Qs; define a function w by w := v − φ, so that
w = vs + (1− η)(v − vs). We have

∫

Qs

|∇φ|2 dx ≤
∫

Qs

(|∇v|2 + 1) dx +

∫

Qs

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx; (8.4)
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Since by construction ∇φ = ∇v on Qt, we have
∫

Qs

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx =

∫

Qs\Qt

∣

∣|∇φ|2 − |∇v|2
∣

∣ dx

≤2
[

∫

Qs\Qt

|∇v|2 dx +

∫

Qs

|∇w|2 dx
]

.
(8.5)

Moreover, by the quasi-minimum property of v, we have
∫

Qs

(|∇v|2 + 1) dx ≤ Q

∫

Qs

(|∇w|2 + 1) dx; (8.6)

therefore (8.4), (8.5), and (8.6) imply
∫

Qt

|∇v|2 dx =

∫

Qt

|∇φ|2 dx ≤
∫

Qs

|∇φ|2 dx

≤(Q + 2)

∫

Qs

(|∇w|2 + 1) dx + 2

∫

Qs\Qt

|∇v|2 dx.
(8.7)

Using the relation

|∇w|2 = |(1− η)∇v + (v − vs)∇η|2 ≤ c[(1− η)2|∇v|2 + (s− t)−2|v − vs|2],

we obtain from (8.7)
∫

Qt

|∇v|2 dx ≤(c + 1)(Q + 2)
{

∫

Qs\Qt

|∇v|2 dx

+
1

(s− t)2

∫

Qs

|v − vs|2 dx + |Qs|
}

.
(8.8)

Since we have
∫

Qs

|v − vs|2 dx ≤ c

∫

QR

|v − vR|2 dx,

(8.8) implies
∫

Qt

|∇v|2 dx ≤(c + 1)(Q + 2)
{

∫

Qs\Qt

|∇v|2 dx

+
1

(s− t)2

∫

QR

|v − vR|2 dx + |Qs|
}

.
(8.9)

Now we use the “hole filling” method: we add to both terms of (8.9) the quantity

(c + 1)(Q + 2)

∫

Qt

|∇v|2 dx,

to get
∫

Qt

|∇v|2 dx ≤ α

∫

Qs

|∇v|2 dx +
1

(s− t)2

∫

QR

|v − vR|2 dx + |QR|, (8.10)

with 1 > α := (c+1)(Q+2)
(c+1)(Q+2)+1 . Therefore, we are in the position to apply the same

technical Lemma as in [17] (see [17, Lemma 6.1]), obtaining
∫

QR/2

|∇v|2 dx ≤ c
{ 1

R2

∫

QR

|v − vR|2 dx + |QR|
}

. (8.11)
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Set now 2∗ := 2d
2+d , we have 2∗ < d and

(2∗)
∗ =

2∗d

d− 2∗
= 2;

hence, by the Sobolev-Poincaré inequality (see [17, formula (3.32)]), we have
∫

QR

|v − vR|2 dx ≤ c
(

∫

QR

|∇v|2∗ dx
)2/2∗

= c
(

∫

QR

|∇v|2m dx
)1/m

,

which together with (8.11) gives (8.3).

If we deal with quasi-minima satisfying a prescribed boundary condition, the
following result can be proved with similar arguments (see [17, Section 6.5]).

Theorem 8.6. Let V ∈ W 1,p(D; RN ), for 2 < p, and let v ∈ V + H1
0 (D; RN ) be a

Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w(x)|2) dx,

i.e., for every cube QR ⊂ Rd, and every function w such that v−w ∈ H1
0 (D ∩QR)

we have
∫

(QR∩D)
(1 + |∇v|2) dx ≤ Q

∫

QR∩D
(1 + |∇w|2) dx.

Then there exist a positive constant C > 0, depending only on Q, such that
∫

QR/2

−|∇(v − V )|2 dx ≤ C
{(

∫

QR

−|∇(v − V )|2m dx
)

1
m

+ 1
}

, (8.12)

for every cube QR ⊂ Rd, where m =
d

2 + d
and v − V is extended to 0 in QR \ D.

Using Theorem 8.5 and Theorem 8.6, we can obtain as in [17, Theorem 6.8] the
following result

Theorem 8.7. Let V ∈ W 1,p(D; RN ), for 2 < p, and let v ∈ V + H1
0 (D; RN ) a

Q-cubic quasi-minimum of the functional

G(w) =

∫

D
(1 + |∇w(x)|2) dx.

Then there exist constants γ > 0 and r > 1, depending only on Q and V , such that
∫

D
|∇v|2r dx ≤ γ

{

(

∫

D
|∇v|2 dx

)r
+ 1

}

. (8.13)
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