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Introduction

This dissertation, articulated in four chapters, provides an introduction to some topics
related to the study of the Weyl tensor' of Riemannian manifolds?®, with special emphasis
on Einstein manifolds®. Moreover, particular attention is given to the four-dimensional
case.

The Weyl tensor arises from the following well-known orthogonal decomposition of
the Riemann curvature tensor (in dimension n > 4) of a Riemannian manifold (M, g),

Riem = 2n(;{_l)g®g+ ﬁRic@g+Weyl,
where the Ricci tensor* Ric is its (1, 3)-trace, the scalar curvature R its complete trace
and Ric = Ric —Rg/n denotes the trace-free component of Ric.

Einstein manifolds are manifolds (M, g) whose metrics satisfy Ric = g, for some
constant A € R (i.e. Ric = 0) and as such, due to the above decomposition of the Riemann
tensor, they have their curvature completely determined by the Weyl tensor (and the con-
stant A\). These manifolds play a fundamental role in general relativity as the Einstein’s field
equation (in a 4-dimensional Lorentzian manifold®, see for instance [8]) reads

Ric—%g—kAg: kT,

where A is the so—called cosmological constant, k is the Einstein’s gravitational constant
and T is the stress—momentum tensor. In the vacuum there holds T' = 0, thus Ric =
(R/2 — A)g = MAg and the solutions are 4-dimensional Einstein (Lorentzian) metrics.
It is an extremely interesting fact that the Einstein’s field equation arises as the Euler—
Lagrange® equation of the Einstein—Hilbert action’ which, in the vacuum and ignoring the
physical constants, is given (in any dimension n) by

&(g) = Vo, (M)~"% /M R,dV, (1)

see for instance [9]. The metrics on an n—dimensional differentiable manifold M such that
the first variation of this functional is zero are exactly the Einstein metrics. This holds also
in the Riemannian setting, that is, considering the functional of Riemannian metrics.

! After the German mathematician Hermann Klaus Hugo Weyl (1885-1955) [36].

?After the German mathematician Georg Friedrich Bernhard Riemann (1826-1866) [37].

® After the German physicist Albert Einstein (1879-1955) [38].

* After the Italian mathematician Gregorio Ricci-Curbastro (1853-1925) [39].

3 After the Dutch physicist Hendrik Antoon Lorentz (1853-1928) [40].

® After the Swiss mathematician Leonhard Euler (1707-1783) [41] and the French naturalised Italian math-
ematician Joseph-Louis Lagrange (1736-1813) [42].

" After Albert Einstein and the German mathematician David Hilbert (1862-1943) [43].
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The four-dimensional case has some very peculiar features, that in higher dimensions
either stop being valid or are too complicated to deal with explicitly in general. Namely,
the very special further orthogonal decomposition of the Weyl tensor into its self~dual and
anti-self-dual components W = W + W™, the Chern—Gauf$—Bonnet formula® [10]

1 . 2 12 2
(M) = s /M(|R1em| 4[Ric® + R?) dViy
_ 1 2 12 2

which, by means of such decomposition of the Weyl tensor, can also be written as

1

M) = +2 ~12 _ 12|Ric|? 2
(M) = 15— /M(6|W 2+ 6] [2 — 12[Ric|? + R?) dViy 3)

and the Hirzebruch formula® [17]

_ 1
4872

(M) = gy [ (W - WR) vy, (@
M

where x (M) and 7(M) are topological invariants: respectively, the Euler—Poincaré char-

acteristic'® and the signature of the manifold M (see [6, 28]).

By means of these two results, one can obtain a (necessary only) condition for a four—

dimensional manifold to be Einstein, namely the so—called Hitchin—Thorpe inequality'! [18,

34]

x(M) >

N

[T(M)], (5)

that, in the case of nonnegative or nonpositive sectional curvature, can be improved to

The main references throughout all our work are the celebrated book by A. L. Besse
“Einstein manifolds” [6] and the award-winning monograph by G. Catino and P. Mastrolia
“A perspective on canonical Riemannian metrics” [9].

The first chapter is devoted to a quick summary of prerequisites of differential and
Riemannian geometry. The number of independent components of the Weyl tensor and its
connection with the purity of the Riemann tensor are discussed. Moreover, at the end of
the chapter, we give a brief introduction to Cartan formalism'?, which will be necessary
for the third chapter.

The second chapter discusses conformal transformations and locally conformally flat
(LCF) manifolds. The conformal invariance of the Weyl tensor in dimension n > 4 and

8 After the Chinese-~American mathematician Shiing-Shen Chern ({45 £, 1911-2004) [44], the German
mathematician Johann Carl Friedrich Gaufy (1777-1855) [45] and the French mathematician Pierre Ossian
Bonnet (1819-1892) [46].

? After the German mathematician Friedrich Ernst Peter Hirzebruch (1927-2012) [47].

10 After Leonhard Euler and the French mathematician and physicist Jules Henri Poincaré (1854-1912) [48]

! After the English mathematician Nigel James Hitchin (1946) [49] and the American mathematician John
Alden Thorpe (1936) [50].

12 After the French mathematician Elie Cartan (1869-1951) [51].
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of the Cotton tensor' in dimension n = 3 is shown, implying that the LCF manifolds of
the corresponding dimension need to have these tensors trivial. Then, we show the Weyl-
Schouten theorem!* saying that such triviality is actually also a sufficient condition for a
manifold to be LCF. Finally, the uniqueness of “global” conformal changes (if they exist) is
briefly discussed.

The third chapter describes Chern’s original proof of the Chern-Gaufl—Bonnet theo-
rem for even—dimensional Riemannian manifolds, following [10, 24] where more details
have been added. Using a particular orthonormal frame, as presented in [7], the Chern-
Gaufl—Bonnet formula (2) in dimension four is then derived and some consequences are
discussed. Here we also highlight the main idea of the previous proofs (historically rel-
evant, being studied earlier) of generalisations of the “classical” Gauf3—Bonnet theorem
for a compact oriented Riemannian manifold embedded in a Euclidean space of higher
dimension.

The fourth and last chapter deals with Einstein manifolds, with special attention to the
dimension four. Satisfying Ric = Ag for some constant A € R, Einstein manifolds “stay in
the middle” between constant curvature manifolds (with Riem = ﬁ g ® g), which are
completely classified and constant scalar curvature manifolds (with R = An), hence they
are neither “too” nor “too little” rigid.

We start by showing the computation of the first variation of the Einstein—Hilbert
action (1), whose nullity characterises Einstein manifolds.

Then, we “improve” the orthogonal decomposition of the Weyl tensor in dimension n = 4.
The standard decomposition of the space of algebraic curvature tensors consists of the
irreducible components under the action of the group O(n), but in dimension n = 4 the
space of the Weyl tensors can be further refined by considering its irreducible orthogonal
components under the action of SO(4) (if n # 4, the action of SO(n) does not provide any
new decomposition). Once applied to Riemannian manifolds, this refined decomposition
yields the so-called self-dual and anti-self-dual components W* of its Weyl tensor, as
well as a convenient matrix representation of the curvature 2—form. Moreover, the Chern-
Gaufi-Bonnet formula (2) in dimension 4 can be rewritten in the form (3).

In Section 4.3, we introduce the signature 7(M ), which is another topological invariant of
a four-manifold M, and present (without proof, for which we refer the reader to [28]) the
Hirzebruch theorem, showing the equality

— 1 +12 -2
T(M)_W/M(W 2= W) Vi .

We then proceed by studying the Weyl functional,

W(g) = /MWeylg|”/2 av,,

which is quadratic in dimension four. We compute its first variation and we show that
conformal Einstein metrics (i.e. metrics having an Einstein metric in their conformal class)
and half-conformally flat metrics , (i.e. for which either W™ or W~ vanishes) are critical
metrics, in dimension four.

In the last section, we discuss four—-dimensional Einstein manifolds. By combining the
Chern—-Gaufi-Bonnet and Hirzebruch formulae (3), (4), we then obtain the Hitchin-Thorpe
inequality (5)

x(M) > 2Jr(a1)|

B After the French mathematician Emile Clément Cotton (1872-1950) [52].
!* After Hermann Klaus Hugo Weyl and the Dutch mathematician Jan Arnoldus Schouten (1883-1971) [53].
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which is a necessary condition for a compact oriented 4-dimensional manifold to be Ein-
stein. We underline that this inequality is a necessary (only) condition for a compact and
oriented 4-dimensional manifold to be Einstein and no sufficient conditions are known
up to now, unless we restrict ourselves to more rigid classes of Riemannian manifolds (e.g.
Kihler manifolds!, see [7]). In light of that, the chapter and the thesis end by providing
some examples of manifolds which do not admit any Einstein metric, being the converse
problem very difficult, the readers of the book of A. L. Besse [6] “[...] are offered a meal in
a starred restaurant in exchange for a new example [of an Einstein manifold]’.

15 After the German mathematician Erich Kéhler (1906-2000) [54].



Chapter 1

Some prerequisites of Riemannian
geometry

1.1 Differential manifolds

Definition 1.1.1. An n—dimensional topological manifold with boundary is a topological
space that is Hausdorff, admits a countable base and such that for every point p € M there
exists an open neighbourhood U C M of p and a homeomorphism ¢: U — 2, with 2
open set of H” = { (z!,...,2™) € R" | 2" > 0 }. The pair (U, ¢) is called a coordinate
chart (or a local chart). If U N H"™ = @ we will call U an interior chart, otherwise we will
call it a boundary chart.

Apointp € M is said to be an interior point if it admits an interior chart as neighbourhood,
otherwise it is called a boundary point. We will denote by M and OM the set of interior
and boundary points respectively.

Definition 1.1.2. Let k € NU {oo}. Two charts (U, ) and (V, 1)) are C*—compatible if
either U NV = @ or the transition map (which is a homeomorphism)

a0 9y’ 9s(UaNUp) = pa(Ua NUp)

is a C*-diffeomorphism (which accounts for the boundary, in case there is one).

A C*-atlas on M is a cover of M with C*-compatible charts.

A chart is compatible with a C*-atlas if it is C*~compatible with each of its charts.
Two C*-atlases are equivalent if their union is another C*-atlas.

A C*-atlas is maximal if it contains all charts compatible with it.

A C*—differential structure on M is a maximal C*-atlas on M.

Definition 1.1.3. A C*-differential manifold with boundary is a topological manifold with
boundary where a C'*-differential structure has been chosen.

Definition 1.1.4. A topological (resp. differential) manifold (without boundary) is a topo-
logical (resp. differential) manifold M with OM = 0.

Remark 1.1.5. Every manifold with boundary M is the disjoint union of M and OM
which are, respectively, an n—-dimensional and an (n — 1)-dimensional manifold without
boundary.

We refer the reader to [1, 12, 23] for the basic notions recalled in this section; in particular,
for the standard definitions and properties of C°° functions, tangent, cotangent and tensor
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bundles, vector fields, tensor fields, differential forms, differential operators, etc. We will also
assume familiarity with the canonical topological, differential and Riemannian structures of
standard spaces like R", S and H".

We will write 2 to denote the i—th coordinate induced by a chart (U, ), with associated
local vector fields % (which we will mostly denote by 0;) and 1-forms dx*. We will denote
by C*°(M, N) the space of C* functions between the two differential manifolds M and N
and C*® (M) = C*°(M,R).

In the entire text, unless stated otherwise, all manifolds will be without boundaries, con-
nected, C*>° andn—-dimensional. We shall also use the Einstein convention for summation over
repeated indices, for example, a vector field X over M will be written in local coordinates as
X=X =X 2=y, X2

Let 7: E — B be a vector bundle of rank k. We will denote by I'( E) the space of its
(global) sections, that is, functions s: B — E such that 7 o s = id. A (local) frame for the
vector bundle on a subset U C B is a choice of £ linearly independent sections for every
point of U. If U = B the frame is said to be a global frame and the bundle a trivial bundle.
The most common vector bundles we will deal with are:

o the line bundle M x R, with sections I'( M x R) = C*(M);
« the tangent bundle 7'M, whose sections are the vector fields;
« the sphere bundle SM, whose sections are the unitary vector fields;

- the cotangent bundle T M*, whose sections, I'(T'M*) = Q! (M), are the differential
1-forms;

« the vector bundle 77 M = TM*®* @ TM®", whose sections are the tensor (fields)
of type (r, s) (r is the number of contravariant components and s the number of
covariant components, Tg M = TM, TPM = TM* and T)M = M x R);

« the bundle of the alternating k—forms A¥ M, who sections, T'(A¥M) = QF(M), are
the differential k—forms;

« the bundle of the symmetric k—forms S* M, with sections I'(S¥ M) = $F(M).

If T € I'(T; M), we will denote by T}, the tensor at the point p € M, which is an
element of the vector space 77 M, = T,M*®* @ T,M®". There is a natural linear iso-
morphism between T M), and the space of multilinear functions from 7, M ®* & T, M*®"
to R. In local coordinates an (7, s)-tensor 7 is therefore given by

o ) ) P
ity o
=T e el e sn e a0,
where 5 5
TR i i
71]'1...]'5 —T(axﬂ,,ax]g,d.% ,...,dx > .

These considerations let us see a tensor 7" € I'(T7 M) as a C°°(M )-linear map from the
C>®(M)-module T(TM®* & TM*®") to C>(M).
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1.1.1 Symmetric and skew-symmetric forms on vector spaces

Let V be a real vector space of dimension n. We denote by A¥(V*) and S*(V*) respectively
the sets of the alternating and symmetric multilinear forms on V*. For any such form 7,
we call degree of 1) the value || = k. Recall that

dim AF(V*) = (Z) for0 <k <n,
- (1.1)
dmﬂ%Vﬂ:<”+k_> fork > 0.

We define the exterior (or wedge) product of a k—form 7 and an s—form ( as the (k + s)-
form

1
(77 N C)(Oél, R ak+s) = w Z Sgn(g)(n ® C)(aa(1)7 S )aa(k+s)) (1.2)
o €Y k45
1
= 1l > sgn(@) n(asys - - o) C(Qoer1)s - - > Vo(its))

O'EE]C+S

with Y s the set of permutation of k + s elements and o; € V fori € {1,...,k + s}.
This product endows the space

MVﬂ:&%AWVﬂ
k=0

with a supercommutative algebra structure, as the product satisfies
nAC= (_1)|77||C\ CAR.

In the particular case of two 1-forms, formula (1.2) becomes
aANf=a®pB—-0Qa,

for a, B € AL(V*).

Definition 1.1.6. Two nonzero n—forms n,( € A"(V*) are equioriented if n = \( for a
positive number JA; if instead ) is negative the forms are said to have the reverse orientation.
An orientation on V' is the choice of a nonzero n € A"(V*). The pair (V,n) is said to be
an oriented vector space. We will say that a basis {u’}?_; of V* is oriented if the form
u' A -+ Au™ is equioriented with 7.

On a vector space V with a scalar product g we will limit ourselves to considering only
orientations © that can be expressed as

O=0'A- AU,

for an orthonormal basis {9}, of V*.
Then, in any other oriented basis {u'}}" ; such an orientation can be expressed as

© = ,/det g;; u A AU
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Definition 1.1.7. Let (V, g, ©) be an oriented n—dimensional vector space, as above and
k € {0,...,n}. Define the linear Hodge operator' x: A¥(V*) — A"=*(V*) by

CAxn=g(¢,n) 0O,
for ¢,n € AK(V*).

Reversing the orientation on V' changes the sign for the Hodge operator. In particular,
if n,¢ € AF(V*), then n A+ = ¢ A *nand 1) A *n = |n|? ©. Note also that x1 = ©.
The explicit formula for * on an oriented basis can be given as

(A A 1/detgu Z sgn(o) gi1? 1 . .gika(k’) wEHD AL A o™ (13)
. O‘EEn

Where ¥,, is the set of permutation of {1,...,n}. and {u}?_; is a basis of V*
For an orthonormal basis {#*}? | of V* formula (1.3) just reads

x9N ADE) = sgn(F) 9 A - A9
where (ig41,...,4,) are the ordered remaining indices and & is the permutation (i; . . . iy,).

Remark 1.1.8. Applying x twice yields the formula

xok = (=1)F0 Py

for every € A¥(V*), which implies that % is an isomorphism with inverse x 1 =

(—=1)*(=F)s We also remark that if n is even then x: A™/2(V*) — A™2(V*) is an auto-
morphism with inverse x ! = (—1)”/ 2x. In particular if n is a multiple of 4, then x ™! = «.

1.1.2 Differential forms on manifolds

As already mentioned, let A*M = A¥(TM*), SkM = S*(TM*) and call QF(M) =
T'(A¥M) and XF(M) = T'(S* M), the spaces of differential k~forms on M and symmetric
k-forms on M respectively. We define the differential operator d by

k
dn(Xo, X1,..., X Z (n(Xo,- -y Xiy- oo, Xi))

s

=0
Z DX, X5), Xoy oo Xiy ooy Xjy oo Xi),
1<J

I/\

where X; indicates that the i—th field is missing, n € QF(M), X; € T'(TM) for i €
{0,1,...,n} and [+, -] is the Lie brackets® on 7'M defined by

[X7Y} = XoY—-—YoX.
In local coordinates
dn=d Z Niyipdz™ A - A da'™
1SZ1<<1k§n
- Z dniy i, Ada™ Ao Adat

1< << <n

! After the British mathematician Sir William Vallance Douglas Hodge (1903-1975) [55].
% After the Norwegian mathematician Marius Sophus Lie (1842-1899) [56].
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Definition 1.1.9. Let M be a differential manifold.

Two charts (U, ), (V, ) are equioriented if U NV # @ and the Jacobian determinant of
the transition map (which is always nonzero) is a positive function.

An atlas is oriented if all of its charts with nonempty intersections are equioriented.

Two atlases are equioriented if their union is an oriented atlas.

An orientation on M is a maximal oriented atlas on M.

The manifold M is said to be orientable if it admits an orientation.

Definition 1.1.10. An oriented manifold is an orientable manifold where an orientation
hasbeen chosen. If M is an oriented manifold, we will denote by — M its reverse orientation,
that is, the oriented manifold obtained by reversing the orientation of every chart of M.

Remark 1.1.11. An orientation on M induces an orientation on M by restriction of the
atlas. If the dimension is even, we define that as the standard orientation on 9M , otherwise,
as the reverse orientation.

It can be shown that every connected orientable manifold has exactly two possible ori-
entations and that a connected nonorientable manifold has a universal (differential) cov-
ering of degree 2 which is an orientable manifold. it follows that every simply connected
differential manifold is orientable.

Definition 1.1.12. A diffeomorphism f: M — N between two oriented manifolds is said
to orientation—preserving if the induced atlas from M to N is equioriented with the atlas
on N. It is said to be orientation—reversing if the induced atlas has the reverse orientation.

Definition 1.1.13. A volume form on the n—dimensional manifold M is a global frame of
Q"(M), that is, a never vanishing differential n—form.

If n and 7 are two volume forms, then there exists a never vanishing C*° function f
such that 7’ = fw and if M is connected such function has constant sign.
It can be shown that choosing an orientation on M is equivalent to choosing a volume
form and that a diffeomorphism preserves (resp. reverses) the orientation if and only if it
“pulls—back” the volume form of the image manifold onto the volume form of the domain
without (resp. with) applying a change of sign.

Let n € Q"(M) be any n—form on M with compact support contained in a chart
(U, ). Then there exists a function f € C°°(R") such that (¢~ !)*n = fdal A--- Ada™

and we define
/ n = f(z)dx.
M R™

In general, if 77 is a compactly supported n—form and {0, }nc 4 is a partition of unity sub-
ordinated to an oriented atlas (Uy, ¢ )aca, we define

/77:=Z 0T -
M acAIM

It can then be shown that this integral is independent of the choice of the partition of
unity and the oriented atlas. If —M is the same manifold with the reverse orientation,
then [ un=- Il 1 71- More generally, if f: M — N is any diffeomorphism between two
oriented, connected manifolds, then

/M fro=+ /N ", (1.4)

10
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where the sign depends on whether f preserves or reverses the orientation.
For a differential form n € Q" ~!(M) on a differential manifold with boundary M and
inclusion map ¢: OM — M, we define

77’@1\/[ = L*T, )

/ 7712/ 77|aM~
oM M

Theorem 1.1.14 (Stokes theorem®). Let M be an oriented n—dimensional manifold with
boundary andn € Q"~Y(M) a differential form with compact support. Then

/dn:/ .
M oM

Definition 1.1.15. A differential form € QF(M) is said to be closed if dn = 0, exact
if n = d¢ for some differential form ¢ € Q*~ (M) and locally exact if for every p € M
there exists a neighbourhood U of p such that 7|y is exact.

and

As d? = 0, every exact differential form is also closed. We denote by dj := d\m( M)

Definition 1.1.16. We define for k € N the k-th de Rham cohomology group* as the real
vector space

ker d;
H*(M) = ma

and we call its dimension
Br(M) = dim H* (M)
the k—th Betti number®.

The de Rham groups can be “pasted together” into a graded algebra
H(M) = D H" (M),
k=0

with a so—called cup product
[n] — ] = [n A (]
for [n], [¢] € H(M).

Theorem 1.1.17 (Poincaré lemma). Let k > 1 and U be a star—convex open set of R". Then
any closed k—form on U is exact.

Corollary 1.1.18. Let k > 1, then any closed k—form on M is locally exact.

Definition 1.1.19. For an n—dimensional manifold M with finite Betti numbers, the Euler—
Poincaré characteristic of M is defined as

n
X(M) = (=1)FB(M).
k=0
3 After the Irish mathematician and physicist Sir George Gabriel Stokes (1819-1903) [57].
*After the Swiss mathematician Georges de Rham (1903-1990) [58].
S After the Italian mathematician Enrico Betti Glaoui (1823-1892) [59].

11
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We recall that if M is a compact 2-dimensional manifold without boundary (that is, a
closed surface) of genus g (the number of “holes” if the surface is oriented, roughly speak-
ing), then x (M) = 2 — 2g.

Remark 1.1.20. It can be shown that the de Rham cohomology groups, the Betti numbers
and the Euler characteristic are topological invariants. In particular, if M and N are two
n—dimensional, complete differential manifold without boundary,

. if M is compact, every H¥(M) is finite-dimensional and H*(M) and H" *(M)
are isomorphic (by Poincaré duality, see [16, Section 3.3]),

« x(M) = 0,if M is an odd-dimensional compact manifold, by the first point,

« X(M x N) = x(M)x(N), if M and N are compact (by the Kiinneth formula®,
see [16, Section 3.B]),

« X(M#N) =x(M)+ x(N) — x(S™), if M and N are compact and connected.

Moreover, we recall the Euler—Poincaré characteristic of some common manifolds, namely,
for every positive integer k one has y(S*) = 2, y(RP?*) = 1, x(CP*) = k + 1.

1.1.3 The Frobenius theorem

We state the Frobenius theorem’ in its classical form, about the existence of solutions of
overdetermined systems of first—order differential equations on R™. We refer the reader
to [23, Proposition 19.29] for a proof and to [23, Theorem 19.21] for a geometric version of
the theorem.

Theorem 1.1.21. Let X;: V xU C R™xR"™ — R"™ be C™ vector fields, fori € {1,...,m}
and V, U open sets. Then, for every (zo,y0) € V x U there exist a connected neighbourhood
W CV ofxg and a unique C* function w: W — U such that

88::1 (z) = Xi(z,u(z))  foreveryxz € Wandi e {1,...,m}, (15)
u(zo) = Yo,
if and only if the following integrability condition is satisfied on V x U:
X X X X
0Xi | x#0Xi _0X; | 5k 0X; (1.6)

OxJ T oyk  Oxt Eoyk

Remark 1.1.22. If u is a solution of equation (1.5) then the two sides of equation (1.6)

are just the second derivatives of u with switched indices, so the necessity of its validity

follows from the Schwarz theorem?®.

¢ After the German mathematician Hermann Lorenz Kiinneth (1892-1975) [60].
7 After the German mathematician Ferdinand Georg Frobenius (1849-1917) [61].
8 After the German mathematician Karl Hermann Amandus Schwarz (1843-1921) [62].

12
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Remark 1.1.23. The integrability condition (1.6) may be also written as

0 0
g Ni(m (@) = 55

X (:E’ u(x))

where every instance of Ou/dz" has been substituted by X;.

1.2 Riemannian manifolds

A good reference for this section is the book [22].

Definition 1.2.1. Let M be a differential manifold. A (Riemannian) metric on M is a
positive definite bilinear symmetric form g € %2(M). A Riemannian manifold is a pair
(M, g) with g a Riemannian metric on M.

Theorem 1.2.2 (Theorem “zero” of Riemannian geometry). Every differential manifold ad-
mits a Riemannian metric.

Definition 1.2.3. Since a metric is identifiable with a scalar product on every tangent
plane, we can define for every v, w € T,,M the norm and angles between (nonzero) vectors

as
voow

[v| =1/g(v,v) , L(v,w) = arccosg(, ) :
o] [w]

The components of the metric in a chart g;; = ¢(9/9z",0/9x7) define an invertible
matrix (gi;);;—;- We will denote by g* the components of the inverse matrix and with
g~ ! the 2-vector with such components.

Definition 1.2.4. Let (M, g) be an oriented Riemannian manifold. The Riemannian volume
form dV) is defined as

dVys = y/det g;; dzt A--- A da™,

for every oriented chart (U, (z!,...,2")).

It can be shown that such form is globally defined and that in an oriented frame {e; }}" ,
with dual frame {9/}?_, it satisfies

dViy =9t A A", (1.7)

Having a canonical volume form, we can introduce as in Definition 1.1.7 the Hodge op-
erator x, which we extend pointwise to a C°°-linear map on the whole space (M) for
0<k<nby

CAxn=g(¢,n)dVar , (1.8)

for ¢,n € QF(M).

Definition 1.2.5. Let (M, g) be an oriented Riemannian manifold. We define a scalar
product on QF (M) by

(C,m) = /MCA*n = /Mg(C,n)dVM,

for every ¢,n € QF(M) with at least one of them having compact support.
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1.2. RIEMANNIAN MANIFOLDS

Definition 1.2.6. Let M be a differential manifold and 7: £ — M a vector bundle. A
connection on the bundle F is a map

V: [(TM) x T(E) — I'(E)
(X7 77) = VXT],

such that
« Vis C*°(M)-linear in X,
« Vs linear in 7,

o forevery X e I'(T'M),n € I'(F) and f € C°°(M), there holds

Vx(fn)=X(f)+ fVxn.

We will call V x7 the covariant derivative of  with respect to X.
If E =TM, we will call V an affine connection.’

For every n € I'(E), we will denote by V7 the C°°(M )-linear map
Vn: X eT'(TM) - Vxnel'(E).

Remark 1.2.7. It can be shown that the value Vx| , only depends on the value of 7
along a curve passing through p with velocity X at p.

We set V; := V o _and define the Christoffel symbols'® for a connection V as

ozt
_ 1k

with {¢;}72; alocal frame for F.

In this way, for every section 7 = 17/¢;, we have
V= X' (0" + T’ )

Any affine connection can be uniquely extended to the whole tensor bundle I'(77 M)
by imposing that

o V: f—=dfforall f € C®°(M) (we, however, will reserve the symbol V f for the
vector satistying g(V f, X) = df(X) = X(f) forall X € I'(T'M)),

VT ®S)=VTS+T®VSforall T,S € T'(TI M),
« V commutes with the contractions.

For every T € T'(T! M) we will denote by V*T the /~times application of V to T and by

S l 1.0y
Vi Ty 50 = (V)

its components.

°The reason for this name will become clear in light of Lemma 2.1.1.
10 After the German mathematician Elwin Bruno Christoffel (1829-1900) [63].
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1.2. RIEMANNIAN MANIFOLDS

Definition 1.2.8. We define the divergence divT of a tensor 7' € I'(T7 M), with r > 1,
as the contraction of VT between its first covariant entry and its first contravariant entry;

in coordinates

. _ kig...ipr
divTl = vajl---js .

Ifw € T(T?M) is an s—form, with s > 1, we define

. hk
divw = g™V Wiy ki -

For every tensor T' € T'(T" M) we define the Laplacian'’ AT as the trace of V27 on its
first two covariant entries; in coordinates

Definition 1.2.9. For an affine connection V, we define the torsion tensor
TV(X,Y)=VxY —VyX — [X,Y], (1.9)
and, given a metric g, the non—metricity tensor
MYI(X,Y, Z) = (Vxg)(Y, Z) = Xg(Y, Z) — g(VxY,Z) —g(Y,VxZ).  (1.10)
We will say that V is symmetric if TV = 0 and metric compatible if M9 = 0.

Remark 1.2.10. Symmetry and metric compatibility can be explicitly expressed using the
Christoffel symbols, since for TV = 0, formula (1.9) is equivalent to

k _ 1k

and for M'V+9 = 0 equation (1.10) becomes
Liji + Likj = 0igjk -

Theorem 1.2.11 (Fundamental theorem of Riemannian geometry). On every Riemannian
manifold (M, g) there exists a unique connection V, which we will call the Levi—Civita con-
nection'? on (M, g), that is symmetric and metric compatible.

Remark 1.2.12. The explicit expression for the Levi-Civita connection through its Christof-
fel symbols and the metric g is given by

Lije = 5 (0igji + 0;9ik — Ongij) - (1.11)

An important equation linking the Levi-Civita connection (and in general, any sym-
metric connection) with the differential operator d is the following,

k

dn(X(]v s 7Xk) = Z(_l)z(szn)(X(b SER) Xia s 7Xk‘) ) (1'12)
1=0

for any 1 € QF(M).
One of the most fundamental results for the Levi-Civita connection (and in general,
for any metric connection) is the divergence theorem.

" After the French mathematician Pierre-Simon, marquis de Laplace (1749-1827) [64].
12 After the Italian mathematician Tullio Levi-Civita (1873-1941) [65].
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1.2. RIEMANNIAN MANIFOLDS

Theorem 1.2.13 (divergence theorem). Let (M, g) be an oriented n—dimensional Rieman-
nian manifold and X € T'(T'M) a vector field with compact support. Then,

/ divX dVyy = / 9(X, ) Vs »
M oM

wherev: OM — T M the outward—pointing unit normal vector

In the whole thesis we will use exclusively the Levi-Civita connection.
Definition 1.2.14. The Riemann operator is the tensor defined by
R(X,Y)Z =V xZ-ViyZ =[Vy,Vx]Z-VyxZ, for X,Y,Z € T(TM)
and the Riemann tensor Riem is the (0, 4)-version of the Riemann operator, denoted by
R(X,Y,Z,W)=g(R(X,Y)Z,W), for X,)Y, Z, W e I'(TM).

Remark 1.2.15. In local coordinates, by means of the Christoffel symbols, the Riemann
operator can be written as

R!

1,

ik = ;T — 8ir§'k + kazrlsj - F;kréi .
Proposition 1.2.16 (Symmetries of the Riemann tensor). The following properties hold:
« skew—symmetry in the first two entries
R(X,Y,Z,W)=—-R(Y,X,Z, W),
Rijr = — Rjir ;
o skew—symmetry in the last two entries
R(X,Y,Z,W)=-R(X, YW, Z),
Rijri = —Riji s
« symmetry between the first and second pair
R(X,Y,Z,W)=R(Z,W,X)Y),
Rijii = Riuij
forall XY, Z, W € I'(TM) and i, j, k,l € {1,...,n}.
Proposition 1.2.17 (Bianchi identities'®). The following properties hold:
« first (or algebraic) Bianchi identity
RX,Y)Z+R(Z,X)Y+R(Y,Z)X =0,
Rijki + Riiji + Rjkit = 0
« second (or differential) Bianchi identity

VxR(Y,Z) + VzR(X,Y) + VyR(Z, X) =0,
ViRjkim + ViRijim + VjRiim =0, (1.13)

3 After the Italian mathematician Luigi Bianchi (1856-1928) [66].

16



1.2. RIEMANNIAN MANIFOLDS

forall XY, Z € T'(TM) andi, j, k,l,m € {1,...,n}.

Due to the symmetries of the (0, 4)-Riemann tensor, it is possible to define an associ-
ated bilinear symmetric form R and a linear self-adjoint map % on I'(A%(TM)), which
we will call the curvature form and curvature operator respectively, by linear extension
from

RX,Y,ZW)=R(XANY,ZAW)=39(Z(XNY),ZAW)
with X, Y, Z, W € I'(T M), where we are considering the extension of the scalar product
gto T(A%(TM)).

From the Riemann curvature tensor one can define the so—called sectional curvature of
any 2-plane 7 = (v,w) C T,M atp € M,

Y

Sec(v,w) Ry (v, w,v,w) 9p(Zp(v Aw),v Aw)
v, W) = =
(o wf? = (gp(v,w))” g0 AW AW)

which has a more direct geometrical interpretation, as it is equal to the standard Gau3ian
curvature at p of the 2-dimensional submanifold locally swept out by the geodesics tan-
gent to the 2-plane 7 around p, once embedding such surface in R3, if possible (see [22,
Proposition 8.29]). We define Sec(v, w) := 0 if v and w are linearly dependent.

Other forms of curvature are obtained through one or two applications of the trace
operator to the Riemann tensor, leading to the definition of the Ricci curvature tensor R

(or Ric), the scalar curvature R and the trace—free Ricci tensor Ric, as follows:

4 0 0
: . 1,3 ik .
Ric(X,Y) = (tr'3R)(X,Y) = g R(W,X, 8$k,Y>7

ik j g 0 9 0
— s ik gl .
ftmitie=g ij(BJ:“M’@x’“@JJ)’

Ric(X,Y) = Ric(X,Y) — Sg(X,V),
n

for X, Y e (T M).
We conclude this section by recalling some well-known facts about flat and, more in
general, manifolds with constant (sectional) curvature (see [22], for instance).

Theorem 1.2.18. Let (M, g) be an n—dimensional Riemannian manifold. The following
properties are equivalent:

(t) M is flat, i.e, Riem = 0;
(1) every pointp € M admits a neighbourhood isometric to an open set of R";
(iii) every point p € M admits a local coordinate chart in which g;; = 6;j;

(iv) every pointp € M admits a local coordinate chart such that {%}Zﬂ:l is an orthonor-
mal frame;

(v) every point p € M admits a local coordinate chart in which the Christoffel symbols
Ffj vanish everywhere.

Theorem 1.2.19. Let (M, g) be a complete n—dimensional Riemannian manifold with con-
stant curvature k, then the universal covering of M is

o R"™, with its canonical metric, if k = 0;
o S”, with its canonical metric, if k > 0;

o H", with its canonical metric, if k < 0.
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1.3. ALGEBRAIC CURVATURE TENSORS

1.3 Algebraic curvature tensors

The properties of the Riemann tensor may be categorised into algebraic and differential.
The ones which are algebraic in nature do not really depend upon the manifold structure
but are rather pointwise properties valid in the more general setting of the algebraic cur-
vature tensors. These are tensors on a real vector space endowed with a scalar product
satisfying all the algebraic symmetries of the Riemann tensor. We will compute the di-
mension of the vector space of these tensors, which corresponds to finding the number of
independent components of the Riemann tensor; we then present its orthogonal decompo-
sition to introduce the “Weyl-like” tensors, by means of the Kulkarni—-Nomizu product;'*
and express a few initial properties of those tensors which will motivate the next chapter.

Let (V, g) denote an n—dimensional vector space with a scalar product g.
Definition 1.3.1. Given h, k € S?(V*) define their Kulkarni—-Nomizu product as
(hOk)(2,y, 2, w) = h(z, 2)k(y, w) + by, w)k(z, 2) = h(z, w)k(y, 2) = h(y, 2)k(z, w),
forx,y,z,w e V.
Remark 1.3.2. The natural extension of g onto A?(V) is given by
gz Ny, zANw)=g(zRYy—yYRr,z2Q0 W —w z)

= 2g(w, 2)g(y, w) — 2g(x, w)g(y, 2)
= (g@g)(az,y,z,w).

Definition 1.3.3. Let 7*(V/) denote the set of (0, 4)-tensors on V satisfying the Riemann
symmetries in Proposition 1.2.16, that is, P € F*(V) if and only if

(Z) P(x,y,z,w) = _P(y7x)sz)’
(”) P(J:ayvsz) = *P(x,y,w,z),
(ZZ/L) P(x7 y) Z? w) = P(Z7 w7 m? y) >

forz,y,z,w e V.
For each P € F*(V) we define the correspondent operator P € S?(A%(V)*) and the map
Z: A%(V) — A%(V) by linear extension from

P(z,y,z,w) =Plx ANy, z Aw) = %g(ﬁz(aﬁ/\y),z/\w), forz,y,z,weV.

Then, we denote by Pic the (1, 3)—trace of P, with P its complete trace, with Pic the trace—
free component of Pic and with Pec its sectional curvature, that is, given a basis {e;}1_;
and four vectors x, y, v, w such that v and w are independent,

« Pic(z,y) = (tr'3 P)(z,y) = ¢"* P(e;, x, ex,y)

« P =trPic = tr(tr!'3 P) = ¢* ¢/ P(e;, ej, €1, €5)

o P
« Pic = Pic——g,
n

! After the Indian mathematician Ravindra Shripad Kulkarni (1942) [67] and the Japanese-American math-
ematician Katsumi Nomizu (¥f7K 72, 1924-2008) [68].
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« Pec(v,w) = P(v,w,v,w)/5(g09) (v, w,v,w) = g(P(vAw),vAw)/g(vAw,vA
w) .
Moreover, we also define Pec(v, w) := 0 if v and w are linearly dependent.

We call P an algebraic curvature tensor if it satisfies the relations (¢)-(¢¢)—(ii%) above and
the first Bianchi identity:

(T/,U) P(mﬂ y? Z? w) + P(Z’ x? y? w) + P(y7 z’ x? w) = 0 Y

forall z,y, z,w € V.
We denote by C*(V/) the set of all algebraic curvature tensors on V.

Remark 1.3.4. The denominator in the definition of Pec is given by

59 © 9)(v,w,v,w) = §(29(0, v)g(w, w) = 2(g(v,w))”) = o] = (90, w))”,

which is the area of the parallelogram with sides the vectors v and w in 7; in particular, if
{e1, e2} is an orthonormal basis of 7, then 3(g ® g)(e1, ea, €1,e2) = 1 and

Pec(ey, e2) = P(e1,ea,e1,€3).

It is easy to verify that we can always limit ourselves to orthonormal bases as the value of
Pec(v, w) is only dependent on the 2-plane spanned by v, w; indeed, given another basis
{u1,u2} of m = (v, w) and writing v = v'u; and w = w'u;, we get

lul)

%(g O g)(viug, wiuj, vFug, why)
P(uy,ug, ur, u2)((vH)?(w?)? + (v?)?(wh)? — 2vtv?wtw?)
3(9 ® g)(ur, uz, ur, ua) (V1) (w?)? + (v2)2(wh)? — 2vlv?wlw?)
P(uy,u2,u1,us)
%(g@g)(ul,UQ,ul,UQ)
= Pec(uy,us) .

i j k
P(v'ui, wug, v®ug, w

Pec(v,w) =

Remark 1.3.5. Since P is symmetric, the operator & is self-adjoint and can be diago-
nalised.

Definition 1.3.6. We say that P € F*(V) is simple if so is a basis of eigenvectors of 2,
i.e., there exist vectors {z;,y; }—; such that {z; A y;}; ; is an eigenbasis for 2.
We say that P is pure if it is simple and {z;, y; }; ; is an orthonormal basis of V.

Remark 1.3.7. If h, k € S?(V*) then h®©k € C*(V). In fact, for h ® k properties (i)-(i4)-
(72%) in Definition 1.3.3 are easily checked and

(h®k)(z,y,z,w) + (h®k)(z,z,y,w) + (h ® k)(y, z,x,w)

= h(z, 2)k(y,w) + h(y,w)k(z, z) — h(z,w)k(y, z) — h(y, 2)k(x, w)
+ h(z,9)k(x,w) + h(z,w)k(z,y) — h(z,w)k(x,y) — h(z,y)k(z,w)
+ h(y, 2)k(z,w) + h(z,w)k(y, z) — h(y, w)k(z,x) — h(z,2)k(y, w)

=0.

We would now like to compute the dimension of C*(V').
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Definition 1.3.8. We define the Bianchi map b: F*(V) — A*(V*) as
b(A)(z,y,z,w) = %[A(x, y,z,w) + Az, z,y,w) + Ay, z, x,w)],
for every z,y, z,w € V.
Remark 1.3.9. We recall that A*(V*) C F4(V) C (V).
Proposition 1.3.10. The Bianchi map is well-defined, self-adjoint,
ker(b) = CH(V),  im()=A*(V*) and  FHV)=CHV)aelt AL V).

Remark 1.3.11. If n € {2,3} then F*(V) = C*(V'), indeed by the symmetry properties
of the algebraic curvature tensors the Bianchi identity in these dimensions is identically
zero.

Proof. Let z,y,z,w € V and A, B € F*(V), then in any basis of V
9(A,b(B)) = A¥b(B)iju
= 2AYM(Byju + Briji + Bjkat)
— l(Aijle. 4+ Aijk‘lBk. i+ Aijk‘lB.k.l)

= (AWM By + AT By + AMI By )
— %(Azjkl_,'_Akzjl_’_A]kzl) ikl

= g(A)" Byju

=g(b(A),B),

hence, the Bianchi map is g—self-adjoint.
To check that b(A) belongs to A*(V*) we first notice that

b(A)(z,y,z,w) = b(A)(z,z,y,w) = b(A)(y, z, z,w), (1.14)
then
b(A)(w,z,y,2) = %[A(w,m,y, 2) + Ay, w, z,2) + A(z,y,w, 2)]
= %[—A(y, z,x,w) — Az, z,y,w) — Az, y, 2, w)]
=—b(4)(z,y, z,w) . (1.15)
and
b(A)(z,z,z,w) = [A(z,z,z,0) + A(z, 2, z,w) + A(z, 2, 2, w)]
= %[A(z,m,a:,w) — Az, z,z,w)]
—0. (1.16)

Then, from equation (1.14) and (1.16), we have
b(A)(z,z, z,w) = b(A)(z, z,z,w) = b(A)(x, z,x,w) =0
and finally, by using equation (1.15), we also obtain

b(A)(x,y, z,x) = b(A)(y,x,z,x) = b(A)(y, z,z,2) =0,
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hence, b(A) € A*(V*).
Clearly ker(b) = C*4(V). To see that the map b is a projection onto A*(V*), we consider
A € A*(V*) and evaluate

1
b(A)(ﬂZ, Y, z, U}) = 5[14(33, Y, z, U}) + A(Z7 r,y, w) + A(y’ Z,T, ’UJ)]

1

= g[A(xa Y, z, U}) + A(LE, Y, %, U)) + A(LE, Y, z, w)]
= A(x7 y? Z? w) Y

thus im(b) = A*(V*) and b%(A) = b(A) for every A € F4(V).
As a consequence A € F*(V) can be decomposed in A = (A — b(A)) + b(A) with
A —b(A) € ker(b) since b(A — b(A)) = b(A) — b(A) = 0.
If A € ker(b) and B = b(C) € im(b) then

9(A, B) = g(A,H(C)) = g(b(4),C) = 0
and F4(V) = ker(b) @+ im(b) = CH(V) @t A4 (V*). O

n%(n? —1)
12 ’
Proof. From S?(A%(V)*) ~ F4V) = C*(V) &+ A*(V*) and formulae (1.1) it follows

Proposition 1.3.12. dim C*(V) =

n(n —1)(n? —n+2)

dim F4(V) = dim S2(A%(V)*) = 2 (1.17)
and

dim C*(V) = dim F4(V) — dim A*(V*)

_ n(n —1)(n? —n +2) ~n(n—1)(n—2)(n—3)

8 24
~ n*(n*-1)
=—05
O

We will now establish some relations between a tensor P and its traces Pic and P.
Let v, w be two independent vectors and choose an orthonormal basis {e;}!_ ;. We have

Pic(v, w) g P(ej,v, e, w),

Pic(v, v) ZP €y V, €5,V ZPec v, €;) % (9 g)(v,ei,v,e), (1.18)

and observe that by choosing {e;}!" 5 so that they complete {v/|v|} to an orthonormal
basis of V', expression (1.18) reduces to

Pic(v,v) = |v]? ZPec v, €;) .

Writing Pec(v, w) = Pec(v, w)-1 5(9®g)(v,w,v,w) and choosing a complete orthonormal
basis {e; }I"_;, from equality (1. 18) we obtain

=%’

n

Pic(v, w) Z[Pec v+w,e) — Pec(v i) — Pec(w ez)}
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and

n n n
P= Z P(ei, ej,ei,e5) = Z Pec(e;, e5) = 2 Z Pec(e;, e5), (1.19)
ij=1 ij=1 ij=1
1#] i<j

which shows that we can express Pic and P through Pec.
Proposition 1.3.13. If for P, P’ € C*(V') we have Pec = Pec/, then P = P'.
Proof. First notice that

Ple+zyx+2y) = Plx,y,2,y) + Pz, 2,y) + 2P(2,9, 2,9),

thus any term as P(x,y, z,y) with at least one repetition can be obtained by combining
sectional curvatures. Then we evaluate

Plx+z,y+w,x+ 2,y + w)
=2[P(z,y, z,w) + P(z,w, z,y)]
+2[P(x,y, 2,y) + P(z,y,z,w) + P(z,w, z,w) + P(z,y, z,w)]
+ P(x,y,z,y) + P(z,w,z,w) + P(z,y,2,y) + P(z,w, z,w),

Plx4+w,y+z,2+w,y+ 2)
=2[P(x,y,w,2) + P(z, z,w,y)]
+ 2[P(x,y,w,y) + P(x,y,z,2) + P(z, z,w, z) + P(w,y,w, z)]
+ P(x,y,z,y) + P(x,z,2,2) + P(w,y,w,y) + P(w, z,w, z) .

From the two equalities, we get

P($7y7z7w)+P(x7w7’Z7y) :A
P(l"y’w’z)+P(Jj7Z’w’y> :B

where A and B can be expressed in terms of sectional curvatures. Then, by means of the
Bianchi identity, one can solve the system, obtaining

1
3
which proves the result. We underline that expanding also P(z + y, z + w,x + y, 2 + w)
does not provide a new independent equation; it is necessary to use the Bianchi identity

in order to conclude the argument.
The explicit formula for P(z,y, z, w) is then

P(z,y,z,w) = -(A— B),

1(— .
P(z,y,z,w) = E{Pec(:c + 2,y + w) — Pec(z + w,y + 2)
+ Pec(z + w, y) + Pec(z,y + 2) + Pec(z + w, 2) 4+ Pec(w,y + 2)
— Pec(z + z,y) — Pec(z, y + w) — Pec(z + 2, w) — Pec(z,y + w)
+ Pec(x,w) + Pec(y, z) — Pec(z, z) — Pec(y, w)} ,
with Pec(z,y) = P(z,y,2,y) = Pec(z,y) - 3(9 © 9)(z,y,2,y). O

Lemma 1.3.14. If Pec is constant over all 2—planes, that is, Pec = K, then P = %g D g.

Proof. The two algebraic curvature tensors P and % g ® g have the same associated sec-
tional curvatures, hence they coincide. O
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Dimension 2. Ifn = 2 then dim C*(V') = 22(22 — 1)/12 = 1 so it should in principle
be possible to express P € C*(V) in terms of its complete trace P, indeed taking an
orthonormal basis {e1, e2} of the unique 2-plane in V' (which is V itself) we get

1
P(eq,e9,€e1,e3) = Pec(eg, e2) = §P

which is the only value of P required to describe it, as all other values are either 0, equals
to it, or to its opposite. Then, as a consequence of the previous lemma, we get

P
P:—
1909

hence,
C'(V)=(goyg).

Before discussing dimensions 3 and higher, let us take a closer look at the properties
of the Kulkarni—-Nomizu product.

Proposition 1.3.15. Ifa € R, h, k € S?>(V*) and P € F*(V), then the following equalities
hold:

(i) hdk=k®h;
(ii) ch®k=ho ok =a(h®k);
(iii) "3 (h © g) = (trh)g + (n — 2)h;
(x) tr'3(g ® g) = 2(n — 1)g;
(iv) trir"3(h © g) = 2(n — 1) trh;
(%) trir’3(g ® g) = 2n(n —1);
@) g(h ® g, P) = 4g(h, Pic) ;

(*) g(h®g,g®g) =8(n—1)trh;
(+x) |h© g> = 4((n = 2)|n* + (trh)?);
(xx%) lg®g]> =8n(n—1);

vi) 1h @ kP = 4(|nP[k + (9(h, k))* = 2(9(h%, k%))?)

where for a tensor p € S?(V*), we define p? = tr23(p ® p), i.e, (p?)ij = Pig" D1

Remark 1.3.16. Property (v) may be interpreted by saying that the operators P +— 4 Pic
and h +— h ® g between S?(V*) and F4(V) are g-adjoint.

Remark 1.3.17. Iftrh = O then trtr!3(h ® g) =0and (h® g) L (g ® g).

Proof of Proposition 1.3.15. Properties (i) and (i) are straightforward. Computing in any
basis
3 (h® g)ju = (h o g)ijil
= higj + hjgi — higji — hjigi
= (trh)gji + hj(tr g) — hu; — hyy
= (trh)gji + (n = 2)h,

23



1.3. ALGEBRAIC CURVATURE TENSORS

gives relations (¢4), (7i7)% (iv) and (iv)*.
Now we evaluate
g(h®g,P) = (h® g)"™ Py
= hik(trl’3 P + hjl(tr2’4 P)ji — hil(tr2’3 Py — hjk(tr1’4 P) i
— pik Pic;y, —I—hjl Picj; +hil Pic;; —I—hjk Picjy,
= 4g(ha PIC) ’

which is (v) and also implies equalities (v)* and (v)**, as

g(h®g,9®g) =4g(h, tr"*(g® g)) =8(n — 1)g(h,g) =8(n — 1) trh,
h® gl =g(h®g,h®g) = 4g(h,tr"*(h O g))
= 4((trh)g(h, 9) + (n — 2)g(h, h)) = 4((tr h)* + (n — 2)[[?)

and similarly for (v)***. Finally, about formula (vi), we compute in an orthonormal basis

{eitiys

(h® k)iju)

:M3

h k| =

=

S
ko

T~
Il
—_

(hirkji + hjikix — hakjr — hjrka)?

=

S
ko

T~
Il
—_

I

(h?kka'z + h?zk?k + h?lk]zk + h?kkizl)

-
e
=
T~
I
—_

.- I
VM
M:

(hikkjihjikir 4+ hikjihjika)

-

S
o

T~
Il
—

|
:M:

(hikkjihakji + hickjiheka + hjkichake + hjikahjcka)

f
2
I
T~
I
o

n n
=4 > hikp+4 Y hgkijhuka —8 ) hijhjrkak
i7j7k7l:1 i7j7k7l:1 i7j7k7l:1

2 2
= (WP K2 + (g(h, 1))* = 2(a(h? K2))%)
O
Dimension 3. If n = 3 then dimC*(V) = 32(32 - 1)/12 = 6 = 3(3+1)/2 =
dim S2(V*) so it should again be possible in principle to express P € C*(V) in terms of

its (1, 3)-trace Pic. Take indeed any 2—plane 7 expressed using an orthonormal basis by
m = (e1,e2) and add a vector {e3} so that {e;, e, e3} is an orthonormal basis of V. Then,

Pic(e1,e1) = Pec(eq, e2) 4+ Pec(eq, e3),
Pic(ea, e2) = Pec(eq, e2) 4+ Pec(eg, e3) ,
Pic(es, e3) = Pec(e1, e3) 4+ Pec(eg, e3) ,

hence, solving in terms of Pec(e1, e2), which is the sectional curvature of 7, we have

Pec(eq, e2) = Pic(e1, e1) + Pic(ez, e2) — Pic(es, e3) .
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Thus, any sectional curvature can be obtained through Pic, hence, it determines the ten-
sor P.

To get an explicit formula of P in terms of Pic and g, the idea is to orthogonally
decompose P applying “successive divisions” by g, that is, finding a and B such that

P=ag®g+BDyg (1.20)

with tr B = 0, so that ag ® g L. B ® g (Remark 1.3.17).
Suppose that formula (1.20) is correct, then using formulae in Proposition 1.3.15 we com-
pute

Pic=tr'"3 P =atr'3(g®g) + tr'3(Bo g) = 2a(n — 1)g+ (n — 2)B,
P = trPic = 2an(n — 1),

hence,
P
a =
2n(n —1)
1 P 1 o
B = Pic——¢ | = P
n—2(lc ng> n—2 e
giving the formula
— Pi 1.21
2n(n_1)g®g+ ;Picdy, (1.21)
and since we are in dimension n = 3,
P o
P=—gB®g+Pichg. (1.22)

12
Formula (1.22) does constitute a valid decomposition formula for P in terms of g and Pic.
Consider indeed the tensor

P o
W:P—ﬁg®g—Pic®g,

by construction we have tr':3 W = 0 and since W € C*(V), every trace tr'/ W = 0,
i,j € {1,2,3,4}, ¢ # j. In dimension n = 3 this must imply W = 0, in fact, in an
orthonormal basis {e1, €2, e3},
(tr>3=0) (tr24=0) (tr>3=0)
Wigia = " —Waaza =  Wazn =~ —Wao = —Wizig = Wi212 =0,
(tr!3=0)
Wiois = =~ —Wagaz — W3a33 =0,

thus, Wi = 0 for every 4, j, k, 1 € {1,2,3}.
General Case. If n > 4 there actually exist nontrivial completely trace-free tensors

W € C*(V), hence equation (1.21) is not always valid. We define nevertheless W as the
completely trace—free component of P as

P 1
Wwl=p- ——— - Pi
Qn(nfl)g@g n— ey
This gives the decomposition formula
P L oyt Peog+W”
= — ic
2n(n — 1)g - g ’
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which again is an orthogonal decomposition of P, indeed as before g(g ® g, Pic ®g) =0,
since tr Pic = 0 and

gh® g, WE) = g(h,tr'?WF)=0  forallh € S2(V*).

Definition 1.3.18. Call W a Weyl tensor on V if W € C*(V) and is completely trace-free,
ie., trl3 W = 0. We denote by W*(V') the set of all Weyl tensors on V.

Definition 1.3.19. We denote by S3(V*) the set of trace—free symmetric bilinear forms
onV.

Remark 1.3.20. If n = 2 then S3(V*)®g = 0, despite S3(V'*) being nontrivial, due to the
high amount of constrictions on C*(V). Let indeed h € SZ(V*), then in an orthonormal
basis {e1, e2} we have

(h ® g)1212 = h11922 + ha2gi1 — hi2g21 — h21g12 = hi1 + hos = trh =0,

so h ® g = 0. However, if n > 3 the map S2(V*) 3 h+— h ® g € C*(V) is injective; let
indeed h ® g = 0, then

0=h@gl®=4((n—2)h* + (trh)?),
which implies A = 0, since n > 2.

Remark 1.3.21. There holds

2 P

. p2 P
|Pic|? = = [Pic|* + =g — 2—g(Pic, g) = [Pic|* — —.
n n n

P
Pic——g
n

All the previous results can be summarised in the following decomposition theorem.

Theorem 1.3.22. Let (V, g) be a real n-dimensional vector space with scalar product g. The
following decomposition formula holds:

CV)=(gog)®" Sg(V)mgarWiV),

where if n = 1 all spaces are trivial.
Ifn = 2, then S3(V*) ® g and W*(V') are trivial and every P € C*(V') can be decomposed
as

P
P = Zg@g, (1.23)

hence, ‘
|P
[Pl="lgogl =[P

Ifn = 3, then W4(V) is trivial and every P € C*(V') can be decomposed as

P 0
P:ﬁg®g+Pic®g7

hence,

PE= o

] 1 o
= 1lee g]? + [Pico g = gP2 + 4|Pic|? = 4|Pic|? — P2.
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Ifn > 4 all spaces are nontrivial and every P € C*(V') can be decomposed as

P o
P=———g0g+ Pico g+ WT, (1.24)

2n(n —1)

1
n—2
hence,

P2 1 o
PI2 = 2 Pi 2 PR
1P| 47,L2(n_1)2|g®g| +(n_2)2\ icog|”+ (W]
2 4 s
= p? Pic|” + |[W7|?
n(n —1) +n—2’ iel + W

2 2

4
_ P2 2
A R L el ray s pr )

From equation (1.24), using Pic = Pic —Pg/n, for n > 3 we also get the orthogonal
decomposition C*(V) = S2(V*) ® g &+ WA(V) with

1
n—2

P
P = Pic————— P
( ic 2(n_1)g>@g+W

Definition 1.3.23. If n > 3, we denote by

1 P
P __ s -
5= n—z(PIC 2(n—1)g)

the Schouten tensor of P.
We set ST := 0 for any P, if n € {1,2}.

Then, for n > 3 we also have the decomposition
P=SPag+wr.

Remark 1.3.24. The dimensions of the spaces involved in the decomposition formula are
given by

dim{(g ® g) =dimR =1,

+2)(n—1
dim S2(V*) = dim S*(V*) — dim{g ® g) = (71)2(71)
and, for n > 3,

n+1)(n+2)(n—3)
12 ’

dim WH(V) = dim C4(V) — dim $2(v*) = ™4

Let us now discuss the purity of the Riemann tensor.
We recall that if {e; };"_; is an orthonormal basis of V, then {e;Ae; }i';_; is an orthonormal

basis of AQ(V) with respect to %g; take indeed i < j and k < [, then
s9(ei Nej,en Ae) = glesen)glej, er) — glei, er)glej, ex) = dixdj — b

and it easily follows that the scalar product is 1 if and only if (¢, j) = (k, ) and 0 otherwise.
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Remark 1.3.25. Any symmetric form h € S?(V*) defines an adjoint operator /i by
h(v,w) = g(h(v),w) forv,w eV,
such that the eigenvalue relation /i(e) = Ae is equivalent to

h(e,w) = Ag(e,w), foreveryw e V.

Lemma 1.3.26. Leth € S?(V*) and call h and H the operators defined by linear extension
from

(o, w) = g(A(v), w) forvweV,
(h® g9)(z,y,z,w) = $g(S(x Ny),z Aw) forx,y,z,w e V.

If{ei}i=, is an orthonormal eigenbasis of i then {e; A e} ;_; is an eigenbasis of I .
Proof. Let i(e;) = \je;, we consider i < j, k < [ and evaluate
(h ® 9)ijir = hikgji + hjgix — hagjk — hjrgi
= Nigikgj1 + Njgjgik — NiGagjk — Njgjkgi
= (N +X))5(9 © 9)ija -

Thus, by Remark 1.3.25 (with the metric % g), we obtain
%(Bi AN 6j) = ()\1 + )\j)(ei VAN ej) .
O

Lemma 1.3.27. Let P € C*(V') and {e;}?"_; an orthonormal basis of V, we call ¢, € and
W the operators defined by linear extension from

Pic(v,w) = g(c(v), w) forv,w eV,
(Pic ®g)(x,y, z,w) = 59(€(x Ny), 2z A w) forz,y,z,w eV,
WP(x Y, 2, W) = %g(“//(a:/\y),z/\w) forx,y,z,w V.

Then {ei A ej}”

i« j—1 is an eigenbasis of & if and only if it is an eigenbasis of ¢ and W'

Proof. Clearly, any such eigenbasis of 4" and # is an eigenbasis of 2, by the decompo-
sition (1.24) (as it is also an eigenbasis of the form associated to (g ® g)). By the same
formula, any such eigenbasis of & and ¢ is an eigenbasis of 7. Hence by Lemma 1.3.26,
it is only necessary to prove that {e;}” ; is an eigenbasis of c.

We let Z(e; A ej) = Aij(e; Aej)and evaluate

n
Picij = Z Pkikg Z Ale go g kikj = ( Z Akl) 9ij »

k=1 =1
ki s ok

Thus, by Remark 1.3.25, we obtain

ce;) = <z": )\ki) €

k=1
ki
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Theorem 1.3.28. If W' = 0 then P is pure; i.e., there exists an eigenbasis {e; A e; b i1
of Z with {e;}I"_ orthonormal basis of V.

Proof. Since c is self-adjoint, it admits an orthonormal eigenbasis {e;}!_ ; of V. Then, the
result follows from Lemmas 1.3.26 and 1.3.27, as # = 0. L]

Corollary 1.3.29. In dimension 3 all algebraic curvature tensors P € C*(V') are pure.
Proof. In dimension 3 there are no nontrivial Weyl tensors. O

Remark 1.3.30. The Weyl tensor of P € C*(V) is only dependent on the conformal class
of g. Let indeed g = Ag, with A > 0 and denote by

Pic = tr P, P — tr Pic,

and W7 the tensor obtained by the decomposition (1.24) such that

p 1 (> P .
P=—— 0§+ ——(Pic——g ) og+WwPr.
2n(n1)g@g+n2< ¢ ng>®g+

Since in any basis (Z}'ij)zjzl is the inverse matrix of (gi;)7;_1 = (Agij)} j—1, that is, g =

% gij , we have

— - 1 1
Pic = trl’SP = —tr’¥ P = Z Pic,

A A
- 1 — 1
P:trPlc:XtrPlc:pP,
SO
— p 1 (= P
P— Pziﬂ’ ~ - P T = ~
W 2n(n—1)g®g+n—2< ¢ ng)@g
P/A\? 1 /1 P/A\?
= ———AgBO N+ —— ~ Pic— A A
2n(n — 1) g0 g+n—2<)\ Ty g)@ g
P Og+ ! <P' P )@
= - —_— 1 _—
2n(n—1)g I\ TR P
=pP-w"
and WF = WP,

We end this section by expressing the consequences of the decomposition Theorem 1.3.22
for an n—dimensional Riemannian manifold (M, g) and its Riemann tensor Riem.
The Riemann tensor admits the orthogonal decomposition

R
Riem:zg@g ifn =2,
. R o .
Rlemzﬁgqyg—i—Rlc@g ifn=3,
. R | .
Riem = ——— g ® g + ——Ric ® g + Weyl ifn>4, (1.25)
2n(n —1) n—2
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where the Weyl tensor Weyl is an algebraic curvature tensor, completely trace—free (i.e.,
each of its traces is zero).
It follows that |Riem| = |R

, when n = 2 and, for n > 3 (setting Weyl = 0, if n = 3),

_ A[Ric|? 2R ARicl2  2R2
Riem|? = - Weyl|? = Weyl|? (1.26
[Riem| n—2 (n—l)(n—2)+| exll n—2+n(n—1)+| exl” (1.26)
as
IRic|? = [Ric|> — R%/n. (1.27)

Moreover, by defining for n > 3 the Schouten tensor S, which is clearly symmetric, as

1 ) R
5= (Mo —y9)

we can also write the orthogonal decomposition as follows,

Riem=S0®yg ifn=3,
Riem = S ® g + Weyl ifn>4.

For completeness, we also define Weyl := 0ifn € {1,2,3},S :=0ifn = 1and S := Rg/4
if n = 2. Then, the decomposition

Riem = 5 ® g + Weyl
holds in every dimension. In local coordinates,

(n—1)(n = 2)Rijm = (n — 1)(n — 2)Wijm — Reiwgj + Rgagjk (1.28)
+ (n — 1)(Rirgji + Rjgir — Rugjr — Rjrgir) -

1.4 The Cartan formalism

The formalism we have been using up to now (and that we will continue to use in most
of the dissertation) to deal with the curvature is the standard (global, coordinate—free)
Koszul formalism.®> A (local) alternative consists in describing everything by looking at
the behaviour of a local moving frame, in particular an orthonormal frame. This is the
so—called Cartan formalism.

We work with vectors and matrices having differential forms as entries; such elements
belong to Q¥ (M, E), which we call the space of E-valued differential k~forms, with £ =
R™ and E = R™™™, respectively.

In this section indices do not denote tensor components but rather the “position”in a matrix
or vector. The convention of summation over repeated indices is anyway still always adopted.

We extend to these spaces the exterior product through the usual operations between
matrices and vectors, as well as the differential d, as follows,

MAQS=n.A¢ and  (pAz) =n. Az,
(dn)é = dné— and (dz)j =dz’,
forn € QF(M,R™™),¢ € Q¥(M,R™*!), 2z € Q5(M,R™),i € {1,...,n},5 € {1,...,m}.

We still denote by || = k and |z| = s, the degree of € QF(M,R™ ™) and z €
Q5 (M,R™), respectively.

15 After the French mathematician Jean-Louis Koszul (1921-2018) [69].
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Remark 1.4.1. The usual relation a A 8 = (—1)/*I8I8 A « for ordinary forms a and 3,
although still valid component-wise, has the following analogue in this setting

(A QT = ()T AgT
for n € QF(M,R™™), ¢ € Q5(M,R™*)),
In particular, one should not be surprised to have n A n # 0 for some 1-form 7.

We now fix a metric g and alocal frame {e; }}" ; onanopenset U C M, with associated
coframe {1*}_;. Notice that ¥ = (¥")"_; may be regarded as an R"-valued differential
1-form.

Definition 1.4.2. We define the local 1-form w = (w)";_; and 2-form Q = (Q})7,_,
by
Vej =wh®e, (1.29)
Q=dw+wAuw, (1.30)
where V is the Levi-Civita connection of the Riemannian manifold (M, g).

We call w and (2 the (Levi—Civita) connection 1—form and the (Levi—-Civita) curvature 2—
form, associated to the frame {e;}_; in U, respectively.

Remark 1.4.3. Equation (1.29) explicitly defines the 1-form wj- as

wi(X) =" (Vxe;) = };jX’f (1.31)

for any X = XFe, € I'(TM), where P};j are the Christoffel symbols of V in the local

basis {e;}I"_; (notice that they are not necessarily symmetric).

Equation (1.30) is called the second structural equation, the first structural equation be-
ing

dd =—-wAv.
They together,
dd =—-wAP,
(1.32)
dw=Q—-wAw,
are called Cartan structural equations. Once differentiated, they give
0=0QA9,
(1.33)
dQ=QANw—-—wAQ,

which are called the Bianchi identities in the Cartan formalism.

Proof of the first structural equation. Take any two vectors X = X’e; and Y = Y'e; then
(Vx?)(Y) = X (0'(Y)) = 9'(VxY)
= X(Y") =9 (X(Y7)ej + YW (X)es)
=X(Y") - X(Y") = Y/wi(X)
= —wi (X)) (Y)
hence, using equation (1.12), we obtain
A" (X,Y) = (Vx9)(Y) — (Vyd')(X)
= —wi(X) (V) + (V) (X)
= — (W AV)(X,Y).
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Proof of the Bianchi identities. We simply take the differential of both sides of equations (1.32),

0=d(—wAv),
{Ozd(Q—w/\w),

then, we have
0=—-dwAd+wAdY=—-QAVF+WAWAY—wWAWAY=—-QAD
and

0=dQ —dw Aw+w A dw
=dOQ—-QAWF+WAQLF+FWVAWAW—WAWAW
=dQ-QANw+wAQ.

O

We now see how the connection and curvature forms transform under a change of the
local frame.

Proposition 1.4.4 (Transformation laws). Changing to a local frame {€;}}_, via a trans-
formation €; = fej, the forms w and Q) transform according to the relations

{@ = fTlwf+ fdf,
- (1.34)
Q=f1ar.

Proof. We compute
Ve = Vijer=dff @ e+ ffwi @ e
= dff @ (f e+ flep e (F7)@E
= ((F7Ddff + (fHwiff) @ &,
showing the relation for w. Then we have
Q=dd+oAD
=df ' Awf+ fldwf — fTloadf+df T AdS
+(Twf AN AT 0f + )
= [N dw+wAW) f+df AW HAf) + T (—wtwdf ) AdS
+ T A wS
=[O+ df T A W+ df) = ST AT AAf = ST AT AW
= f'of,

where we used the identity

dff L =d(ff ) - fdf Tt = =t

This proves also the relation for Q. O
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Remark 1.4.5. Restricting ourselves to using only local orthonormal frames implies that
the transformation matrix f is orthogonal. Furthermore, in such frames the forms w and
) are skew-symmetric, that is,
i J
i _ _OJ
Qj = -7

Taking, indeed, any vector field X one obtains

0= Xg(e;, ej) = g(Vxe,, €j) + g(e;, VXej)
= g(wi (X)es, €5) + g(wi(X)es, )

= w] (X) + wj(X)
then, the skew-symmetry of (2 follows from equation (1.30), as
QZ :dwg+ngwf = —dw;- —wi/\wj = —Q;

Remark 1.4.6. We remark that equations (1.32) and (1.33) are a consequence of the sym-
metry and metric compatibility of the Levi—Civita connection, respectively and that they
in general contain extra “error terms” given by the torsion and the covariant derivative of
the metric, for a general connection (see [11]).

Remark 1.4.7. Returning back to the Koszul formalism, the 1-forms w§ and 2-forms Qg
are given by
D i ok
{%‘ = D 0"

(1.35)

and a version of {2 can be globally defined as Q (v, w) = Z(v A w).
Furthermore, the Bianchi identities in equation (1.33) correspond to the standard Bianchi
identities.

Proof of the Koszul relations. We express everything in Koszul formalism, starting with
equation (1.31)

W;(X) = 29i(vX‘fj) = ﬂi(XkFl;fjet) = FZij = ?;jﬁ’“(X),

then with equation (1.30)
VxVye; = VXw;-(Y)ei = Xw;»(Y)ei + w}(Y)wf(X)ek
which gives
R(X, Y)ej = VyVXCj — vayej — V[Kx]ej
= Ywh(X)e; + wi(X)wf (V)er — Xwi(Y)e; — wi(Y)wf (X)er — wi([Y, X])e;
= —dw}(X,Y)ei —(wA w);?(X, Yeg
= —(X,Y)e;,
hence,
QUX,Y) = =9 (R(X,Y)ej) = — X"V (Ryy;%es) = R ju X*Y!
= 3R (0" (X)9'(Y) = 9" (Y)0'(X))
= %szkl(ﬁk A\ ﬁl)(X,Y) .
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Moreover, we recall that

kl 1 kl
%(ei/\ej) = Z Rij er N\ e = §Rij ex Nep,
1<k<l<n

by definition. 0

Proof of the Bianchi relations. By using the symmetries of the Riemann tensor, we have

0=(QAY) = IR ;0" Aot A
= > (R'yu— Ry — Riyy) % A" A
1<j<k<l<n
= > (RYu+ R+ Riyy) 9 A" A9

1<j<k<l<n

that is, the first (algebraic) Bianchi identity R’ jkl + Riljk + R kij = 0.
About the second (differential) Bianchi identity, first we compute
— i Ol k i k
= 2dR jq NO° AY' + LR d0° A9 — TR 9% A A9
— 3 Rbst?® A AW + SR 00° A A w,
= LdR jy NI AY — SR jqwi ANOT A 4+ SR 95 AWk AT
— SR ° A9 AWF + LRF 05 A9 A wp

- %(dRz]st + Rrjstw;l:‘ - Rirstw‘; - szrtw; — RZ]ST'OJ;) A 293 A ,lgt,

then, we just observe that the term in parentheses is the expression of V, R jst¥", hence,

0=1V,R'ju0" A9 N
= Y (VeRYs+ ViR jrs + VR ji) 0" AN 9° A

1<r<s<t<n

that is, VTRijst + VtRijm + VsRijtT = 0 and we are done. O
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Chapter 2

The Weyl tensor and LCF
manifolds

In this chapter we introduce the Weyl tensor and show its invariance under conformal
changes. Then, on the converse, we will prove the Weyl-Schouten theorem stating that a
Weyl-flat metric is locally conformal to a flat metric, in dimension at least four.

In dimensions n = 2 and n = 3 the Weyl tensor is trivial, hence, the respective conditions
differ. In particular, every 2-manifold is locally conformally flat, while in dimensionn = 3
the role of the Weyl tensor is taken by the Cotton tensor (which in higher dimensions is
proportional to its divergence, hence it is zero if Weyl = 0).

2.1 Transformation rules under a conformal change

Recalling the final part of Section 1.3, we define the Weyl tensor Weyl (or W) and the
Schouten tensor S of an n—dimensional Riemannian manifold (M, g) as the tensors giving
the decomposition, for n > 4:

Riem = S ® g + Weyl, (2.1)

where, for n > 3
1

n_Q(Ric_%f_l)g) .

We also define, for convenience, W :=01ifn € {1,2,3}, S :=0ifn = 1 and S := Rg/4
if n = 2, so that formula (2.1) holds in every dimension.
First, we would like to prove, arguing similarly to Remark 1.3.30, that IV is conformally

S =

invariant; differently from such computation, Riem # Riem, as in this case Riem also is
dependent on the metric g.

Lemma 2.1.1. If'V and V are two connections on (M, g), then
T:(X,Y)—»T(X,Y)=VxY —VxY for X, Y e I'(TM)

defines a (2, 1)—tensor. If, in addition, V and V are torsion—free, then I" is symmetric and

R(X,Y)Z—R(X,Y)Z = VyT(X,Z)-VxT(Y, Z)+T(Y,T(X,2))-T(X,T(Y, Z)) .

Proof. 1t is sufficient to check the C°°(M )-linearity on the second entry of T,

T(X,fY)=Vx(fY)=Vx(fY) = (Xf)Y +fVxY — (X )Y = fVxY = fT(X,Y).
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

IfV and V are torsion—free, then
T(Y,X)=VyX —VyX =VxY — [X,Y] - VxY +[X,Y] = T(X,Y).
We now evaluate

VwVxZ =Vy(VxZ +T(X,Z))
—VyVxZ+Vy(T(X,2)) + T(Y,VxZ) + T(Y,T(X, Z))
=VwVxZ+WIT'(X,Z)+T(VyX,Z)+T(X,VyZ)
+T(Y,Vx2Z)+T(Y,T(X, Z)),

hence,

R(X,Y)Z = VyVxZ - VxVyZ - Vixy Z - T([X,Y], 2)
Y VY T(X, Z) — VxT(Y, Z)
+T(Vy X, Z)+T(X,VyZ) - T(VxY,Z) = T(Y,VxZ)
+T(Y,VxZ)-T(X,VyZ)
YTV, T(X, Z)) - T(X,T(Y, Z))
— R(X,Y)Z + VyT(X,Z) — VxT(Y, Z) + T(Y,T(X, Z)) - T(X,T(Y, Z))

and we are done. O

Definition 2.1.2. A conformal change is a transformation of the metric ¢ +— wug on a
manifold M, with v a positive C* function.

Remark 2.1.3. We will always express such a function « in the form v = e2?, with
p € C®°(M), to simplify the computations.

Theorem 2.1.4. Let g = empg, with ¢ € C°°(M) and denote by 6, f’f], lii:er/n, f{ivc, ﬁ, 5,

W the associated items. Then, the following relations hold:
@) Th =Tk + Tk |
(ii) VxY = VxY + T(X,Y),
(i7i) Riem = e2?(Riem —A ® g)
(iv) Ric = Ric —Apg — (n — 2)(%\%129 + A) ,
() R=e2{R—2(n—1)(Ap+ (n—2)3Ve)},
i) S=S—A,ifn>3andS =S~ LApg, ifn =2,
wii) W = e2°W ,

with
T(X,Y) = dp(X)Y +dp(Y)X — g(X,Y)Ve

and
A=Vp—dp®dp+3|Vyl’g.
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

Proof. By the Christoffel symbols formula (1.11),

Tiji = 5(8:Gk + 959k — OnGij)
= 3(0:(e*gj1) + 0(e* gri) — (€% gij))
= e**((0spgji + 9igj) + (0509ki + 0jki) — (Owpgis + Okgi))

= *? (D1 + 0ipgji + 0509k — i) »
thus,
ff] = §ksfijs = G_Q@kafijs
= ¢"Tijs + 6" (Dipgjs + 0jpsi — Dspgij)
=T + 0ip8] + 0007 — 940"
-1+,
giving relations (i) and (¢2).
Now we compute, by means of Lemma 2.1.1 in a normal chart centred at a point p,
6_2901:/{}5;11’]'16[ - Riemijkl
= VTt — Viljp + T3 Tsj — T Tsir
= 0Tty — 0iTjul
+ (0ipd}, + Ok b} — 610 0)(Dspbji + Djipda — bsjO1p)
— (aj(péz + akgO(S; — 6jk88<,o)(83g06ﬂ + 8,-@65; — 551‘8190)
= 05,00 + 0 — O5p6is, — Or 00k — Dot + O3 pd,
+ 0ip0jpdri (1 — 1) + 0300k pd1(2 — 1) + 90y pdx(—1 4 0)
+ 0500kl (1 — 2) 4+ 0500190k (0 + 1) + dypdsj(—1 + 1)
— 0°00spbikdj1 + 0°p0spd 1041
= — (050051 + 0500 — D061 — D501
+ 0300k pdj1 + 0500101, — 001 pdj1, — 0jOkPdy
— (0%@0sdindj1 + 0° 0050 1041)
= —(V*% 0 9iju + (dp @ dp) © 9) 51, — 5IVel* (9 © 9)iju
=—(AD 9)ijki s
proving (ii4).
Equality (iv) simply follows by relation (i¢%) and computing

Ric = e 2% tr13 Riem = Ric — tr!3 (A ® g) = Ric —(tr A)g — (n — 2)A,
with

tr A = tr Vg — tr(dp ® dy) + %|V90|2 trg
= Ap — |Vol* + 3| Ve
= Ap+ (n—2)3|Vy|?.

Similarly for relation (v),

*R=trRic=R—-2(n—1)trA=R —2(n— 1)(A90+ (n— 2)%]ch\2) .
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

For the Schouten tensor in (v7), we let n > 3 and evaluate

= 1 [ R
5= n—2<Rm— 2(n—1)g>
e ??(R —2(n —1)(tr A)) 2@9)

1 :
2<Rlc—(trA)g—(n—2)A— 5= 1) e

=5—-A,
then, we can compute the Weyl tensor,
W =e2R-S0§=R-A0g—e ¥ (S—A)0e¥g=R-Snpg=W
hence getting (vii). O

Remark 2.1.5. As a consequence, the (1, 3)-form of the Weyl tensor is conformally in-
variant, indeed

l ~sl 2 —2¢p sl l
Wijk: = Wijksg =€ C'OWijkse SOg = Wijk .

Before introducing the Cotton tensor, we recall the contracted forms of the differential
Bianchi identity.

Proposition 2.1.6. By contracting the differential Bianchi identity (1.13) we obtain

div Riemjkl = Vg RiClj -V, Rickj , (2.2)

and contracting again we obtain the so—called Schur’s lemma!,

2divRic =dR. (2.3)

Definition 2.1.7. A symmetric (0,2)-tensor B is called Codazzi® if the tensor VB is
completely symmetric, that is,

VxB(Y,Z)-VyB(X,Z)=0.
The Cotton tensor is defined as
C(X,Y,Z2)=VxS(Y,Z)-VyS(X,Z).
The Cotton tensor thus “measures” the defect of the Schouten tensor from being a

Codazzi tensor. Explicitly, in local coordinates, we have, if n > 3,

1

Car =3

. . 1
(V@ Ricj, —V; Ricy, —m(aijok - @Rgm)) )
and we set C' == 0,if n € {1, 2}.
We observe that, immediately from its definition and the symmetry of the Schouten tensor,

the Cotton tensor satisfies
« Ciji + Cjir = 0,

» Cijks + Cjki + Cij = 0.

! After the Russian mathematician Issai Schur (Mcait Illyp, 1875-1941) [70].
% After the Italian mathematician Delfino Codazzi (1824-1873) [71].
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

Hence, like the Weyl tensor, the Cotton tensor is completely trace—free. Indeed, if n > 3,
we have

Cji = m (v Rlei —v]' RlCi —m(a joi - 8]Rgz))
I 1
_ 1 div Ric; — 18-R =0
n_9 1V IG5 5 'j — U,

by Schur’s lemma, formula (2.3) and Cjz-i = —Ciij — Ciji =0as Ciij =0.

Remark 2.1.8. If B is a Codazzi tensor, then div B = d tr B (that is, “tr VB = V tr B”),
as

Viji = Vsz =0;trB.

In general, the Cotton tensor is nontrivial, hence the Schouten tensor is not necessarily
Codazzi. Despite that, it still satisfies

divS =dtr S,

indeed,

trS =

1 1 1 n 1
trRic————Rtrg) = R — R) = R
n—2<r “Tom—1) rg) n—2( 2(n — 1) ) 2(n — 1)

and using Schur’s lemma, formula (2.3),

o1 R 1 .
divS = p— (le Ric 1) d1V(Rg)>
1 1 1
()
1
= — . 24
2(n — l)dR 24)

If n > 4 the Cotton tensor is directly related to the Weyl tensor as follows.
Theorem 2.1.9. There holds the relation
div Wik = (n— 3)Ckzlj . (2.5)
Proof. The equality is trivial if n € {1,2,3}. We let n > 4 and we first compute in general
div(h ® 9) i = V' (hikgji + hjgix — hagik — hjkgit)

= V'hirgji + V'hjigik — V'hagi — V'hjrga

= V'hikgji — V'hagji + Vehj — Vihs,

= div hggj — div ygjr + Vihj — Vihj,

hence, from equation (2.4) and the definition of the Cotton tensor,
div(S ® g)ji = div Skg; — div Sigjx + ViSj — ViSji

1
— m(akjol — 31jok) + Cljt - (2.6)
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

Then, by equations (2.2) and (2.6), we conclude
div ijl = div Riemjkl — diV(S ) g)jkl

. ) 1
= Vg RlClj -V Rlej _ijl — m(akjol — 8[jok)

= (n—2)Chij — Cij +

= (n—3)Chij -

1
m(akRglj — ORgr; — OkRaij + O Rgy;)
O

Remark 2.1.10. It is worth computing here the divergence of the Cotton tensor, which is
the “double divergence” of the Weyl tensor, for n > 3,

: 1 ki k
div Cij = 2(n — 1)(’1’L — 2) (2(n_1)(Rikle _Rz‘k:Rj +ARij)—ARgij—(n—2)VUR) .
(2.7)
Indeed, using equation (2.4) and the definition of the Schouten tensor, we have
VFCyi; = VESij — ViiSy
= ASjj — VirSF + R S)j + Ry SM
k Kl
= ASZ']' - 2(n — 1) Vin - Riij + Rz-kle
1 1 1
= ——AR;; — ARgij — =—=Vi;R
e R T T s Sl L T
L 1 g o opkl 1
e 2(n —1)(n — 2)RR” T g ki 2(n—1)(n — 2)
1 1
= ——AR;; — ARg; iR
A T Ty Sl L T
1

1

Remark 2.1.11. As a consequence of Theorem 2.1.9,if n > 4 and W = 0, then C' = 0.

This is, however, not necessarily true if n = 3.

Theorem 2.1.12. Let g = 62‘99, as in Theorem 2.1.4, then

C(X,Y,Z)=C(X,Y,Z) - W(X,Y, Z,Vy),

Cijk = Ciji, — W‘ljkal%

2

forall XY, Z € T'(TM).

Remark 2.1.13. If n = 3 this clearly shows that the Cotton tensor is conformally invari-
ant.

Proof of Theorem 2.1.12. If n € {1,2} all tensors are trivial, thus we let n > 3. We recall
that the transformation formula for the Schouten tensor and the Levi-Civita connection
under the conformal change g + § = €2#g, are given by

S=S5-A,
VxY =VxY +T(X,Y),
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2.1. TRANSFORMATION RULES UNDER A CONFORMAL CHANGE

where
Aij = V00 — 0;p0j + %|ch|29ij ,
Tjj = 0isp0} + 0007 = 950" -

Considering local normal coordinates centred at a point p, we compute

Vidjk = Vijee — Vi(0;0019) + $Vi|V|*5j,
= V50k — 0300k — 050050 + 50:|V o0
hence,
Vidji, — VA = Vi0ke — V5:0kp — 059050 + 0ip0 + 50 Ve *6j — 505 Ve [*din
= Rijud'e — 00050 + 01050 + 50|V 0?65 — 505V o|* 0,
then,
T A = (9ipd; + 000, — 8:;0'9) (O — Ouphp + 5| Vep|*0ue)
= 03050 + 050 — 610 PO}
— (0i400;p0kp + 05005001 — 6150k Vo)
+ 2|Vl *(0ipdjk + 0jpbir — Opbij)
= 81p0%p + 0003 — 010" 0O — 20,00 POk p
+ %|ch|2(8icp5jk + 000k + Orpdij) -
Finally, we get
Ciji — Ciji = ViSje — VS — ViSjk + V; Sin
= Vi(Sjk = Aji) = V;(Sit — Air) — ViSj + V; S
= VjAp — Vildje + T Au, + Tip Aje — T} Age — T Ait
— T};Su — Ty, Sje + TjiSer + Tjy S
= VA — ViAji + T Aje — Tj Ay — Th.Sje + ThSie
= —(Rijud'p — 00050 + 01000 + 50i| Vol *650 — 505V o 6ir)
+ 0100} + Opd2 0 — 6:1,0" 002 0 — 20,0000
+ 2V 2 (000K + Ol + 0590)
— (8;00%:p + Ok 00510 — 030" 0050 — 20500k 00ip)
- %’V¢|2(3j805kz‘ + ORpdji + 0ipdii)
— (00, + Owpd; — 0i0'0)Sjt + (9500}, + Oppd; — 10" ) Sit
= —Wiju0'p — (Sirdj1 + Spdir. — Sudjx — Sjrdi)0'p
— 30V @6 + 10,V o|*Sir — 00" 0050 + 6;1,0" 00
— 0ipSjk — OkpSji + 00" Sjt + 0;0Sik + OkpSij — 6,1,0" VS
= —Wijd'p — (008 + 0'0Sjdu, — 0" pSudk — 0ipS;r)
— 9;0Sjk + 0.0 0Sj1 + 0j0Si — 8,10 0Su
= —Wimd'o.
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2.2. LCF MANIFOLDS

Remark 2.1.14. If n > 4, the result could have been obtained also by using equation (2.5),
indeed

(n = 3)(Ciji — Cijn)
= div Wiij — div Wiij = €2V e Wigi; — 9°'V Wik
= 9" (VeWikij — TaWirij — ToWieij — TeWikes — T4 Wikie) — 9%V s Wik
+ 29105 Wi
= — " Winij (0506] + 0108, — g1s0"0) — g Wi (00} + OppS — grs0'p)
— 9" Winej (8500} + Dipd, — 9is0'0) — 9" Wi (95085 + 0508, — ;50" 0)
+ 20" Wik
= —Winij (0% + 0" — nd') — Wi (0'0}, + Ohpg” — 6,0")
— Wikt (900} + Dipg" — 810" @) — Wikie (008 + 909" — 850"¢)
+ 20" o Wiy
= (1 — 2)Wipi;0'p + 200 Wigy;
— (Wi (906} — 01,0"0) + Wik (000t — 610"0) + Wikt (0'00" — 650" )
= nWiy;0'p
— (Wikij0'p = Witi0'0 + Wikij0'0 — Wikt 00 + Wigi;0'0 — Wigisd' )
= nWigi;0'0 — 8'0(Wikij — Wiiij + Wikij — Wiktj + Wikij — Wika)
= nWigi;0'p — 30" o Wigij
= (n— 3)Wiki;0'p.

2.2 LCF manifolds

Definition 2.2.1. A Riemannian manifold (M, g) is said to be conformally flat if there
exists a positive function u € C°° (M) such that (M, ug) is flat.

A Riemannian manifold is said to be locally conformally flat (or LCF) if every point has a
conformally flat neighbourhood.

Let us start by observing that speaking of 2—dimensional LCF manifolds is redundant.
Theorem 2.2.2. Any 2-manifold is LCF.

Proof. Let g = e??g for p € C°°(M). Since for n = 2 the curvature is completely deter-
mined by the scalar curvature as Riem = Rg @® g/4, by relation (1.23), fixed some point
p € M, it is enough to show that R = 0 for some function ¢ defined in a neighbourhood
of p.

By Theorem 2.1.4—(v), there holds R = e~ 2?(R—2A¢), hence we need to solve locally
the PDE Ay = R/2., which in coordinates reads

g g 1
9705 — ¢"T 5000 = SR (2.8)

This is a uniform elliptic equation with smooth coefficients, which is well known to have
a unique C'* solution in any smooth domain U compactly contained in the local chart,
once we set a boundary data, let us say ¢ = 0 on QU (see [14], for instance). O
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2.2. LCF MANIFOLDS

Remark 2.1.5 and Theorem 2.1.12 imply that an LCF manifold must have W = 0, if
n > 3 and C' = 0, if n = 3. The following theorem proves that these conditions are also
sufficient to be locally conformally flat.

Theorem 2.2.3 (Weyl-Schouten theorem). Let dim M > 3, then (M, g) is LCF if and only
if

« =0, ifdimM = 3,

« W=0,ifdimM > 4.

Proof. If n = 3 the Cotton tensor is conformally invariant and if n > 4 a (version) of
the Weyl tensor is conformally invariant, hence the conditions are necessary since for the
Euclidean spaces these tensors are both zero.

Now, assuming that the conditions hold, both in the case n = 3 and n > 4, we have
W = C =0, as if n = 3 this is clearly true simply since W = 0, while if n > 4 we have
that W = 0 implies C' = 0, by relation (2.5). Moreover, being W = 0, the Riemann tensor
simply reads as

Riem =S50y,

by the decomposition formula (2.1).
We consider a function ¢ € C°°(M) and set § = €??g, as in Theorem 2.1.4. Imposing

Riem = 0 and using relation (v) of the same theorem, we obtain the following equation
that we want to solve locally for ¢,

O:ﬁn:ez@(Riem—AQDg) —e(Shg—ADg) =e*¥(S—A) Dy,
where A = Vdyp — dp ® dp + %\dg0|2g. This then equivalent to S = A, that is,
Vdp = S +dp ® dp — Ldy|*g, (2.9)

by Remark 1.3.20, since n > 3.
To solve equation (2.9) we now show that there exists a smooth 1-form w solving

Vo=S8+w®w— iwg (2.10)
and that such w is (locally) exact. To see this latter, we set
Flw)=S+wQw-— %\w|29,
hence equation (2.10) becomes Vw = F(w) and being F'(w) symmetric, we recall equa-
tion (1.12) to notice that a solution of equation (2.10) satisfies
dw;j = Viwj — Vjw; = F(w);; — F(w); =0.
Hence, the solution w is a closed 1-form, thus locally exact due to the Poincaré Lemma 1.1.18.

In order to deal with the existence point, we suppose again that w solves equation (2.10)
and compute

ViF(w)jk = ViSji, + Vi(wjwr) — 3Vi(ww) g
= ViSjr +w;Viwg +wpViw; — gjkwlviwl
= ViSjk + wjF(w)ir + wiF (w)ij — gjrw' F(w)a
= V;Sjk + wiF(w)ij + w;(Sik + wiwr, — 2|w[?gir) — gixw’ (Su + wiwy — 3|w|?ga)
= ViSjk + Sikgjw' — Sugjrw'
+ wrF(w)ij + wiwjwr — 3lwPwjgin — |wwigjr + 3lwl’wigsn
= VS + Sigjw' — Sugjrw’

+ wipF(w)ij + wiwjwy, — %|w[2wjg,-k — %]w\Qwigjk ,
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hence,
Rijklwl = V%jwk — V?iwk = ViF(oJ)jk — VjF(w)Z‘k = Cijk + (S D g)ijklwl
= Rijuw + Ciji — Wijnw! .
This indicates that W = C = 0 is necessary in order to satisfy equation (2.10). It also

shows how
VxF(W)(Y,Z) = VyF(w)(X,Z) = R(X,Y, Z,w#) (2.11)

can be obtained by substituting F'(w) to Vw whenever it occurs in the computations.
This particular fact makes the condition W = C' = 0 also sufficient, by the following
Lemma 2.2.5, which concludes the proof. O

Remark 2.2.4. We observe that condition (2.11) resembles, in a Riemannian setting, the
formulation of Frobenius theorem as in Remark 1.1.23. Indeed, considering the overdeter-
mined system of first-order differential equations

Owy,

o (@) = Gy, (@)

where
Gik(w,w(z)) = F(w)(@) 5 + D (@)wr(z),

one sees that writing F'(w) in place of Vw is equivalent to writing G5, (z,w(x)) in place
of Ojwy,(z). This is expressed more formally in the following lemma.

Lemma 2.2.5. Let (M, g) be a Riemannian manifold and consider the equation
Vw = F(w), (2.12)
where F': T(TY M) — T(TYM) is a C™ bundle morphism such that the equality
ViFj, — VjFy, = Ry (2.13)
is satisfied by the quantity

OF

Viij = (VZij)(w) + Do,

() (F(w)a + Tiwr) -
Then, for everyp € M and wy € T, M™ there is a unique solution w of equation (2.12) in a
connected open set U of p such that w, = wy .

We notice that @ij is “almost equal” to the expression of V(F o (-,w)), except for
the fact that F'(w) is in place of Vw.

Proof of Lemma 2.2.5. Equation (2.12) in a coordinate chart reads
Ojwi(r) = F(w)(@)j + T ()wi() = Gjn(w,w(2))

and Frobenius Theorem 1.1.21 guarantees that a unique solution exists, given that the con-
dition

OG ik OGjr  0Gi Gk
ox’ + G Ow;  Oxd + G Ow;
is satisfied. Let us denote by
0; ‘= B and o' = o
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to compute
aaC;]zk en aaijlk _ 88i§k s 86C:jlk
= (O Fji + 0T ) + (Fy + Thor) (0 Fji + Ty
— (9 F + 03T n) — (Fjo + Thyewr) (' Fye + Ty
= 0;Fj — T}, Fij — Ty Fir, — 8;Fy + Ui Fij + Ty Fa
+ 0T — 9Ty + T oy — T Ty
+ 0" Fjyo(Fyy + Thewy) — 0 Fye(Fj + Thwr)
= ViFj — V;Fy + w (0T, — 0,7, + T4, T — T4, Th)
+ 0 Fjpo(Fyy + Thwy) — 8 Fye(Fj + Thwr)
= ViFj — V;Fy — Rijiaw' + 8" Fjy,(Fy + They) — ' Fy(Fjy + wr)
= @ZF]k —V,Fy, — Rijmw!
-0,

which proves the lemma. O

Remark 2.2.6. The explicit computation that condition (2.13) is satisfied for the function
F in the proof of Theorem 2.2.3 goes as follows,
@‘ij = V;Fji + 5ZF}1<:(F¢1 + Thw)
= Vi(Sjk + wjwr — 5lwl*g;r)
+ [0 (S + wiwr — 31wlPg8)] (S + wiewr — gl ga + Thywr)
= ViSj1, + w; Viwy + wpViw; — gjxw' Viwy
+ (W)}, + widh — whgj) (S + wiwy — §|w|?gi + Thwr)
= ViSjr — wTwr — kagjwt + gjkwlfﬁlwt
+ Sipw; + Sijwi — Sagjre
+ wiwjwy + wijwg — \w|2wigjk
— (zlwlwigin + 3lwlPwrgij — 3lolPwigs)
+ Thww; + F%wtwk — Fﬁlwtwlgjk
= ViSj1 + Sirgjiw’ — Sugjre
+ S + 2wiwjwy — 5|w]* (Wigik + Wkgij + wWigik) »
hence,
ViFjk — VFyx = Ciji. + W (Singii — Sugjr — Sjkgi + Sjigir)
= Cijk — Wijmw' + Rijraw’
= Rijuw’ .
On an LCF manifold (M, g) of dimension n > 3, the method used in Theorem 2.2.3
implies that one has to fix, for a point p, both ¢(p) and dy, in order to guarantee the
uniqueness of the local conformal change u = €2% (because of Poincaré lemma and Frobe-

nius theorem) turning g into the flat metric g, in a neighbourhood of p.
Then, one may wonder about uniqueness conditions for a global conformal change making
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the metric flat. If dim M = 2, clearly uniqueness cannot be granted, as equation (2.8) on
R? reads
Ap =0,

which is solved by any harmonic function.
If n > 3 however, the next theorem gives that such uniqueness holds, up to a constant.

Theorem 2.2.7. Let (M, g) be a conformally flat n—dimensional Riemannian manifold with
n > 3. Then any two positive functions u,u’ € C°° (M) such that (M, ug) and (M, u'g) are
flat, are proportional by a positive factor.

Proof. We only need to prove that for a flat manifold such a conformal change can only be
conveyed through multiplication by a positive factor, hence, the conformal change u'/u
turning ug into u'g will have to be a constant. Furthermore, we only need to prove this
for the special case of R", as a flat manifold would transfer its nonconstant conformal
change to its universal Riemannian covering, which is R™ (see Theorem 1.2.19), by means
ofu =uom: R®" = R, with 7: R® — M the projection map of the covering.

Thus, let us assume g to be the canonical metric on R” and v = €2¥ to be a conformal
change that makes e2#g flat, then, equation (2.9) on R" reads

e = Oipdyp — 5IVel*di;
We set f = 1/y/u’ = e~ ¥ and compute

9 0. f =02 f = (=52 9:00:0)e ¥ = LIVp|2e %5, = ]Vf|25“
@zf— 5if = (=050 + 0;00ip)e” % = 5|Vp|7e i = o Ot
so that the function 9; f is only dependent on 2%. Setting R > x% + A;(z) = 0;f(x) € R,
fori € {1,...,n}, we observe that the functions A; have to be linear, as

v

81141(-7)1) = ... = anAn(xn) 2f

= constant = k,

so A;(2%) = k' + a' for (a',...,a") = a € R".
Assuming k # 0, we have A;(—a’/k) = 0 and the contradiction

Lo VICa/bP S [Aat/R)

2f(=a/k) 2f(=a/k)

Therefore, k = 0, hence |V f \2 = 0, f is constant and ¢ and w are constant. O
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Chapter 3

The Chern—-Gauf}—-Bonnet theorem

The famous “classical” Gaul—Bonnet theorem for a connected, compact and oriented sur-
face S, without boundary, immersed in the 3—dimensional Euclidean space R3, says that

/ K dVs = 27y(S),
S

where K is the Gauflian curvature of S, that is, the determinant of the second fundamental
form, or equivalently, the product of its two eigenvalues (the principal curvatures of the
surface).

Actually, the result holds also for abstract Riemannian surfaces, substituting the Gauflian
curvature K with R/2 (half the scalar curvature, which coincides with K for an immersed
surface), that is,

/ R dVy = 47x(S). (3.1)
S

This formula shows a wonderful relation between the curvature and the topology of the
underlying surface, as the Euler—Poincaré characteristic is an “intrinsic” topological in-
variant. No matter how we deform the surface, we “produce the same amount” of new
negative and positive curvature, as the total curvature (the Gaufl—Bonnet integral) has to
stay unaltered.

A generalisation of the theorem to hypersurfaces of even dimensions was given in 1926
by H. Hopf [19], stating that for a connected, compact and oriented n—dimensional mani-
fold M without boundary, embedded in the (n + 1)-dimensional Euclidean space R"*1,

there holds i
B Vol(S™) B (2m)™

where K is the Gauflian curvature of the hypersurface (still, the determinant of the sec-
ond fundamental form of the hypersurface). However, even if K can be expressed in terms
of the curvature tensor of an abstract Riemannian manifold, hence suggesting the state-
ment of the general theorem, Hopf’s proof was “extrinsic”, relying on the existence of
a codimension-one embedding in R"*! (we will be more precise and we will discuss
such proof at the end of Section 3.2). It was later shown by C. B. Allendoerfer [2] and
W. Fenchel [13] that any embedding in a Euclidean space of arbitrary codimension was
sufficient, but Nash embedding theorem! [27] was not yet known at the time (they were
anyway able to get the conclusion also for abstract Riemannian manifolds, by means of a

different technique) and even more importantly, with the words of Michael Spivak [33],

! After the American mathematician John Forbes Nash, Jr. (1928-2015) [72].
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3.1. PRELIMINARIES

“[...] an intrinsic theorem ought to have an intrinsic proof’. S.=S. Chern provided such a
proof of the right abstract generalisation of the theorem in 1944 [10], showing that

/ PE(Q) = (2m)"2x (M),
M

where (2 is the curvature 2—form of the manifold (in the setting of Cartan formalism) and
Pf(Q) is its Pfaffian®, which we will define and discuss in the next sections.

Such Pfaffian is equal to a polynomial of order n/2 in the components of the Riemann
curvature tensor, but in practice (because of the complexity in its computation) such an
explicit expression is present in literature only for dimensions two, four and six (up to
our knowledge). In dimension two, one recovers the Gauf3—Bonnet formula (3.1) for sur-
faces, while in dimension four (which is relevant for us in view of the discussion about the
Einstein manifolds in the next chapter), there holds

/M(|Riem|2 — 4|Ric|* + RQ) dVyr = 3272y (M)

for every compact oriented 4-dimensional Riemannian manifold (M, g).

Finally, we mention that Chern’s proof inspired a whole new theory of characteristic
classes, which evolved into what is now referred to as Chern—Weil theory’, in light of which
the Chern-Gauf3—-Bonnet theorem may be written as

| etB)=xim).

where e(E) := Pf(QF /21) = Pf(QF)/(2r)"/? is the so-called Euler class of the vector
bundle E over M and QF is the curvature 2—-form of any metric connection on E. We
refer the interested reader to [24, 28, 33].

3.1 Preliminaries
We introduce some results and technical tools that we need for the proof of the theorem.

Lemma 3.1.1. On every compact Riemannian manifold (M, g) there exists a vector field
X € I'(T M) with finitely many isolated zeroes.

Proof. 1t is well known that there exists several Morse functions on any manifold M, that is,
functions with only nondegenerate critical points p, i.e., such that V f,, = O and det V2 f,, #
0 (see [4, 25], for instance). It is then clear that they have finitely many isolated critical
points, hence, the field X = V f has the required property. O

Remark 3.1.2. If X is like above, then X/|X]| is a unit vector field on M with finitely
many isolated singularities. We will denote by SM C I'(T'M) the set of all unit vector
fields on M.

The following two definitions are well-posed (see [29], for instance).

? After the German mathematician Johann Friedrich Pfaff (1765-1825) [73], doctoral advisor of Johann Carl
Friedrich Gauf.
3 After Shiing-Shen Chern and the French mathematician André Weil (1906-1998) [74].
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3.1. PRELIMINARIES

Definition 3.1.3. We define the degree of a smoothmap f: M — NN between two oriented
n-dimensional differential manifolds as the number deg( f) satisfying

[ = dest) [ (32)

for every compactly supported form w € Q"(N).

Remark 3.1.4. Comparing equation (3.2) with equation (1.4), it is easy to see that the de-
gree of a diffeomorphism between two connected manifolds is £1, with the sign depending
on whether it preserves or reverses the orientation.

Definition 3.1.5. Let X be a vector field on an n—dimensional Riemannian manifold M
having 2 € M as isolated zero. Choosing a (small) closed ball B around z such that it
contains no other zeroes of X and SB = B x S* ! we denote by 75" SB — S ! the
induced projection. We define the index at z of the vector field X as

ind,(X) = deg(S:),
where the map S, : 0B — S"~ ! is given by S, (p) = WSnil(Xp/|Xp|).

We are then ready to state the Poincaré—Hopf index theorem, whose proof can be found
in [29, 35], for instance.

Theorem 3.1.6 (Poincaré-Hopf index theorem®). Let (M, g) be a compact oriented Rie-
mannian manifold and X a vector field on M with finitely many isolated zeroes z1, . . . , Z,
such that X is “pointing outward” at every point of the boundary of M, if present. Then,

> ind (X) = x(M),
i=1

where x (M) is the Euler—Poincaré characteristic of M.

We denote by 3, the symmetric group over n elements and with n!! the product of all
the integers from 1 up to n that have the same parity (odd or even) as n, that is, for even n,
the double factorial is n(n —2)(n —4)---4-2 and for odd n, itisn(n —2)(n —4)---3- 1.
In particular, for n = 2p we have (2p)!! = 2Pp!.

Definition 3.1.7. We define the Pfaffian of a skew-symmetric matrix A € R"*" as

n/2
1 o(2i-1) ., .
— sgn(o) || A, if n is even
pr(a) = w2 8@ 1] Az

0 if n is odd
Theorem 3.1.8. If A, B € R"*" with A skew—symmetric and B nonsingular then

Pf(BTAB) = det(B) Pf(A). (3.3)

* After Jules Henri Poincaré and the German mathematician Heinz Hopf (1894-1971) [75].
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3.1. PRELIMINARIES

Proof. The equality is trivial if n is odd. We let n be even and compute

n/2
PI(BUAB) = — 3" sen(o) [[(BAB)72 Y
nll & bt
1 o T\o(2i—1
=5 > seu(o) [[(BNI® D 4:BL
cEY, i=1
_ 1 e B pr(2i) 4r(2i-1)
Yl ZGZE sgn(o)l:[ o(2i-1)Po(2i) A7 (2i)
— 1 n/zBT(Qz 1) BT n 7'2@ 1)
=7 2 sen(o H Gi-1) H
oreES, i=
1 e n/2 21 1)
= Z sgn(7) sgn(o H H
e 0, TEXN i=1 i=1
1 nzo
7(2i—1)
= XE: sgn(7) det(B HAT(QE)
TEXLnR
— det(B) Pf(A).

We explain the passage from the second to the third line above, where we transformed the
sum over s,t € {1,...,n} (for each permutation o € ¥,, andi € {1,...,n/2}) to the
sum over all permutations 7 € ¥,,. The product is between terms each one consisting of
the n? summands >et=1B; 2i—1)Af Bff(%), hence giving a sum of terms like (with all the
t;. distinct each other and the same for the s;)

s s t n/2 Sn/2 n/2
B yAt Bo(a) Bo(n-1) Aty Bo(n) -

If some tj, coincides with s, then we have no contribution, as Af: is zero, by the skew-
symmetry of A, while if t;, = s,,, = ¢, with k # m, supposing k < m, the term

Asthm n/2 A n/2B n/2

s S t Sk s t Sm
Sgn(U)Bglu)Athal() - B Ay B "B tm—1y At Blom)  Bo(n_1) tns2 Po(n)

o(2k—1) o(2k)

which is equal to

s s1 ot skl 14 L ptm Sn/ n/ n/
Sgn( )B 1( )AtllB 1( 2)° - B o(2k— 1)A "B o(2k)° BU(Qm—l)Atha@m) o Ba(n2—1)A n/QQBJ(nQ) )

is cancelled by

t t m m PRtm Sn/2 Sn/2 tn/2
sgn(a )le( )A;lBl() BS(2k 1)Af:BEk(2k) BS(Qm 1)As BFom) " Ban—1)At, )5 Ban)
which is equal to

t 1 ¢ ¢ ptm Sn/ Sn/2 ptn/
sgn(T) B2 Al Bloy - Baliog— 1) A7 Baam—1) " Baar) At Belom) Bty At s Bon

if 7 differs from o only for 7(2m — 1) = 0(2k) and 7(2k) = o(2m — 1). Indeed, differing
by a single transposition, the two permutations have opposite signs, implying that these
two coincident terms cancel each other in the final sum. It follows that in every product
above, we can assume that 1, ...,¢,/2,51, ..., Sy/2 are all distinct, hence they must be a
permutation 7 of the set {1,...,n} and we get the expression at the third line. O
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Lemma 3.1.9. Let n be even, then any skew—symmetric matrix A € R™*" can be written
as

S

BTAB =

where B is nonsingular and

S:(_Ol ;).

The proof is a linear algebra exercise (see [33, Chapter 3, Section 3, Corollary 11]).

We observe that a matrix as above has determinant equal to 1 if there are no zeroes
on the diagonal and it is zero otherwise. Similarly, its Pfaffian is equal to 1 if there are no
zeroes on the diagonal and it is zero otherwise (it can be proved, for example, by induction).

Proposition 3.1.10. For every skew—symmetric matrix A € R™*" there holds
Pf(A)? = det(A).

Proof. If n is odd the equality is trivial, as any skew—-symmetric matrix has determinant
equal to zero. If n is even, recalling the above observation, the result follows if A is singular,
hence we assume that A is a nonsingular skew-symmetric matrix. By Lemma 3.1.9 one
has that such a matrix has no zeroes on the diagonal, thus

S
1 =det = det(BTAB) = det(B)? det(A)
S
and, by equation (3.3),
S
1="Pf = Pf(BTAB) = det(B) Pf(A)
S
and we are done. O

3.2 Proof of the Chern—-Gauf3—Bonnet theorem
From now on, we assume that

« (M, g) is a compact oriented Riemannian manifold,

o dim M = 2p, even,
« all the local frames {e; ?21 that we will consider are orthonormal and their coframes
{191}?2 , are oriented with respect to the volume form dV) (see Definition 1.1.6 and

equation (1.7)).
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3.2. PROOF OF THE CHERN-GAU3-BONNET THEOREM

We then recall here some notions of Cartan formalism from Section 1.4. In particular, the
defining equation (1.29) of the connection 1-form w

Ve; = wj- ® e, (3.4)
the Cartan structural equations (1.32) and the Bianchi identities (1.33)

{dé‘:—w/\z? { 0=0QA7Y

(3.5)
dv=Q—-wAuw dQ=QANw—-—wAf

Moreover, as a consequence of working with orthonormal frames, we have the skew-
symmetry of the connection and curvature forms (Remark 1.4.5)

cué» = —wzj
; j (3.6)
QL = -0

(2

and the following transformation formulae under a local change of frame e; — €; = ff e;

o= f"lwf+ fldf
{~ » (3.7)
Q=flof

where at each pointp € M, f, is an orthogonal linear map, i.e., f~t = fT withdet(f) = 1.

Remark 3.2.1. We also remark that there exists an orthonormal frame in an open set U
such that w|, = 0 for a specific point ¢ € U. To construct it, we choose an orthonormal ba-
sis (e1]g, - - -, €2plq) of Ty M and for every other point ¢’ sufficiently close to ¢ we consider
the frame given by parallel transporting the frame at ¢ through the geodesics from g to ¢'.
As the parallel transport maintains both norms and angles, the frame is orthonormal; the
parallel transport guarantees that the Christoffel symbols Ffj all vanish at ¢ and so does
w, because of equation (1.35).

Theorem 3.2.2. There exists a unique globally defined 2p—differential form P£(Q) € Q% (M)
with local expression

1 E (i
PE(Q)|, = i > san(e) A QG (3.8)
=1

0'62213

in any open set U with a local orthonormal frame {ei}?ﬁl.

Remark 3.2.3. By means of equality (1.35)
Lo ok

formula (3.8) can be written in terms of the Riemann tensor as

1 Y -
PRy = 5o S e Ol AQE A QR

1<y, i2p<n

— 11...02p P t2p—1 901 YN J2p—1 J2p
= Yoo« R g R i PN NP N

1<iy,.i2p<n

1

— i1..92p J1J2p R ) o .
N 22Pp! Z € e pRszln e Rl2p—112pd2p—132p AV,

1<iy, . i2p<n
1<j1,0J2p <

where we used the Levi—Civita symbol €*1-2r, which is equal to 0 if any index is repeated
and to sgn(o) otherwise, with o the permutation (i1 .. .142,) € Xo,.
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3.2. PROOF OF THE CHERN-GAU3-BONNET THEOREM

Proof of Theorem 3.2.2. Under a change of orthonormal local frames e; = fZJ ej, by using
formula (1.34) and equation (3.3), one has

Pf(ﬁ)|U = PI(f71Qf)|, = PE(fTQf)|, = det(f)PE(Q)|, = PE(Q)],,,

being det(f) = 1. Hence, the form Pf(2) is independent of the choice of the local frame
and all the local expressions can be pasted together into a (smooth) global section. O

Lemma 3.2.4 (Transgression lemma). Let w: SM — M be the unit tangent bundle of
(M, g), then the form 7* Pf(Q) is exact. That is, there exists I1 € Q?P~1(SM) such that

7 Pf(Q) = dII.

Proof. To simplify the notation, in the following we identify forms on M with their pull-
backs on SM.
We consider on the open set U C M an orthonormal frame {e; 2p ;andon SU C SM the

1=

coordinates (v', ..., v?P) given by such a frame, that is,
v=1'e forany v € SM .
Clearly there holds '
vt =1, (3.9)

and, applying the exterior differential to this relation, we have
vido' = 0. (3.10)
We then denote by 7’ the 1-forms defined by
N =dv' + 0w (3.11)

and we observe that they play a similar role of the connection 1-form w, compare indeed
equation (3.4) to
Vv =Vo'e; = (dv' +vwj) @ e; =" @ e;.

Moreover, they satisfy

vin' =0
o (3.12)
{ dn' =1 Awj + 78]

indeed, using equation (3.10) and the skew—-symmetry of w (see relations (3.6)), we have

vin' = vidv" + viwjr? =0.

and using Cartan second structural equation (3.5),
i 3.7 iy G
dn’ = dv/ Aw; + v/dw;
= (1 —v*w]) Awl + o7 (WF A W), + Q1)
=1 /\w} — vkwi /\wé —|—vjcu§C A wh —{—va§-

— ] i J QL
=1 Awj + 0705 .
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3.2. PROOF OF THE CHERN-GAU3-BONNET THEOREM

Let us define now, for 0 < k < p — 1, the differential forms

2(p—k)
Oplsy = Y sgn(o) W@ A A 7@ A /\ Qron Y, (3.13)
oE€Dayp i=3 i=p—k+1
p .
Wy = X o) Y A /\ O N g, (3.149)
o€X2p i=p—k+1
and V_; = 0.

For every k, @y, and Uy, are (2p — 1) and 2p-differential forms, respectively. We underline

that in the expression of ®; and Uy, changing the index from k to k£ + 1 amounts to

a(j)
o(j+1)
U, reduces to the expression (3.8) of Pf({2), up to a constant.

We now want to prove that these forms are globally well-defined (they are independent
of the choice of the local orthonormal frame) and satisfy the recurrence relation

2p—k)—1
2(k+1)

substituting a pair n° o) A n7U+) with Q7 In particular, for £ = p — 1, the form

d®, =V, 1 + Uy, fork € {O,l,...,p— 1} (3.15)

Asa consequence,

k . .
Uy = Z(—l)’“ (;(k ;_Z:Z_)l) 1dq>lc—7‘

r=0 =0
- (<k+1>) 20— k—1)— )N
_g( Qk—r)2p—k+r)—Di "7
: (k+1)! (2(p—k — 1) — DI
_ r+1
_;0( )72 =) Gl k) D) Ay,
and ,
Pf(Q) = QTp!\IJp_l = dH,
with

1
= o,
Z 2”7“' 2p—r)—1N

(3.16)

To this aim, we observe that after a change of local frame e; — ¢; = fij e;j the terms
involved in equations (3.13) and (3.14) transform according to

{w_ﬁw
W= fin

o = 9(00e;) = fiok(vie;) = fio®

and by the transformation rule (3.7) for w,

indeed,

7= dv + 7w
= dfiv? + fido! + flvP(Fdf" + fwl i)
= W df} + fido? + flvS(A(fif;*) — dfifi*) + flwpo!
= vjdf; + f;dvj —okdfi + f;wgvt
= finf
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3.2. PROOF OF THE CHERN-GAU3-BONNET THEOREM

Hence, we can see that in the expressions (3.13) and (3.14) for @, and W, respectively, the
factors v'n? and n* A 1 transform, under a change of frame, according to the formulae

0 = fiot it = fiwn) 7
: —_
7 AT = fin" A fin® = fln® Ao £
which are the same transformation rules for Q; Then, the very same computations used

to show that Pf() is globally well-defined (Theorem 3.2.2) prove that the same holds also
for the forms ®;, and ;..

To prove the recurrence relation (3.15), we fix k € {0, 1,...,p— 1} and compute using
equations (3.11), (3.12) and the Bianchi identities (3.5) as follows,
2(19 k) o(2i-1)
X3
d@k:ngn()dv /\77 )/\'/\ Q()
o€X2p i=p—k+1

+@2p—-2k—1) Y sgn(o) D@ A A\ 7O A /\ Qaé?z) 1)

o€y 1=3 i=p—k+1
Dy 2(p & o(2p—2k+1) (2i—1)

e p— o(2i—

+k Y sgn(o) v’V /\ 7D A A0 o(2p—2k+2) /\ 5 (20)
0EXy i=p—k+2
2(p—k) P (2i-1)
= > sen(o) 7 A7 A /\ " A A Q,20)

o€X2p i=p—k+1

p
+ (2p — 2k — 1) Z sgn(o) v"(l)th?(z) A /\ n°® A /\ Qggzz) b

0€Xgy =3 i=p—k+1
+ F(w)
=Ur 1+ (2p—2k—1)A; + F(w),

where we grouped together all the terms involving w into F'(w) and called Ay the form
(locally) defined as

2(p—k)
Arlsy = 3 sen(@) o' f@ A A\ 7@ A /\ 7t (3.17)
o€Xap i=3 i=p—k+1

We now show that Ay is just a multiple of W,. This implies that also the term F'(w) has to
be independent of the choice of the local frame. As such, taking a frame as in Remark 3.2.1
at a point ¢, we have w|, = 0 and F'(w)|; = 0. As the values of F'(w) are independent of
the choice of the frame, we must have F'(w) = 0 identically on SU and

d®, = U1+ (2p — 2k — 1)Ag. (3.18)

To obtain Wy, from A, we define the following auxiliary forms:

p

o(2i—1

Alsy = Z sgn(0) vg(1)0” 0(2) A /\ 7@ A /\ Qagm) )
0'6221»_, i=p—k+1

3) 2 " (2i—1)

Bk|SU: Z sgn (o) v U(I) N /\ n’ @A /\ Qg(gi) ;
0€X2y, i=p—k+1

w0 N o)

Crlsy = Y sgn(0) vy(zv” 0(2)/\ /\ ”OA N Qyi2iy
oEX), i=p—k+1
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hence, we can rewrite Ay, as expressed in equation (3.17), as
A=A +2(p—k—1)Bg. (3.19)
Indeed, expanding the (implicit) summation over the index ¢ in equation (3.17),
« whent = o(1), we get Ag;
« when t = 0(2), we get zero, as §) g; =0
« whent =0(3),...,0(2(p — k)), we get 2(p — k — 1)-times the term By;

« whent=0(2(p—k)+1),...,0(2p), we get zero, due to terms of the form (no sum

intended) Q?(Q) A Qf(j ) and 95(2) A QZ(;‘) which produce cancellations for the same
argument used in the proof Theorem 3.1.8.

Then, by equation (3.9), we write

—1—21) v @

and we put it in the expression of Ay, as follows

P ,
Ay =) sgn(0) vy)v” ZEQ;A /\ U O s

o€Xp ':p—k—i—l
p
_ 4 0(1 o(2i—1)
—ngn <1—ZU ()> o(2) N /\ n° @A /\ Q()
o€y i=p—k+1

:\I/k—Ak—Q(p—k—l)C’k—QkAk,

where at the last step we expanded the sum inside the parentheses taking into account
that

« whent = 1, we get Wy;

« when i = 2, we get —Ag;

« wheni=3,...,2(p — k), we get 2(p — k — 1)-times the term —Cl};
« wheni=2(p—k)+1,...,2p, we get 2k—times the term — A.

Hence, we conclude
U, = Q(k + 1)Ak + 2(]? — k- 1)Ck . (3.20)

Arguing similarly, using now relations (3.12), we write

2p
_ Z V(i) (@)

=1
1#3
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and we use it in order to deal with By, obtaining

2(p—k)

By = > sgn(o)v” Wy, Zg) A /\ n”® A /\ 0 EQZ) 1)
UGZQP i=p— k41
= > sgn(o) vU(l)(vg(g)n"(3)) /\QZS; A /\ 77D A /\ 0 Ezz) 1)
oE€Xgp =4 i=p—k+1
(3) A o(2i—1)
= Y sgn(o ( Zva(z )/\QU(2)/\ A " A /\ 0o
o€y i=4 i=p—k+1

1753
= Oy — (1+ 2K) By,

where, in expanding the sum inside the parentheses at the last step, we took into account
that

« whent = 1, we get Cy;

« when ¢ = 2, we get —By;

« wheni=4,...,2(p — k), we get zero, as n°®) A7) = 0;

« wheni=2(p—k)+1,...,2p, we get 2k—times the term — By

Hence, we have the equality
Cr=2(k+1)By. (3.21)

Putting equations (3.19), (3.20) and (3.21) together, we finally obtain
U =2(k+1)(Ax +2(p — k — 1)By) =2(k + 1)Ay,
that, once plugged in equation (3.18), gives the relation (3.15), proving the lemma. O
We are now ready to state and show the Chern—-Gaufi—-Bonnet theorem.

Theorem 3.2.5 (Chern [10]). Let (M, g) be a compact oriented 2p—dimensional Riemannian
manifold, then

/ Pf(Q) = (2m)Px (M), (3.22)
M

where x (M) is the Euler—Poincaré characteristic of M.

Proof. The proof of the theorem consists of the following series of steps:

« By Remark 3.1.2 we can consider on M a unit vector field X with finitely many
singularities.

« We “isolate” the singularity points of X using small balls B such that SB = B x
S2?r~1 and we split the integral of Pf(€2) in its parts inside and outside these balls.

« Since sending the radii of such balls to zero, the contributions of the integrals on the
insides go to zero, we can focus on computing the integral on the outside (showing
that it is independent of such radii).
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+ Outside the balls we use the unit vector field X to express the integral of the Pfaffian
on M as an integral on SM, “pulling-back” the form Pf(2) via the map X ~! defined
on the image of X, where it coincides with the projection map 7: SM — M of the
unit tangent bundle of (M, g).

« Thanks to the transgression Lemma 3.2.4 the above pullback 7* Pf(2) is the differ-
ential of the form II defined by equation (3.16), hence, we can apply Stokes Theo-
rem (1.1.14) and obtain that the integral of the Pfaffian outside the balls is equal to
the integral of II over the (image by X of the) boundaries of such balls.

« We compute these integrals by making use of Definition 3.1.5 of the index of a vector
field, which allows us to “substitute” each integral with one on the standard sphere
S?P=1 for every singularity point of the field X.

« The proof is concluded by applying the Poincaré—Hopf index theorem 3.1.6.

As said above, let us consider a unit vector field X € I'(T'M) with finitely many
isolated singularities z1, ..., 2, (Remark 3.1.2) and define S = X(M \ {z1,...,2m}) to
be its image. We then choose a family of closed balls B.(2;) of radius € > 0 around each
point z;, such that they are mutually disjoint and call B, their union. We let 7: SM —
M be the unit tangent bundle of M and, since S C SM, we consider the restriction
7| s =X 1. S — M. Then, by means of the transgression Lemma 3.2.4 and Stokes
theorem 1.1.14, we evaluate

/N ) Pf(Q) = / EPf(Q)+ /M\%s Pf(Q)
- / e /X(M\%E) wls P
_ / PR + /S B
B /EPf(Q) +/8($\X(%5)) -

as | ¢ P(Q) = 7 Pf(Q)| ¢ = dII .

Now, the first integral clearly goes to zero, as € — 0, hence it will give no contribution
if we show that the second one is independent of €. The domain of the integration of this
latter is given by

o\ x(82) =0(\ U xBete)) = U X 0B.0),
i=1 i

hence, by formula (3.16) for II, we have

m p—1 1
/M\%E PE() = Zz:/ X (9B.(2)) ,Z::”z:%(_l) 2rr!(2(p —r) — ! /X(aBs(zl')) b

where, once chosen an orthonormal frame {eZ —,onanopenset U C M and coordinates

(v ;,..., 2") on SM, at each point g € U, locally

©, = ) sgn(o /\ 7@ A /\ Q7o

o€y, i=p—k+1
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and ' = dv® + vjwé.

We now fix a singular point z of X and we take the corresponding ball B around z small
enough, such that SB = B x S?~!, denoting by 7: SB — S?~! the induced projection
on the second factor. In order to compute the index of the vector field X at z and apply
the Poincaré-Hopf index Theorem 3.1.6, we consider the map 7 o X : B — SM,, where
we are identifying S??~! with SM.,. This map allows us, by Definition 3.1.5, to change the
domain of integration to SM, up to multiplying by the index of X at z. Then, by choosing
a frame at z as in Remark 3.2.1, we obtain w|, = 0, hence 2|, = dw|, (see equation (3.4))
and 7’|, = dv’|,. Consequently, if 7 > 1, by applying again Stokes theorem, we have

2(p—k)

0= 3 smlo) [0 A O A na
/SMz o€ SM: i=p—k+1 @ )
2(p—k
=— > sgu(o) / al o™ A ””(i)A /\ SR
o€Xg, SM i=2 i=p—k+1
_ o N o o(@2i-1) \ o(p-1)
=— Z sgn(o) v /\ no\ A /\ Q( %) W (2p)
0EXy OSM =2 i=p—k+1
=0,
andif r = 0,
(1)0: Z Sgn / U(l) /\770(
/SMZ o€X2p SM.

n 2p
=2p-1) Z(—l)j‘H/ v’ /\ dov’
i=1 SM: =1
i#j
— (2p - 1)'/ dVSQp—l .
S2p—1

Hence,

mo
/M PE(Q) = 2} @p =l /X(ase(zz-)) .
m 1
- Zdeg(szi)m /SMzi o

=1
Ny (2p —1)! /

= d,, (X)——— dVs2p—
;Hl i )(Qp—l)!! §2p—1 st

= (2p — 2)!! Vol (S%~1) i ind;, (X)
i=1

= (2m)P Z ind,, (X),
i=1

by the well-known formula Vol(S*~1) = 277 /(p — 1)\
The conclusion (3.22)

| Pt = 2mrxn)
M
then follows by applying the Poincaré—Hopf index Theorem (3.1.6). O
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Remark 3.2.6.

« In odd dimensions, the Pfaffian Pf(€2) is zero by definition, then the theorem still
holds (even if trivial), being the Euler-Poincaré characteristic of every odd—dimensional
manifold equal to zero (see Remark 1.1.20).

« If (M, g) is nonorientable, by “passing” to its canonical 2-sheets (orientable) Rie-
mannian covering M, satisfying x (M) = 2x (M) (see [16, Section 2.2], for instance)
and applying the theorem to M, we get

2(2m)"/x(M) = (2m)"x(3) = [_PE@) =2 [ PE@)
M M
where the last integral is computed by using the canonical Riemannian measure of
the manifold in place of the volume form (which is not defined for M). Hence, the
conclusion holds also in the nonorientable case.

« If the manifold (M, g) has a boundary, the theorem takes the form

/ PE(Q) = (2m)"/2x (M) + / VI
M oM

where v: OM — SM is the outward—pointing unit normal vector. We refer to [33,
Chapter 13, Addendum 2], for further reading.

The Chern—-Gaufi-Bonnet theorem asserts that there exists an “intrinsic” quantity Pf(£2),
related to the curvature of an even-dimensional Riemannian manifold (M, g), such that
its integral is a multiple (depending on the dimension) of the Euler-Poincaré characteris-
tic, which is a topological invariant of M. In the case (historically relevant, being studied
earlier) of a closed, embedded hypersurface M in the Euclidean space R"*!, in trying to
generalise the “classical” GauB~Bonnet theorem for surfaces in R3, H. Hopf [19] in 1926
proved that

n n/2

/M KdVvy = V()lés)x(M) = ((737:)1)”X(M) : (3.23)
Here, K = detdv is the Gauflian curvature of the manifold, where v: M — S" is a
(smooth) pointwise choice of a unit normal vector field on M, i.e., the Gaufl map.
In even dimension, K is independent of the choice (up to the sign) of the normal, moreover
it is easy to see, by pointwise diagonalising the second fundamental form in an orthonor-
mal basis {e;}!"; that then the basis {(e; A ej)/\/?}?q:l of A2(T M) diagonalises the
curvature operator % : A2(TM) — A*(TM), with eigenvalues \;\;, where )\; are the
eigenvalues of the second fundamental form. Hence,

K=]A\ and det # = ﬁ Ai)j = (H )\i)n_l ;

=1 3,j=1 =1
i<J

implying )
K = (detZ) 1.

In particular, if n = 2, we recover

K = XAy = det Z = Sec(eq,e2) = R/2.
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Since the integral of dv is the area of the image of the Gaufl map, counted with multiplicity,
it follows that

/ K dViy = / V*dVin = Vol(S™) deg(v),
M M

then, the conclusion follows from the relation
deg(v) + (=1)" deg(v) = x(M), (3.24)

which gives equality (3.23) in even dimensions.
This can be seen by considering a closed tubular neighbourhood of M (which always exists,
being M embedded — see [15], for instance),

N:{pER”H‘dist(p,M)gs},

for e > 0 small enough such that 9N is diffeomorphic to two copies of M and the (unique,
orthogonal) projection map 7 : N — M is well defined. Then, if X is a tangent vector
field to M with isolated zeroes 21, . . ., z,, we consider the field Y on /N given by

Y(p) = (p—n(p)) + X(m(p))

and it is easy to see that Y has the same zeroes of X, each one with the same index, that
isind,, (Y) = ind,, (X). Moreover, it is clear that Y is outward—pointing at the boundary
of N, hence x(M) = x(N) by the Poincaré—Hopf index theorem 3.1.6.

Then, considering the unit vector field Z = Y/|Y'| on N, with finitely many singularities,
enclosed in a family of disjoint closed balls B; C N , whose union we denote by B, we
have that the boundary of N \ B is given by the union of N and 0B, endowed with
opposite orientation (for how the boundary of a manifold is canonically oriented). Hence,
deg(Z|an\)) = deg(Z]an) — deg(Z|an) and for any form w € Q"(S™), we have

(deg(Z|an) — deg(Z|m)) / w= / Z'w = / dZ*w = / Z*dw =0,
n A(N\B) N\B N\B

thus,
deg(Z|on) = deg(Z]s) = Y deg(Z|p,) = ) ind.,(Z) = x(N)
i=1 i=1

again by the Poincaré—Hopf index Theorem (3.1.6).
Being the field Z |5 homotopic to the unit normal vector field 7 outward-pointing on ON,
we conclude that deg(7) = x(N) = x(M). Relation (3.24) then follows by the easy fact
that deg(7) = deg(v) + (—1)" deg(v), as ON is diffeomorphic to two copies of M and we
considered on one of them the same orientation of M (induced by 7 and v, respectively)
and on the other the opposite one (see [32, Chapter 6, Addendum 2], for more details).
The result was later generalised in 1940 with a quite more complex proof by C. B. Al-
lendoerfer [2] and W. Fenchel [13] to an n—manifold M embedded in higher (odd) codi-
mension R™**_ Their proof consisted in using again a closed tubular neighbourhood N of
M in R™* (hence, with a hypersurface boundary ON of codimension 1) and applying to
its boundary the previous result to get

Vol Sn—l—k—l
Kon dVon = V&™)

5 X(ON).
N
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Then, after showing that x(ON) = x(S¥~1)x(M) = 2x(M), they expressed the integral
of the Gauflian curvature of N in terms of an integral involving the curvature of M,
getting formula (3.23) with

e 21 ~J1---J A 5 .o .
K - 2n/2nl Z € "e an1Z2]1J2 Rl'rzflln]nfl]n (325)
C1<iy, . in<ln
1§]177]n§n

1
in an orthonormal frame, coinciding with (det %)™~ and reducing to formula (3.23) in
codimension one. Recalling Remark 3.2.3, notice that

1

KdVi = =

Pf(Q).
They were later able to get the same conclusion also for abstract Riemannian manifolds, by
means of a different (still quite involved) technique, see [33, Chapter 13] for more details.
The Nash embedding theorem [27] in 1956 clearly simplified such second part of the proof,
however, in the spirit of the classical theorem of Gaufl and Bonnet, one would have liked to
have a purely “intrinsic” proof, without involving any embedding in the Euclidean space.
In order to use formula (3.25) in practice, we actually want to express more explicitly K
or Pf(Q2) in terms of the Riemann tensor. Even if from such formula follows that it must be
a homogenous polynomial of degree n/2 in the components of Riem, in general, a simple
expression is not known: only in the “classic” case of dimensions n = 2, the Pfaffian is
easy to compute, indeed

Pf(Q) = %ngiﬂ?i A 19j = R1212191 A 192 = %R dVi,

where R is the scalar curvature, hence,
/ RdVy = 4mx (M), (3.26)
M

which implies the Gau—~Bonnet theorem for a surface in R? (as the Gau8ian curvature K
of a surface satisfies K = R/2).

We will analyse in detail the four-dimensional case in the next section, which will be
fundamental for the discussion of the next chapter. About the higher dimensions, we only
mention that in dimension 6 a computation by S. Takashi [30] yields

1
T 48
— 24R*RI* Ry — SRVM R Ry + 2RVM R, Ryr) AV

Pf(Q) (R® — 12R|Ric|® + 3R|Riem|? + 16 RY RF R;i, + 24R" R* R, ;3
which, in the special case of an Einstein manifold (i.e., Ric = Rg/6), becomes

1 . .
Pf(Q) = Zs((l /9R? — R|Riem|? — 8RV™ RS/ Ry, + 2RM R Ry dViy

and that, up to our knowledge, no formula is present in literature in dimension n > 8.

3.3 The Chern—-Gauf}—-Bonnet theorem in dimension four

In order to write an integral formula involving the Riemann tensor, we start “expand-
ing” the Pfaffian and expressing it in terms of the components R;;;; of Riem, in a local
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orthonormal frame.
1 . )
Pf(Q2) = Z(R12in34kl + Rigij Roart + RiaijRogrr) 9 A 99 A 9% A0

1
= 1{4(R1212R3434 + Ri312R2434 + Ri412R2334)

+ 4(R1213R3424 + R1313R2424 + R1413R2324)

+ 4(R1214R3423 + R1314R2423 + R1414R2323)

+ 4(R1223R3414 + R1323R2414 + Ri1423R2314)

+ 4(R1224 R3413 + Ri324Ro413 + R1424R2313)

+ 4(R1234R3412 + RizsaRaaia + RiszaRozi2) } 01 A 9% A 93 A9

= {Ri212R3434 + Ri313R2424 + R1414R2323

+ 2(R1213R2434 + R1214Ro334 + R1314R2324)

+ 2(R1223R1434 + R1224R1334 + R1323R1424)

+ Rizgs + Rigos + Rigag} AV - (3.27)

We now prove in Lemma 3.3.1 below that there exists a local orthonormal frame (e1, e2, €3, e4)
such that

Ri213 = R1214 = R1314 = R1203 = Ri294 = Ri1323 =0,

hence, equality (3.27) reduces to

Pf(Q) = (R121233434 + Ri313Ro424 + R1414Ro393 + Riggq + Risoq + 33423) AV
= (K12K34 + K13Ko4 + K14Ka3 + Ripsq + Rigq + R%423) dVir, (3.28)

where we are denoting with K; the sectional curvatures Sec(e;, e;).
From now on, we will work in this particular frame.

Lemma 3.3.1. Let p € M and 7 a 2—plane in T,M with maximal sectional curvature.
We choose e1 € 7 and e3 € 7 orthonormal vectors such that Sec(ei, e3) is the maximal
sectional curvature among all 2—planes (v, w), withv € m and w € 7. Finally, we choose
the remaining unit vectors ea | e1 and eq L eg such that ™ = (e1, es) and 1t = (e3, e4).
Then, the terms R1213, R1214, R1223, R1224, R1323, R1314 all vanish atp € M.

Remark 3.3.2. The vanishing terms are precisely the ones of the form R, where i # j
and k is the lowest of the remaining two indices.

Proof. Letfor 9, € R,i,j € {1,2} and k € {3, 4},
fijk(9) = Sec(e;, (cosW)e; + (sind)eg) ,
9(9,¢) = Sec((cos¥)ey + (sind)eq, (cosp)es + (sinp)eq) .
Since Sec(e;, e;) maximises f;;j, for ¥ = 0 and Sec(eq, e3) maximises g for (1, ¢) = (0,0),

0fijr(0) _ 99(0,0) _ 0g(0,0) _ .
o 09 dp :

For every mutually orthogonal unit vectors u, v,w € S,M and ¥ € R, we have the formula

Sec (u, (cos ¥)v+(sin ¥)w) = cos?(9) Sec(u, v)+sin? () Sec(u, w)+sin(29) R(u, v, u, w)

63



3.3. THE CHERN-GAUB-BONNET THEOREM IN DIMENSION FOUR

hence, 5
Sec(u, (cos¥)v + (sin?)w) = 2R(u, v, u, w) .
09 y—o
Therefore,
Ofiix(0
0= f(;];;( ) _ 2R;jik
foranyi,j € {1,2}, k € {3,4} and
dg(0, . .
0= ‘W = 2R(e1, (cos p)es + (sin)eu, e2, (cos p)es + (sin p)eyq) |<p:0 = 2R1393,
©=0
dg(9,0
0= gé{p’ ) = 2R((cosV)e1 + (sind)ey, €3, (cos 9)er + (sind)ez, es)|,_, = 2Ri314,
9=0
proving the lemma. O

We want now to express the right-hand side of equation (3.28) i
|Ric|> and R2. Computing in the orthonormal frame given by Lemma 3.3.1, by equa-
tion (1.19), we have

( Z Kst> =4(K12 + K13 + K14 + Koz + Koy + K34)
tsese=t = A(K{y + K73+ Kiy + K33 + K5, + K34
+ 2(K12K 13 + KoK 14 + K12K23 + K12Koy + K12K34
+ K13K14 + K13K23 + K13K24 + K13K34 + K14K23
+ K14Ko4 + K14 K34 + Ko3 Koy + K3 K34 + K24 K34)) )
(3.29

and

4 2
(Z zszs) = z] + sz + Kzl)
= = K + Kjj, + Kjj + 2K Ky, + 2K Ky + 2K, Ky

4 2
= <Z Risjs) = (Rirjk + Ruji)* = Rzljl ;
s=1

for every ¢ < j and k < [ all different, as we recall that then R;;, = 0 (Remark 3.3.2).
Hence,

Ric|* = Z R =2(Kiy + Kis + Ky + K33 + K3, + K3,
ni=1 + K12K13 + K12K14 + K13K14 + K12Ko3
+ K12K94 + Koz Ko + K13K93 + K13K34
+ Koz K34 + K14K2q + K14 K34 + K24 K34
+ Riz30 + Riyoy + Risga + Rgos + Rigza + Rigza) - (3.30)

We now see that the addends which are products of different sectional curvatures in equa-
tions (3.28)—(3.30) can be adequately combined to cancel and we get (ignoring dV' in the
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expression of Pf(Q), for simplicity)
8PF() + 4[Ric|* ~ R? = 8( Ry + Riszs + Riuns)
+ 8(R%334 + Riypq + Risga + Rizou + Rigau + R§434)
+8( K + Ky + Ky + K33 + K3, + K3, )
—4(KY + K + Ky + K3y + K3, + K,
+ 8(K12K34 + Ki3K24 + K14K23)
+ 8(K12K13 + Ki2K14 + K13K14 + K12K93
+ K12K94 + K23 Koy + K13K93 + K13K34
+ Ko3 K34 + K14 Kog + K14K34 + K24K34>
- 8(K12K13 + Ki2K14 + K12Ko3 + K12K94 + K12K34
+ Ki3K14 + K13K93 + K13Ko4 + K13K34 + K14 K23
+ K14Koq + K14 K34 + Koz Koy + Koz K3y + K24K34)
= 8(R To34 + Rizoq + Riyg
+ Ri3q + Rl + Riygy + Rigos + Rigzu + R§434)
+4( K+ Ky + Ky + K3y + K3, + K3
= 8(R1234 + R34 + Ripg
+ Rizzq + Rigog + Riyga + Risoq + R3gpu + R§434)
+ 4(R%212 + Rizi3 + Riga + Rzoz + Risos + R§434)
= |Riem|?, (3.31)

writing explicitly the norm of the Riemann tensor in the special orthonormal frame given
by Lemma 3.3.1, where several components are zero. Indeed, considering its symmetries,
except the Bianchi identity and taking into account the 6 zero—conditions given by such
lemma, the Riemann tensor is determined by the 15 components appearing in the second-
last line of the above computation (whose squares must be added with the appropriate
multiplicities in order to give |Riem|?)

We then get

1
PE(Q) = g(lRiemlz — 4|Ric[? + R?) dViy
and equation (3.22) becomes the following Chern—-Gaufi-Bonnet formula, when n = 4,

1

2 L2 2
— —4 d =x(M).
327T2/M(\Rlem |Ric| +R) Vi = x(M)

Recalling equalities (1.26) and (1.27), that, when n = 4, become
IRiem|? = 2[Ric|2 — R2/3 + [Weyl|? = 2[Ric|2 + R2/6 + [Weyl|?
IRic|? = |Ric|? — R?/4,
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we have the following alternative expressions:

1 . .
x(M) = 327T2/ <|Rlem|2 — 4|Ric|* + R2> dVr
M
1 . .
= /M(|R1em|2 — 4|Ric|?) dViy
1

= 3|Weyl|? — 6|Ric|? + 2R?) dVy,
9672 /M( | | )

1 o
= 6|Weyl|? — 12|Ric|? + R?) dV;
1927T2,/]V[(r eyl]? — 12|Ric]? + R?) dViy
1 2
=5 M(|Weyly +1605(5)) dVar (3.32)

where in the last line S = (6 Ric —Rg) is the Schouten tensor and o5(.5) is the second
elementary symmetric polynomial in its eigenvalues, i.e.,

02(8) = =((tr 9)% — |S[?)

2

_1/1 R PRI 2 2)

_ 2<144(6R AR)” — - (36[Ric]? — 12R? + 4R?)
1

= @(41%2 — 36|Ric|? + 8R?)

= 2—14(1%2 — 3|Ric|*) = %(RQ — 12|Ric|?).

As a consequence of the previous formulae, since the Weyl functional (i.e., the integral of
the square norm of the Weyl tensor) is conformally invariant in dimension four (by direct
computation — we will see that in equation (4.14)) and the Euler-Poincaré characteristic
is a topological invariant, we get the following result.

Corollary 3.3.3. For a compact oriented 4—dimensional Riemannian manifold, the integral

_ i 2 ) _ i 2 12
/M o2(S) dVar = o /M(R 3[Ric|?) AV = o6 /M(R 12[Ric|?) dViy

is conformally invariant. In particular, a compact oriented 4—dimensional conformally flat
manifold must have

3/ IRic|* dVis :/ R?dVy = 12/ IRic|2 dVi; .
M M M

In the next chapter we will be interested in results connecting the curvature and the
topology of a manifold. We start by noticing that it follows immediately by the Chern-
Gauf3-Bonnet Theorem 3.2.5, in any dimension, that if (M, g) is flat, then its Euler—Poincaré
characteristic must be zero. The following examples show that, in general, the converse
does not hold.

Example 3.3.4. Consider the 4-dimensional manifold M = S! x S3. As S!, S? are
connected, compact and oriented, the same holds for M. We now recall that the Euler—
Poincaré characteristic of the product is the product of the Euler—Poincaré characteristics
of the factors (Remark 1.1.20), thus x(M) = x(S')x(S?®) = 0, as both S! and S? are
odd-dimensional, then we notice that no metric can make S' x S? flat, as then its univer-
sal Riemann covering would be R* (Theorem 1.2.19) and that is not the case as R? is not
homeomorphic to R x S3.

The same considerations apply to N = T? x §? = S! x S! x §? with x(N) = 0 and
universal covering R? x S2.
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Moreover, another result and a weaker converse can be obtained by means of expres-
sion (3.28), in dimension four.

Corollary 3.3.5. A compact oriented 4-dimensional Riemannian manifold whose nonzero
sectional curvatures all share the same sign, has nonnegative Euler—Poincaré characteristic. If
in addition, no sectional curvature vanishes, then the Euler—Poincaré characteristic is positive.

Proof. The first assumption clearly makes all terms in equation (3.28) nonnegative; the
second assumption makes at least three of them positive. The conclusion follows from the
Chern-Gaufi-Bonnet Theorem 3.2.5. O

We notice that a similar result to Corollary 3.3.5 also holds trivially for 2-dimensional
manifolds by the classical Gauf3—Bonnet theorem (3.26), as the only sectional curvature
is (half of) the scalar curvature. More precisely, the Euler-Poincaré characteristic is pos-
itive, negative or zero if and only if the scalar curvature R is positive, negative or zero,
respectively. The general statement is known in literature as the Hopf conjecture.

Conjecture 3.3.6 (Hopf conjecture [7], [86, Problems 8 and 10]). A compact even—dimensional
Riemannian manifold with positive (respectively nonnegative) sectional curvature has posi-
tive (respectively nonnegative) Euler—Poincaré characteristic. A compact 2p—dimensional Rie-
mannian manifold with negative (respectively nonpositive) sectional curvature has Euler-
Poincaré characteristic of sign (—1)? (respectively (—1)P or zero).

To our knowledge, the conjecture is still open in dimension n > 6.
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Chapter 4

Einstein manifolds

We are going to analyse Einstein manifolds, that is Riemannian manifolds such that the
Ricci tensor is proportional to the metric, with special attention to the dimension four.
Most of the material of this chapter is taken from [5, 6, 9].

Satisfying Ric = Ag for some constant A € R, Einstein manifolds “stay in the middle”
between constant curvature manifolds (with Riem = ﬁ g ® g), which are completely
classified and constant scalar curvature manifolds (with R = An), hence they are neither
“too” nor “too little” rigid.

We start by showing the computation of the first variation of the Einstein—Hilbert action,
whose nullity characterises Einstein manifolds and we also discuss the relations with the
general relativity, as the Euler-Lagrange equation of the Einstein—Hilbert action gives the
Einstein’s field equation.

Then, we deal with “improving” the orthogonal decomposition of the Weyl tensor in di-
mension n = 4. In dimension n = 4 the space of the Weyl tensors can be further decom-
posed by considering its irreducible orthogonal components under the action of SO(4)
and, once applied to a Riemannian manifold, this refined decomposition yields the so-
called self-dual and anti-self-dual components W= of its Weyl tensor. One can then de-
fine half-conformally flat manifolds, i.e., manifolds for which either W or W~ vanishes.

As a consequence, the Chern-Gaufl-Bonnet formula in dimension 4 can be rewritten as

1

M) =
X(M) = 1053

/ (6W+ 2+ 6] [2 = 12[Ric|* + R?) Vi
M

In Section 4.3, we introduce the signature 7(M ), which is another topological invariant, of
a four-manifold M and present (without proof, for which we refer the reader to [28]) the
Hirzebruch theorem, showing the equality

1 —
00 = g [ (WP =) v

We then proceed by studying the Weyl functional,
2
w(g) = [ [Weyl,"/*av,.
M
which is quadratic in dimension four. We compute its first variation and we show that
conformal Einstein metrics (i.e., metrics having an Einstein metric in their conformal class)

and half-conformally flat metrics are critical metrics, in dimension four.
In the last section, we finally discuss four-dimensional Einstein manifolds. By combining
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the Hirzebruch and Chern—-Gaufi—-Bonnet formulae, we will obtain the so—called Hitchin—
Thorpe inequality

X(M) > 2 [r(M)

which is a necessary (only) condition for a compact oriented 4-dimensional manifold to
be Einstein. As in general no sufficient conditions are known in literature, we conclude
the chapter (and the thesis) by providing some examples of manifolds which do not admit
any Einstein metric. Being the converse problem very difficult, the readers of the book of
A. L. Besse [6] “[...] are offered a meal in a starred restaurant in exchange for a new example
[of an Einstein manifold]’.

4.1 The Einstein—-Hilbert action

Let M be a compact oriented n—dimensional differential manifold and g any Riemannian
metric on M. We define the Einstein—Hilbert action as the total curvature of (M, g), i.e.

&(9) :/ R, dV,
M

where R, and dV/; are, respectively, the scalar curvature and the volume form of (M, g).
As for n = 2 the classical Gau3—Bonnet formula (3.26) gives

S(g) = /M Ry dVy = dmx (M),

the functional is constant on a fixed 2—dimensional differential manifold, then we will
always assume that the dimension n of M is at least three.
We define the gradient of S at g as the (0, 2)-tensor V&(g), satisfying

6@+ﬂw:/’AVG@LMd%

dt |=o M

for every symmetric bilinear form h (this equation express the first variation of the func-
tional & at g). In order to compute it, we need the following two equalities,

1
d th) = —trhd 4.1

t=0

R(g +th) = —=Agtrh + V¥ hi; — Ric hi; . (4.2)

dtli=o

We show in detail how to get the first formula, while for the second one (for which one
has to compute the variations of the Christoffel symbols, the Riemann tensor and the Ricci
tensor), we refer [9, Section 2.1]).

In a coordinate chart, we have

dV (g +th) = \/det(g + th) dz' A - A da"
= \/det(1d +tg~1h) /detg da' A~ A da”
= \/det(1d +tg~1h) dV,
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therefore,

d d !
— dVv th) = — det(Id +tg—1h) dV,
G|, AVig+ih) = g| Jdet(Id+ig=1h) dY,
tr (Ltg=1h
— < r (dt 9 ) '> thq
2y/det(Id +tg=—th) / l,—
1
= 5 trh d% y
where we intended g~ 'h as a matrix multiplication, hence
tr (g_lh)é- = tr gikhkj = ¢ hy; = trh
and we used the well-known Jacobi identity’
d /
T det(Id +A(t)) = tr A'(¢) .
By means of equations (4.1) and (4.2), we obtain
41 g+ th) —/ A1 Rig+thyav, +/R A avg + )
dt l;=o M dtl—o I T dtli—g

g g R
= /M (—Ag trh + V;]hij — RiCZg] hij + 79 tr h> dVg

— / (divg Vtrh — divy divg b+ g( Ric, Rgg,h)> dv,
M 2

, R
_ /M g(Rng g h) dv, (4.3)
where we used the divergence theorem (1.2.13). Hence, V&(g) is the opposite of
E, = Ricy —Ryg/2

which is called (in every dimension) the Einstein tensor. We remark that the Einstein tensor
is a divergence—free symmetric (2, 0)-tensor due to Schur’s lemma (2.3).

The normalised action. Of equal interest is the normalised Einstein—Hilbert action

n—2

S(g) = Volg ™ &(9)

which is scaling invariant.
Indeed, if w = Ag for A > 0, then

Vdetg = "2/detg’,  dV(3) =A"2dV,,  Vol(g) = A% Vol,,
and R(g) = AR, (see Theorem 2.1.4), hence

n—2 n=2

&(g) = Vol(g)~ = /M R()dV(g) = A2 Vol, = /M AR, A2 AV, = &(g).

! After the German mathematician Carl Gustav Jacob Jacobi (1804-1851) [76].
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Using equation (4.3), the first variation of the normalised action is given by

—|  B(g+th
il ( )

== (Vol(g +th) / R(g+th)dV (g + th)>

dt 1o M
n—2 —n=2_4 1 _n=2
= — Volg " —trhdV, [ RydV, — Vol, " g(Eg4, h)dVy,
n M 2 M M
_n=2 n—2__
=—Voly, " / g(Eg + —Ryy, h> dVy,
M 2n
and

—2

__ _n=2 —92__
V6&(g) = — Vol, ~ (Eg+"2nRgg>,

where R, = Vol;1 J3s Rg dV, is the average of the scalar curvature on (M, g).

The Einstein’s field equation. The action considered in general relativity, on a four—
manifold M and defined on Lorentzian metrics g, is of the form

&.(0) = [ (5 (R =20)+ Lu(a) ) av;.

where A is the so—called cosmological constant, k is the Einstein’s gravitational constant
and Ly(g) is a Lagrangian describing a possibly present matter field.
In this case the first variation is given by

— " th
g t:OG (9 +th)
d 1
= — / ((R(g +th) — 2A) + EM(g+th)> dV (g + th)
dt t=0J M 2K
—1/ (E h)dVA/tth
T o Jy e T [,
dL th trh
_|_/ (W + rﬁM(g)) d‘/iq
M t =0 2
1
=~ | 9(Ey+Ag—26VLulg) — Lu(g)g. h) AV,
K JMm
1
= -5 Q(EgWLAg*“Tgvh)dVga
2/‘€ M
hence, )
V6G.(g) = _ﬂ(Eg +Ag — kTy),
where

Ty =2V Lm(g) + Lm(9)g
is called the stress—momentum tensor.

The equations we obtain when the gradient of these functionals vanishes (i.e., the
Euler-Lagrange equations of the functionals) are

(1) V6(g9) =0=E;, = Ricy, =Ry9/2,
(i) V&(g9) =0 = Ey + %2Ryg = Ricy = (Rg/2 — 52Ry)g,
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(i17) V64(9) =0=E;+ Ag — xTy = Ricy = (Ry/2 — AN)g+ KTy,

(the last equation is the so—called Einstein’s field equation).

In the vacuum (that is, in the absence of mass) one has T, = 0 and the third equation
becomes Ricy = (Ry/2 — A)g, then all three equations can be written as Ricy = Ag, for
some A\ € C°°(M). After contracting with the (inverse of the) metric, one sees that such a
A has necessarily to be equal to R /n and the Ricci trace—free tensor Roicg = Ricy —Rg4g9/n
must vanish identically for all such critical metrics, which are then all Einstein metrics on
M (notice that the first equation, since we assumed n > 3, implies that g is a Ricci—flat
metric, i.e., Ricy = 0).

Before proceeding further we recall some facts about Einstein manifolds, always as-
suming to be in dimension n > 3 and that all the manifolds are connected.

Definition 4.1.1. An n-dimensional Riemannian manifold (M, g) is said to be Einstein
if the tensor Ric = Ric —Rg/n is identically zero.

Proposition 4.1.2. The manifold (M, g) is Einstein if and only if Ric = \g for some A € R,
in which case R = An, hence constant. Such X is called the Einstein constant of the manifold.

Proof. The fact that R = An, immediately follows by contracting equation Ric = Ag with
the metric g. Applying Schur’s lemma (2.3) to the equation Ric = Rg/n, we obtain

2 2
dR = 2divRic = —div(Rg) = —dR
n n
and, asn > 3, this implies dR = 0, hence R constant. Then A = R/n is also a constant. [

Proposition 4.1.3. The manifold (M, g) has constant curvature if and only if Ric = W =
0. In particular, 3—dimensional Einstein manifolds have constant curvature and if n > 4, then
(M, g) has constant curvature if and only if it is Einstein and LCF.

Proof. If Ric = W = 0 then the decomposition formula (1.25) reduces to

Riem = R »)
- 2n(n — 1)9 9
moreover, being (M, g) is Einstein, the scalar curvature R = An is constant, hence Riem =
% g ® gwith K = A/(n — 1) € R. The converse statement is trivial. O

As three—dimensional Einstein manifolds coincide with the constant curvature ones,
hence they are “classified” by Theorem 1.2.19, the first interesting (dimensional) case is
when n = 4, which will be the subject of the next sections.

4.2 Algebraic curvature tensors in dimension four

In order to study four—dimensional (Einstein) manifolds, we discuss the special decomposi-
tion of the algebraic curvature tensors which holds only in this dimension. More precisely,
in the case of a 4-dimensional vector space, the orthogonal decomposition of the space
of the algebraic curvature tensors given by equation (1.24), which is obtained considering
the irreducible components under the action of O(4),

P 1o
P:ﬂg®g+§Pic®g+WP, (4.4)
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can be refined, as the space of Weyl tensors can be further decomposed into its irreducible
components under the action of SO(4),

Pt mg+ Pemgrwt W,
24 2

(if n # 4, the action of SO(n) does not provide any new decomposition). For more infor-
mation, we refer to [6, Theorem 1.114].

For a Riemannian manifold, such a decomposition yields the so—called self-dual and anti-
self-dual components W of the Weyl tensor and one can define the half-conformally flat
manifolds as the ones such that either W™ or W~ vanishes. In Section 4.4, we will show
that these half-conformally flat metrics, like the Einstein metrics (or, more in general, any
metric conformal to an Einstein metric), are critical to the Weyl functional, in dimension
4. We refer to [9] for further reading.

We let (V, g) be a 4-dimensional vector space with g scalar product and recall the
notation of Section 1.3 for algebraic curvature tensor P € C*(V), namely, the use of Pic,

P, Pic and Pec to denote, respectively, the (1, 3)—-trace of P, the complete trace of P, the
trace—free component of Pic and the sectional curvature of P.
We start by showing some relations for the sectional curvatures of a tensor P such that

Pic = 0 (which corresponds to the condition of being an Einstein manifold).

Proposition 4.2.1. If (V, g) is like above and P an algebraic curvature tensor such that

Pic = 0, letting K;; = Pec(e;, e;) be the sectional curvatures with respect to an orthonormal
basis {e;};_,, then K;; = Ky wheneveri, j, k,l are all different.

Proof. Since Pic;; = P/4 for every i € {1, 2, 3,4}, it follows

P/4 = Ko+ K13+ K14 = K12+ Koz + Koy = K13+ Koz + K34 = K14+ Kog + K34 .
Then,

(K12 + K13+ Ki4) — (K12 + Koz + Ka4) = (K13 + Koz + K34) — (K14 + K24 + K34)

hence, 2K14 = 2K23. Arguing similarly, we get K12 = K34, K13 = K24 and K14 =
Kos. ]

We recall (Remark 1.1.8) that in dimension 4 the Hodge operator on A?(V') is idempo-
tent, i.e., x2 = 1, hence, letting v € AQ(V) be an eigenvector of x, we have

v =*v = A
and the associated eigenvalue A must satisfy A\ = +1. Moreover, for every 2-vector v we
have the decomposition

_ UV 4 *v UV — %V
v=v 40 = 5 + 5 (4.5)

+ U+ *v U + *U + UV — *U UV — *U _
*UT =% = =v and * U =k =— =—v,
2 2 2 2

thus, A%(V') admits the decomposition A*(V) = A% (V) & A% (V) into the eigenspaces
A2 (V) of « relative to +1, respectively.
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Choosing an orthonormal basis {ej, e2,e3,e4} of V, for every v = %vij e; A\ ej with

*U = Fw, there holds

1, kl 1, i) 1,, _ijkl
+50™ep Nep = tv = %0 = x(50" ¢; Nej) = quie? e Neyg,

thus,
kl __ 1 ijkl

V" = v

where 9! is the Levi-Civita symbol, i.e., giikl

(1234) and zero otherwise. Explicitly,

= sgn(ijkl) if (ijkl) is a permutation of

’U34 — :|:U12 , ,U24 — :FU137 ,U23 — :|:U14.

Hence, both A% (V) are 3-dimensional (as dim A?(V) = 6), with respective eigenbases
{XiX2,X3 } , where

Xlizel/\egﬂ:eg/\64, X;E:61A63:F62A64, thzel/\64:|:62/\€3,
which are also pairwise orthogonal, so the decomposition is orthogonal
A(V) = A3 (V) et A2 (V).
If h € S?(V*) is a symmetric bilinear form with associated operator .77, defined by
(h©g)(z,y, 2,w) = 39(H(x Ny), 2 Aw),

then to get the components of J# (Xli) with respect to the basis X,i, we compute for
i,7,k,1 € {1,2,3,4} all distinct,

g(H(ei Nej) e Net) = (B 9)ijki = hikgji + hjigik — hagjr — hjkgi =0,
g(H(ei Nej),ei Neg) = (WO g)ijik = hjk
g(H(ei Nej),ei Nej) = (B O g)ijij = hii + hyj

D= N[ Do

hence,
%g(%(ei ANej+ s1ex A 61), e; Neg+s2¢e5 A el) = hjk — Soh; — s1hy + Slsghjk
= (1 + Slsg)hjk — (81 + Sg)hil .
This implies that for any two different indices i, j € {1,2,3,4}

9(# (). xF) =0,
g(H(XE),xF) = ha1 + hog + hag + hag = trh.

N[—= DO

As a consequence, if tr b = 0, the operator ;% “swaps” the two eigenspaces A2 (V).
We now consider an algebraic curvature tensor P with associated operator & and com-
pute

%g(a@(x?), X3 ) = Pi213 &+ Pi224 & P3413 + P24 = Picp3 £ Picyy,
%Q(W(Xf), X3 ) = Pi214 F Pi223 & P3414 — Pa23 = Picoy £ Picy3,
%g(«@(xf), X3 ) = Pi314 F Pi323 F Poara + Pasoz = Picgs F Picia,
%Q(W(Xf), X1 ) = Pi212 F Pi23a = P3g12 — Payza = K12 — K3y,
%g(gZ(XgE), X3 ) = Pi313 & Pi3oa F Poa1s — Poaga = K13 — Kou ,
%g(@(xét), X3 ) = Piaia F Piags = Pasia — Pasos = K14 — Kog,
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where K;; = Pec;;. Then, by Proposition 4.2.1, if Pic = 0 all previous computations gives
zero as a result, hence P preserves the eigenspaces A% (V).
In general, by the decomposition (4.4)

P 1 1 o
P=_—.= ~Pj wr
19 29®g+2 1Icd g+ ,

the operator associated to g®g/2 is the identity, hence it preserves the eigenspaces A% (V)
and, for the previous observations, the same holds for the one associated to w?r, being

trace—free, while the one associated to Pic ® g swaps the two eigenspaces. This implies
that W¥ decomposes into two operators

Wt = WP]Ai(v): A2(V) = AL(V)  and W= WP]Ag(V): A2 (V)= A2(V),

refining the decomposition in the special case n = 4,

P 1 1 o
P=—. .- + —Pi +WT+W
2 2g®g 5 icdg

still orthogonal. In particular,
W2 = [WHP+ W2

In matrix form with respect to the basis { Xli, XQi, Xét}, the operator & can then be written
as

W+ Pl3/12 € /2

% /2 W+ Pl3/12

with #/* and € the operators associated to W* and Pic ® g, respectively and I3 is the
3 x 3 identity matrix.

Remark 4.2.2. By the symmetries of the Weyl tensor and the trace-free component of
Pic, each of the four blocks composing &2 — Plg /12 is trace-free, i.e., tr # T = tr € = 0.

Remark 4.2.3. An easy check shows that

1 ..

Kl Kl

L) = 51;”Pij ,

for every 2-vector v = % v¥e; A ej and tensor P € C*(V). Hence, there holds

1
P Re vy = Z|P|Q-

4.3 The Hirzebruch theorem

In the same spirit of the Chern-Gauf3—Bonnet theorem, the Hirzebruch theorem builds
another bridge between the geometry of a manifold and its underlying topology. Here the
topological invariant is the so—called signature of a manifold, which we are now going to
define. Most of the material in this section is taken from [6, 28], to which we refer for more
details.
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Let M be a compact oriented n—dimensional differential manifold, with n even and
consider the bilinear form

([, [¢]) € H"*(M) x H"*(M) = ([n] — [¢], [M]) = /MUAC €R. (4.6)

This form is symmetric if and only if n is a multiple of 4 and is in general nondegenerate, as
ifis such that [, nA¢ = Oforall ¢ € Q"/2(M), then also 0 = Ly nisn = [y, nl* dVas,
hence n = 0.

Definition 4.3.1. Let M be a compact oriented 4k—dimensional differential manifold and
B (M), By, (M), respectively, the number of positive and negative eigenvalues of the
form (4.6) on H?¥(M). Then, the signature of M is defined as

T(M) = By (M) — By (M) .

As the form is nondegenerate and being dim H2*(M) = B2, (M), we have the relation

Bor(M) = B3, (M) + 5, (M),

then (taking into account Poincaré duality, see Remark 1.1.20) we can rewrite the expres-
sion of the Fuler-Poincaré characteristic in terms of the Betti numbers as follows

2k—1

=2+2 Z 1) B (M) + B (M) + By, (M)

hence,

2k—1
XUW)§T<_1+-§: 1)™ By (M) £ BE (M) 4.7)

In the simplest case of a simply connected 4-dimensional manifolds, we have

X(M) + (M)

: =1+ 85 (M).

Remark 4.3.2. From equation (4.7) it follows that the Euler—Poincaré characteristic and
the signature have the same parity.

We collect in the next theorem some properties of the signature (see [28, Chapter 2],
for these results and the subsequent discussion).

Theorem 4.3.3. Let M, N and L be compact oriented differential manifolds with dimension
4k, 4k and 4k + 1 respectively. Then

(i) T(—M) = —7(M), where —M is M with the reverse orientation;
(i) T(M UN)=71(M)+ 7(N), where U is the disjoint union;
(iii) T(M#N) = 7(M) + 7(N), where # is the connected sum;

(-
(
(
(iv) T(M x N) = 7(M)r(N);
() T(0L) =
(

i) T (CIP’2m) =1 forallm € N.
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Points (i), (i¢) and (v) imply that if two manifolds M; and My are oriented cobordant
(that is, their union is the oriented boundary of another manifold), they have the same
signature. Hence, the signature is what is called a genus operator, that is, a ring homomor-
phism

7 (Q7,U, %) = (Z,+,)
from the oriented cobordism ring QO = ©X_Q}  to the integers Z, where LI denotes the
disjoint union, x the Cartesian product and €2 is the set of oriented cobordism classes of
compact oriented 4m~-dimensional manifolds. By its algebraic properties, as the oriented
cobordism ring is generated by {[CP*™]}°°_,, it is then sufficient to prove any integral
formula expressing the signature for these particular manifolds. This is what F. Hirze-
bruch [17] did in order to prove his theorem in 1954:

T(M) = /MLk(pla : 7pk’)>

where Ly is a particular polynomial of degree k called the L—genus and p,...,py are
invariants built from the 2—form /27, similarly to what we saw for the Chern-Gaufi-
Bonnet theorem.

Definition 4.3.4. We denote by P(k) the set of all partitions of the number k£ € N.If
I = (i1,...,%m) is one of such partitions and {/;}$°, any sequence, we denote by ¢; the
number

EI = H gij = gileiz T gim
j=1

and by s; = sy(o1,...,0%) the polynomial such that, when o; is taken to be the i-th
elementary symmetric polynomial in the & variables rq, . . ., i, then sy has the expression

m
_ oo i1 02 dm
s1(01,---,08) = HTT(J') =2 ") (2" Tr(m) -
TeEX j=1 TEXT

where Y7 is any maximal subset of injective functions 7: {1,...,m} — {1,...,k} with
the following property: if 7 and 7 are two distinct elements in 37 and there exists a permu-
tation ¥ of {1, ..., m} such that 7 = 7 o ¥, then there exists at least one j € {1,...,m}
for which i; # iy(;).

Remark 4.3.5.
« For k =1, P(1) = {1}, the only elementary symmetric polynomial in r1, ..., 7 is
o1 =T,

then s; has to satisfies

s1(o1) = Z ri(l) =r=o0.
TEX

« Fork =2,P(2) ={(1,1), 2}, the elementary symmetric polynomials are
o1 =11+12 and o9 =T1172,

then s1 1 and s have to satisfy

1.1
s1,1(01,02) = Y )iy = Trire = 02,
7'621,1
2 2, .2 2 2
so(01,09) = Z rry =Titry = (r1+19)° — 2rirg = 07 — 202.
TEY
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« Fork=3,P(3)={(1,1,1),(2,1), 3}, the elementary symmetric polynomials are
o1 =T1+T1r2+73, o2 =T1T2 + 71173 + 1273 and 03 = T1T2r3,

then s1 1.1, 52,1 and s3 have to satisfy

1.1 1
81,1,1(01,02,03) = Z TT(l)’f’T(g)TT(g) =Trirars,
TEY1,1,1
2 1 2 2 2 2 2 2
s21(01,02,03) = Z ria)Tr) = rir2 +rirs +rar +rars +r3r +r3re,
TEX2 1
3 3.,,3, .3
s3(01,02,03) = Y gy =115 +73.
TEDS

An easy computation then gives

s11,1(01,02,03) = 03,
s2,1(01,02,03) = 0102 — 303 ,
3
ss(01,09,03) = 0] — 30102 + 303 .

We observe that if every o; is taken to have degree i, then each sy, for I € P(k), is a
homogenous polynomial of degree k.

Definition 4.3.6. Let B; be the i—th Bernoulli number?, that is, the number defined by the
recurrence relation
n 1
Z (n + )Bj =0
=0\ J
with By = 1.

All the odd Bernoulli numbers but By = —1/2 are zero, while the even Bernoulli
numbers after By = 1 have alternate signs and the first ones are

r 11 1 5 691 7 3615 43867
6° 307427 30’667 2730’67 510 ° 798 T

Remark 4.3.7. We recall that for a given square matrix A € R™*" its characteristic poly-
nomial can be written as

n

p(t) = det(A —11,) = S (1) ", (A),

r=0

where 0, (A) is the evaluation of the r—th elementary symmetric polynomial in the eigen-
values of A, which can be computed using the following r X r matrix

tr A r—1 0 o ... 0
tr A2 trA r—2 0 ... O
! A 5
or(A) = p det : : N : . (4.8)
: : - 1
trA” tr AT .. ... L. trA

% After the Swiss mathematician Jacob Bernoulli (1655-1705) [77].
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Moreover, we observe that if A is skew—symmetric and r is odd, then o,(A) = 0. Indeed,
the characteristic polynomial satisfies

p(—t) = det(A + tI,,) = det((A + tIn)T) =det(—A+1tI,) = (—1)"p(t),

that is, it is has the same parity as the dimension. Then o,.(A) is zero if r is odd, as it is the
coeflicient of a term whose power is of parity opposite to the dimension.

Theorem 4.3.8 (Hirzebruch [17], see also [28] for a proof). Let (M, g) be a compact oriented
4k—dimensional Riemannian manifold, then

(M) Z/MLk(pl,---,pk), (4.9)

where p; is the so—called i—th Pontryagin class®, that is, the 4i—differential form appearing
in the expansion of the characteristic polynomial of Q) /27, (see Remark 4.3.7)

QO 2k 0
det{ — — I = " Daj—o2i
€ (277 4k> ; DPak—2i
and Ly, is the L-genus of M, that is,

Z lrsy

IeP(k

with (€;)$2,, the sequence of coefficients in the Taylor expansion* of

>, 2%p 1 1 2
7\/5 i =14 g — —a? 4 ——ad .
tanh/z~ = (20)! 3 45 945

By means of Remark 4.3.5, we obtain the following first values of Ly,

1
Ly =1t151 = 3015

Ly = 517181’1 + lys9 = ;0'2 — 4*15( — 20’2)
L3z =/011,1511,1 + 21521 + {353
1 1 2
27 3—1735( 102—303)—#%(01—3010’2—#303)

and the Hirzebruch formula in dimension n = 4, 8,12 in terms of the Pontryagin classes

is given by
1
(=3 [ m.

1
T(M) = T (pl A p1 —3p2),

1
(M) = / (2p1 Ap1 Ap1 — 13p1 A pa + 62p3) .
945 J,,

*After the Soviet mathematician Lev Semenovich Pontryagin (Jles Cemémosuu Ilomtpsarmm, 1908-
1988) [78].
*After the English mathematician Brook Taylor (1685-1731) [79].
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Using expression (4.8) we can expand the Pontryagin classes p1, p2, p3 in these formulae
as follows, denoting by 2 = Q /27 and by Q" and tr" Q) the r-times wedge product of
and tr Q with themselves, respectively,

1 0 1 1 - 1
pr=—det| =~ = ——tr? = ——_trQ?,
872

21 trQ2 0 2
0 3 0 0
1 trQ2 0 2 0 3 5a 5 1
— det . =2 (tr?? —2tr QY = tr2 Q% — 2tr Q4
p2 = 7y de 0 w2 o0 1 4!(1" ri’) 1287r4(r rr),
tr Q4 0 trQ? 0
0 5 0 0 0 0
tr Q2 0 4 0 0 0
1 0 trQ%> 0 3 0 0
P3 = G trQ* 0 trQ® 0 2 0
0 w4t o0 w2 o0 1
trQ6 0 trQ* 0 trQ? 0
1 . ~ ~ -~
:_6—?(tr392—6tr92/\tr§24—|—8trﬂ6)
1
:_30727r6(tr3£22—6tr92/\trQ4+8trQG).

Hence, we can rewrite the Hirzebruch formula (4.9) in dimension n = 4, 8 and 12 in terms
of the curvature form §2:

« whenn = 4,

/ tr(QAQ), (4.10)
M

« whenn = 8,

1
(M) 576074 /M(tr( A Atr(QAQ) +6tr(QAQAQAQ)),
+ whenn = 12,
1
M)= [ (113tr3(Q%) + 411 tr(Q?) A tr(27) — 496 t(2%)) .
() 290304O7r6/M( (%) + 411 6r(27) A tr(27) — 496 tr(27))

In dimension 4, we are going to express the integrand in terms of the Riemann tensor
getting the commonly known formula, while, up to our knowledge, no more explicit ex-
pressions are present in literature in dimension n > 8.

Remark 4.3.9. We underline the analogy between the Chern—-Gaufi-Bonnet and Hirze-
bruch theorems, where in both cases an integral of a (polynomial) function of some so-
called characteristic classes of a manifold (which are some particular differential forms con-
structed from the curvature form (2), gives a topological invariant. For Hirzebruch theorem
this is given by the polynomial L, of the Pontryagin classes, while for the Chern-Gauf3-
Bonnet theorem it is the Pfaffian which, in this framework, is called the Euler class of the
manifold. We also mention that these two theorems can be seen as special cases of a more
general result, namely the Atiyah—Singer index theorem® (see [3]), which states that for

> After the British-Lebanese mathematician Sir Michael Francis Atiyah (1929-2019) [80] and the American
mathematician Isadore Manuel Singer (1924-2021) [81].
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4.3. THE HIRZEBRUCH THEOREM

an elliptic differential operator on a compact manifold, the analytical index (defined as the
difference in dimension between the kernel and the cokernel of the operator) is equal to
the topological index (defined in terms of characteristic classes, see [3, 26, 28]). The ellip-
tic operator, the analytical index and the topological index for the Chern-Gaufi-Bonnet
theorem and the Hirzebruch theorem are respectively: d+d* and A = (d-+d*)?; the Euler—
Poincaré characteristic and the signature; the integral of the Euler class and the integral
of the L—genus, where d* = %dx is the formal adjoint to the exterior differential d with
respect to the scalar product between differential forms and A is the Hodge—-Laplacian.

The Hirzebruch formula in dimension four. In the simplest four-dimensional case,
we have shown (equation (4.10))

(M) = —241#2 /M QA Q) (4.11)

where
—tr(QAQ) = —tr(QAQ) = -GN = > AAQ =2 Y QUAQL.
i,j=1 1<i<j<4

From now on, in order to use the curvature operator Z in place of (2, we identify 2-forms
and 2-vectors, hence we can write

3
2 3 QAQ=2 Y Rleihe) NR(eihey) = > R(xi)NR(XT),

1<i<j<4 1<i<j<4 iT=1
indeed, as Xf = e1 A ey £ e3 A ey, we have
ethez=(1/2)(x{ +x1) and  esAes=(1/2)(xf —x1),
then,

2(%(61 A 62) A <%(61 A 62) —i—%(eg A 64) A %(63 A 64))
= (1/2)(Z(x +x1) AR +x7) + 20— x1) A2 —x1))
= Z(x1) NR(T) + Z(x1) AR (x7) -
and similarly for th and th.
If we write any 2-vector (or 2-form) v as v = v+ + v, like in equation (4.5), then
vAv=vT AvT o7 AvT 4 20T AvT
=vT Axvt —vT AxT = 20T AwuT
= (Jo*? = [o™[*) dVir,
where we used the definition (1.8) of the Hodge operator and the orthogonality between
A%(TM)and A2 (TM).
We now only have to compute |Z(x)*|? for every i € {1,2,3} and subtract the value

obtained for each sign. As |\ |> = 2 for every i € {1, 2,3}, this just amounts to subtract-
ing twice the square norm of the upper and lower part of the matrix

1’2

Wt +RIz/12 €2

% /2 W~ + RIz/12
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4.4. THE WEYL FUNCTIONAL

that is,
—tr(QA Q) = 2(|#* + RIg/12]7 + [€/22 = |[€/2 — [#~ + R/12]%) dViy
=2(7F| = 771" AV,
indeed,

3
S (#F +RIz/12)7

=1

(#7)? + (R/6)#; + R?/144)

I
[M]

1

~.
I

(HE)?2 + (R/6) tr #F + R?/48

(22

I
'M“

s
Il
—

(#7)? + R?/48,

I
-M“

s
I
—

being both # * trace—free, and we obtain
W+ RI3/12° — |~ +RI3 /1217 = (w2 — |7~ |%.

Hence, the Hirzebruch integrand in dimension 4 (taking into account Remark 4.2.3) is
given by

1 1
_ tr(Q A Q) = +12 -2 d — +12 —12 d
leading to the Hirzebruch formula in dimension 4,
(M) = 1/ (W2 = W= ?) avay, (4.12)
487['2 M

Since [W|? = [WH |2+ W~

dimension 4 as

2 we can rewrite the Chern-Gauf3—-Bonnet formula (3.32) in

1
3272

X(M) /M(yw+|2 £ WP + 1603(S)) AV

and combining it with the Hirzebruch formula, we get

1

2x(M) £37(M) = 3.2

/M(\Wﬂ2 + 802(5)) AV . (4.13)

4.4 The Weyl functional

We introduce another physically-relevant functional, namely the Weyl functional and we
discuss its critical metrics. We will show that the half-conformally flat metrics and the
Einstein metrics (or more in general any metric conformal to an Einstein metric) are critical
in dimension 4. We refer to [9] for further reading.

We define it, for any metric g on a compact oriented n—dimensional differential manifold
M, as

W(g) = /Mweylg|g/2 av, .

It is easy to check that 20 is conformally invariant, indeed, if g = ug, with v > 0, then
Vdetg = u™/?\/det g, AV (§) = u/? dV, and (see Theorem 2.1.4)

W52 = g(W5, W) = u*g(Wy, Wy) = u™2g(Wy, Wy) = u™2|W,lg,
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4.4. THE WEYL FUNCTIONAL

hence,
W(G) = /M|Weylfgv]g/2 v (g) = /Mu”/2|Weylg|g/2 AV, =W(g).  (4.14)

It is clear that it is quadratic only in dimension 4 and in such case, the Hirzebruch for-
mula (4.12) gives

W(g) = 2/ W2 dVyy T 48727 (M),
M

hence, the study of the Weyl functional is equivalent to the study of either
whg) = [ WG o W)= [ W RAy,.

Moreover, we have

W(g) > 48m%|7(M)| (4.15)

with equality if and only if the manifold is half-conformally flat, i.e., either W+ = 0
everywhere. This clearly implies that these metrics (and, a fortiori, the LCF ones) minimize
the functional, hence they are trivially critical.

Remark 4.4.1. From equation (4.15) it also follows that in order that a compact oriented
4-dimensional manifold carry an LCF metric, it must have zero signature. In particular,
from equation (4.7), any 4-manifold with odd Euler-Poincaré characteristic does not admit
any LCF metric. An example is (see Remark 1.1.20) CP?, as x(CP?) = 3.

In order to see that another family of critical metrics is given by the Einstein metrics
(or any metric conformal to an Einstein metric), we have to compute the first variation of
0. Referring again to [9, Section 2.1], we have

1
3| Ric(g+ th)ij = =5 (A + 2Ry h™ — Rih% — Rjphf

t=0
+ Vijtrh — Viht — Vehk)
and by means of this one and equation (4.2), we obtain

d d

—| R*g+th)= —| 2RR(g+th) = —2RAtrh+2RV7h;; — 2RRh;;
dt =0 dt =0
and
d . .
—|  [Ric(g+th)*= —| (g+th)*(g+th)'R(g+th)ijR(g + th)u
dt t=0 dt t=0
d 4 o d g
= —| 2(g+th)*RiR,+ —| 2RYR(g+ th);
dt |;=o dt |;=o

— —2h"*R;;R] — RY Ahy; — 2R Ryjih™
+ RYRyh% + RYRjhE — RV trh + RIV b + RV jy.h*
= —RYAh;; — 2R R™'h;j — RN trh + 2R,V hy; .
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Then, by the equality at the third line of the Chern-Gauf3-Bonnet formula (3.32), we can
write

d
=3 / ((—BR” Ahjj — 6R R* ' h;; — 3RUN ;5 tr h + 6 R}, V™ b))
M

+ (2RAtrh — 2RV h;j + 2RR" hy;)
+((3/2)|Ricl* trh — (1/2)R? tr h) ) dV,

(3] (IRicty + ) ~ R(g+n)?) av, + 320>(a0))
t=0 M

dt |,—g 3

and we observe that

« the terms —6 Ry R*7'h;;, 2RRY h;j, (3/2)|Ric|? tr h and —(1/2)R tr h are ready to
be written in the form ¢(T', h),

« by the divergence theorem (1.2.13), in the remaining terms, —3RY AR, > —3RYV, jtrh,
GR};VM hij, 2RAtr h and —2RVY h;j, we can switch where the second covariant
derivative is applied, for instance (using Schur’s lemma (2.3))

—3R"Y Ah;; = —3h;jARY + div(other terms) ,

—3RUV,;trh = —3tr hV;; RY + div(other terms)
= —(3/2) tr hAR + div(other terms) ,

6RLV™ h;j = GhijvikRi + div(other terms)
= 3h;; VYR + div(other terms) ,
2RAtr h = 2tr hRAR + div(other terms) ,

—2RV*7h;; = —2h;; VR + div(other terms) .

Together, they give the following variation of the Weyl functional in gradient form,

2 :
V2 (g)ij = g((—6RklRika + 2R R;; + (3/2)[Ricl’gij — (1/2)R%g;;)
+ (~3ARi; — (3/2)ARgy; + 3Vi;R + 2ARg,; — 2V,,R) )
1
= g(—12R’“RM + 4R R;; + 3|Ric|?gij — R%gi; — 6AR;; + ARgij + 2Vi,R) .

We now notice that the differential terms appearing above are exactly those of the diver-
gence of the Cotton tensor in dimension 4 (see equation (2.7)),

div Cy; = %(GRklRikﬂ — 6Ry, Ry + 6AR;; — ARgij; — 2Vi;R),
hence,
3VW(g)i; + 12div Cij = —6RM Ry — 6Rx RS 4+ 4RRy; + 3|Ric|*gi; — R%gy; -
Finally, using the explicit decomposition formula (1.28) in dimension 4,

6R;kj = 6Wigji + 3Rijgr + 3Rki9ij — 3Rugjx — 3Rkgiu — Rygijgr + Ragagijk
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we can expand the term RklRikjl as follows,

6RM Ry = 6RM Wiy + 3RR;; + 3|Ric|’gi; — 3R/ Ry — 3RFRj), — R%gi; + RR;;
= 6R" Wi — 6Ry RY + AR R;; + 3|Ric|g;; — R%g;; ,
to obtain
3V (g)i; + 12div Cyj = —6RMWigji = —1285 Wiy,
that is,
V(g);; = —A(div Cyj + SH W) = —4B;;

where we call (in every dimension) B;; == divCj; + S leikjl the Bach tensor®

It is easy to verify that the Bach tensor is a trace—free, symmetric (0, 2)-tensor and that
Einstein metrics are always also Bach—flat metrics, indeed, if ¢ is Einstein and Ric = Ag,
then

B;j = S’“Wikﬂ + div Cij
1

1
= ——RMWiy — 5— — 9" Wiji + —— (RugiR* — Rix R} + AR;j)
n—2 2(n—1)(n—-2) n—2
1 1
_ ARg;; — y
2 D)(n )T vt
A

A
kl kl k
=59 Wikt + m(Rikﬂg — Rirg;)

=0.

In particular, Einstein metrics (or any metric conformal to an Einstein metric) are critical
to the Weyl functional in dimension 4.

Remark 4.4.2. In dimension 4 the Bach tensor is conformally invariant, as in this di-
mension it is proportional to the gradient of the Weyl functional and divergence-free, by
satisfying in general

div B; = (n — 4)87%Cyy. ,

which follows from '
divdiv C; = Rjp V' S7*
by means of the following computations:

1

hO . _Ag. b
VChij = ASij = 50—

ViR — RuSL + RS,

8 After the German physicist Rudolf Bach.
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4.5. FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

from equation (2.7), then

VinCkij = VZAS” — Viin — VZRzlSJl + ViRiklekl

2(n—1)
= VMSi; — Rul'ViS) — Ri'VS); — RiijuVh S
1 ) 7 )
~ e AVR - sVIRSS — Ry V'St 4+ SMV Ry + Ripi V' SM
= AV'S;; + VF(=Ry,' Sj — RyijiS™)
— RyV'Si + Ry V*S! — RyV'S! + Ry VF 5" + Ry V' SM

1 .
~ s AVR - 3SEVIR + SMV Ry
1 ) .
= mAij + 1S5VIR + Ry VPSS + Ry VF S — STV Ry
— Rilvl5§ + Rklkaé» — RﬂV"S§ + Rikjlv’“S“ + Rikﬂviskl
1 .
= — Ry V'SH

and

VB = VIVEChij + VIS Wi
= — Ry V'S™ + WiguVISK 4 (n — 3)S* Oy
=(n—3)S"Ci — (S ® g)ikj V'S
= (n —3)SMCji — (Sijgm + Skigij — Sugrj — Skjga)V'S™

= (n—3)SMCj — Si; V'R — S V;SM + S V'S + 51, V' Sy

2(n—1)

1 , .
= (TL — 3)Sklcjlk- - mS;VZR - SkIVjSkl + SZIVZ‘S]'[ +
= (n — 3)Slejlk — Slejlk

= (n—4)S"Cyy, .

_ b g
S VR

4.5 Four—-dimensional Einstein manifolds

As the Chern—-Gauf3—Bonnet theorem applies to 2k-dimensional manifolds and the Hirze-
bruch one to 4k-dimensional manifolds, 4 is the lowest dimension in which we can use
both results and actually, the only dimension where it is easy to do so. We have already
seen at the end of Section 4.3 some general consequences of their “combination”, now we
concentrate on the special case of four—dimensional Einstein manifolds.

The Chern—-Gauf3—Bonnet formulae (3.32) for a compact oriented 4-dimensional Ein-
stein manifold (M, g) of constant A, that is Ric = \g, give

1
M) = Riem|?dV;
O = 555 [ Riem v,
- ! / (WP + W) dVas + i Vol(M)
322 Jy M 1972
1
= 12 /M (K%2 + Ki3 + Kiy + Riyzq + Rigos + R%423) dVar, (4.16)
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4.5. FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

where the last equality is true in the frame given by Lemma 3.3.1, and equation (4.13)
becomes

1 A2
(M) % 37(M) = /Mwﬂw2 AVig+ g Vol(M) (4.17)

The following theorem is then immediate by the first equation for the Euler-Poincaré
characteristic.

Theorem 4.5.1. A compact oriented 4—dimensional differentiable manifold that admits an
Einstein metric must have nonnegative Euler—Poincaré characteristic. If in addition, such met-
ric is not flat, then the Euler—Poincaré characteristic is positive.

Another easy consequence of the equations above is the following theorem.

Theorem 4.5.2. If (M, g) is a compact oriented 4—dimensional Riemannian manifold with

Einstein constant \, then
2

x(M) >

52 Vol(M) .

with equality if and only if the manifold has constant curvature.

Proof. The inequality follows by the second line of equations (4.16). In the equality case
(or if the manifold has constant curvature) we have W = 0, and the conclusion follows
from Proposition 4.1.3. O

We now see the important Hitchin—Thorpe inequality for four-dimensional Einstein
manifolds.

Theorem 4.5.3 (Hitchin-Thorpe inequality [18, 34]). A compact oriented 4—dimensional
Einstein manifold (M, g) must satisfy the inequality

X(M) 2 S|r(). (@18)

In the equality case, the manifold is Ricci—flat and half-conformally flat.

Proof. The inequality clearly follows from equation (4.17). In the equality case, A\ = 0 must
hold and either W+ = 0. U

Remark 4.5.4. More precisely, equality can only occur if M is either flat or a Riemannian
quotient of a K3 surface’. These are complex surfaces diffeomorphic to quartic surfaces
in CP3. For a proof we refer to [18, Theorem 1] and for more details about K3 surfaces
to [20].

Remark 4.5.5. The nonsufficiency of the Hitchin-Thorpe inequality in order to admit

an Einstein metric was shown (independently) in 1996 by C. LeBrun [21] and A. Sam-
busetti [31], who exhibited infinitely many nonhomeomorphic compact oriented 4-dimensional
manifolds M (also simply connected in the case of LeBrun), that cannot carry any Einstein
metrics, but satisfy nevertheless the even stronger inequality 2x (M) > 3|7(M)|.

"Named by André Weil after the initials of the two German mathematicians Ernst Eduard Kummer (1810~
1893) [82], Erich Kéhler (1906-2000) [54], the Japanese mathematician Kunihiko Kodaira (/NP3 B2, 1915—
1997) [83] and “[...] the beautiful mountain K2 in Kashmir’.
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4.5. FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

The Riemann tensor of an Einstein manifold in the special frame given in Lemma 3.3.1
is determined by the 6 components

Kio, K13, K14, Ri234, Ri324, Ri423.

This is easy to verify by direct computation. Anyway, we observe that the Einstein con-
dition Ric = Ag defines, within the 21-dimensional space of the tensors satisfying the
symmetries of the Riemann tensor, except for the Bianchi identity, a subspace of dimen-
sion 12; if in addition the tensor satisfies the 6 zero—conditions we have by choosing the
orthonormal frame given by Lemma 3.3.1, then this latter reduces to a 6-dimensional sub-
space.

With these few components, we can easily compute for ¢ < j

%(ei A Cj) = Z RijStes Nep = Kij e;Nej+ Rz’jkl er N\ eg
1<s<t<4

where k < [ are the remaining indices. Then, in the basis {e; A e2,e1 A e3,e1 A eq,e3 A
eq,eq4 N\ e, ea A e3}, the matrix associated to Z takes the form

)

where
Ko pt
A= K3 = It

Ky I

and
Ri234 vt
Ri342 = v?

Ri423 Z

In particular, letting p1 = (! yand v = (v}, 12, 13), we can express as follows

« the Einstein condition,
3
du=
i=1

« the Bianchi identity,

1=
:@.

s
Il
R

the Chern-Gaufi—-Bonnet formula,

[ (2 + wR) avis = anxa1)

and the Hirzebruch formula,

/ (1, v) dVar = 3a2r(M).
M
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Indeed, such expression of the Chern-Gaufi-Bonnet formula comes from equation (4.16),
whereas for the Hirzebruch formula, we write, for ¢ < j and k < [ all different

%(61' A\ €j) A :@(61 A Ej) = :I:2Kinijkl dVay,

where the minus sign is in the case of (i,5) = (1,3) or (¢,7) = (2,4), then, by equa-
tion (4.11), we compute the Hirzebruch integrand as

1 1
gplz 1972 Z %(eﬂ\q)/\%’(eﬂ\q)
T 1<i<j<4
1
=62 (Ki2R1234 — K13R1324 + K14R1423 + Ka3Ro314 — KoaRoa13 + K34 R3412) AV
1
= ﬁ(ulul + 122 + B3 dvyy

In this setting, the Hitchin-Thorpe inequality (4.18) amounts to the simple observation

1
3e?r (M) = | [ (o) @Vl < [ Julivdavie < 5 [ (1P + ) avas = 22xa0),
M M 2J/m
(4.19)
and in the equality case, it must be

3 3
R/4 = Z/f = constant - Zl/i =0,
i=1 i=1
for 1 and v have to be proportional and Ric = Rg/4 = 0. We now improve it, in the case

of nonnegative or nonpositive curvature.

Theorem 4.5.6 (Hitchin [18]). Let (M, g) be a compact oriented 4—dimensional Einstein
manifold whose nonzero sectional curvatures all share the same sign, then there holds

3

where equality can occur if and only if (M, g) is flat.

Proof. Let{ey, ez, e3,e4} aspecial orthonormal frame as above and observe that the angle
9 between any two vectors

weE A= { (zt, 22, 23) e R? ‘ ol 2?23 > 0orzt, 2?23 < 0}
and

veB= { (21,22 23) e R? ‘ ol 422 4 23 :0}
satisfies cos ) < /2/3". Indeed, for a fixed v the angle ¥ between y and v clearly decreases
as (1 moves towards the boundary, hence (by symmetry), we can assume that y is any unit

vectors lying on the boundary of A. We let = (1,0, 0), then by means of the Lagrange
multiplier method applied to the function

cost = f(v) = ‘V7|,

89
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under the constraint vy + 12 + 3 = 0, we get

viy? i3

ZE Tk
and v? = 13 = —v!/2, thus

vl

V) +2(vt/2)*

_ f? + [v]
(w,v) = lpllvlcosd < =———=/2/3 ,

and integrating as in formula (4.19), we conclude

=/2/3 .

€08 Vmax =

Hence, we obtain

1 /2
3n27(M) < 2\/:?4772)((]\/[) .

Reversing the orientation, we get the inequality for —7 ().
Since (3/2)3/? is irrational, in the equality case it must hold |7(M)| = x(M) = 0, then
(M, g) is flat, by Theorem 4.5.1. O

We conclude with some examples of manifolds not admitting any Einstein metrics.
We will see that the Einstein property does not behave well under common topological
constructions. In particular, with respect to the connected sum which, for connected 4-
manifolds, satisfies (see Remark 1.1.20)

X(M#N) = x(M) + x(N) — 2. (4.20)

Example 4.5.7. Recalling Example 3.3.4, the spaces M = S' x S> and N = T? x S?
cannot be endowed with Einstein metrics due to Theorem 4.5.1, as they cannot carry a flat
metric and x(S! x §?) = x(T? x S?) = 0. Then, by equation (4.20), for every positive
integers m and n one has

X(MHFMHNFY) = —2(m+n—1) <0
and none of these manifolds admits an Einstein metric, by Theorem 4.5.1.

Example 4.5.8. The manifold M = T4 is flat with canonical metric, thus Einstein and
x(M) = 0. The manifold N = RP? x RP? with canonical metric satisfies x(N) = 1
(Remark 1.1.20) and is also Einstein, as it is the product of an Einstein manifolds with
itself. Nonetheless, for m > 1 and n > 2,

X(M#FMLNHY) = —(2m +n —2) < 0.

These manifolds, again by Theorem 4.5.1, cannot admit any Einstein metrics for every
nonnegative integers such that 2m +n > 2.

Actually, also N#2 = (RP? x RP?)#2 admits no Einstein metrics: x(N#2) = 0 and it
is easy to verify using the Seifert—van Kampen theorem?® (see [16, Theorem 1.20]) that its
fundamental group has a finite subgroup isomorphic to Z/27Z, as such, it cannot carry a
flat metric (or any metric of nonpositive curvature) due to a theorem of Cartan (see [22,
Corollary 12.18]).

We remark that these results are true despite RP? being nonorientable, due to Remark 3.2.6.

8 After the German mathematician Herbert Karl Johannes Seifert (1897-1996) [84] and the Dutch mathe-
matician Egbert Rudolf van Kampen (1908-1942) [85].
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Example 4.5.9. We recall from Remark 1.1.20 that x(CP?) = 3, and denote by
MRt — ((CP2)#]€#(—<CIP’2)#€.
By means of Theorem 4.3.3, we compute
(MY =k 4042,  T(MFY=k—1¢.

Consequently, for k > 5(¢ + 1) or £ > 5(k + 1), the manifold M** does not admit any
Einstein metric by the Hitchin-Thorpe inequality (4.18).

Actually, if k = 5¢ + 4 or £ = 5k + 4 the manifold M** still does not admit any Einstein
metric, as it satisfies the equality in the Hitchin—Thorpe inequality, is simply connected
and not flat (see Remarks 4.4.1 and 4.5.4).
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