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Introduction

This dissertation, articulated in four chapters, provides an introduction to some topics
related to the study of the Weyl tensor1 of Riemannian manifolds2, with special emphasis
on Einstein manifolds3. Moreover, particular attention is given to the four–dimensional
case.

The Weyl tensor arises from the following well–known orthogonal decomposition of
the Riemann curvature tensor (in dimension n ≥ 4) of a Riemannian manifold (M, g),

Riem = R
2n(n− 1)

g ? g + 1
n− 2

◦
Ric ? g + Weyl ,

where the Ricci tensor4 Ric is its (1, 3)–trace, the scalar curvature R its complete trace
and

◦
Ric = Ric −Rg/n denotes the trace–free component of Ric.
Einstein manifolds are manifolds (M, g) whose metrics satisfy Ric = λg, for some

constant λ ∈ R (i.e.
◦

Ric = 0) and as such, due to the above decomposition of the Riemann
tensor, they have their curvature completely determined by the Weyl tensor (and the con-
stant λ).These manifolds play a fundamental role in general relativity as the Einstein’s field
equation (in a 4–dimensional Lorentzian manifold5, see for instance [8]) reads

Ric −R
2
g + Λg = kT ,

where Λ is the so–called cosmological constant, k is the Einstein’s gravitational constant
and T is the stress–momentum tensor. In the vacuum there holds T = 0, thus Ric =
(R/2 − Λ)g = λg and the solutions are 4–dimensional Einstein (Lorentzian) metrics.
It is an extremely interesting fact that the Einstein’s field equation arises as the Euler–
Lagrange6 equation of the Einstein–Hilbert action7 which, in the vacuum and ignoring the
physical constants, is given (in any dimension n) by

S(g) = Volg(M)− n−2
n

ˆ
M

Rg dVg , (1)

see for instance [9]. The metrics on an n–dimensional differentiable manifoldM such that
the first variation of this functional is zero are exactly the Einstein metrics. This holds also
in the Riemannian setting, that is, considering the functional of Riemannian metrics.

1After the German mathematician Hermann Klaus Hugo Weyl (1885–1955) [36].
2After the German mathematician Georg Friedrich Bernhard Riemann (1826–1866) [37].
3After the German physicist Albert Einstein (1879–1955) [38].
4After the Italian mathematician Gregorio Ricci–Curbastro (1853–1925) [39].
5After the Dutch physicist Hendrik Antoon Lorentz (1853–1928) [40].
6After the Swiss mathematician Leonhard Euler (1707–1783) [41] and the French naturalised Italian math-

ematician Joseph–Louis Lagrange (1736–1813) [42].
7After Albert Einstein and the German mathematician David Hilbert (1862–1943) [43].
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INTRODUCTION

The four–dimensional case has some very peculiar features, that in higher dimensions
either stop being valid or are too complicated to deal with explicitly in general. Namely,
the very special further orthogonal decomposition of theWeyl tensor into its self–dual and
anti–self–dual componentsW = W+ +W−, the Chern–Gauß–Bonnet formula8 [10]

χ(M) = 1
32π2

ˆ
M

(
|Riem|2 − 4|Ric|2 + R2

)
dVM

= 1
192π2

ˆ
M

(
6|Weyl|2 − 12|

◦
Ric|2 + R2

)
dVM , (2)

which, by means of such decomposition of the Weyl tensor, can also be written as

χ(M) = 1
192π2

ˆ
M

(
6|W+|2 + 6|W−|2 − 12|

◦
Ric|2 + R2

)
dVM (3)

and the Hirzebruch formula9 [17]

τ(M) = 1
48π2

ˆ
M

(
|W+|2 − |W−|2

)
dVM , (4)

where χ(M) and τ(M) are topological invariants: respectively, the Euler–Poincaré char-
acteristic10 and the signature of the manifoldM (see [6, 28]).
By means of these two results, one can obtain a (necessary only) condition for a four–
dimensional manifold to be Einstein, namely the so–calledHitchin–Thorpe inequality11 [18,
34]

χ(M) ≥ 3
2

|τ(M)| , (5)

that, in the case of nonnegative or nonpositive sectional curvature, can be improved to

χ(M) ≥
(3

2

) 3
2
|τ(M)| .

The main references throughout all our work are the celebrated book by A. L. Besse
“Einstein manifolds” [6] and the award–winning monograph by G. Catino and P. Mastrolia
“A perspective on canonical Riemannian metrics” [9].

The first chapter is devoted to a quick summary of prerequisites of differential and
Riemannian geometry. The number of independent components of the Weyl tensor and its
connection with the purity of the Riemann tensor are discussed. Moreover, at the end of
the chapter, we give a brief introduction to Cartan formalism12, which will be necessary
for the third chapter.

The second chapter discusses conformal transformations and locally conformally flat
(LCF) manifolds. The conformal invariance of the Weyl tensor in dimension n ≥ 4 and

8After the Chinese–American mathematician Shiing–Shen Chern (陳省身, 1911–2004) [44], the German
mathematician Johann Carl Friedrich Gauß (1777–1855) [45] and the French mathematician Pierre Ossian
Bonnet (1819–1892) [46].

9After the German mathematician Friedrich Ernst Peter Hirzebruch (1927–2012) [47].
10After Leonhard Euler and the French mathematician and physicist Jules Henri Poincaré (1854–1912) [48]
11After the English mathematician Nigel James Hitchin (1946) [49] and the American mathematician John

Alden Thorpe (1936) [50].
12After the French mathematician Élie Cartan (1869–1951) [51].
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of the Cotton tensor13 in dimension n = 3 is shown, implying that the LCF manifolds of
the corresponding dimension need to have these tensors trivial. Then, we show the Weyl–
Schouten theorem14 saying that such triviality is actually also a sufficient condition for a
manifold to be LCF. Finally, the uniqueness of “global” conformal changes (if they exist) is
briefly discussed.

The third chapter describes Chern’s original proof of the Chern–Gauß–Bonnet theo-
rem for even–dimensional Riemannian manifolds, following [10, 24] where more details
have been added. Using a particular orthonormal frame, as presented in [7], the Chern–
Gauß–Bonnet formula (2) in dimension four is then derived and some consequences are
discussed. Here we also highlight the main idea of the previous proofs (historically rel-
evant, being studied earlier) of generalisations of the “classical” Gauß–Bonnet theorem
for a compact oriented Riemannian manifold embedded in a Euclidean space of higher
dimension.

The fourth and last chapter deals with Einstein manifolds, with special attention to the
dimension four. Satisfying Ric = λg for some constant λ ∈ R, Einstein manifolds “stay in
the middle” between constant curvature manifolds (with Riem = λ

2(n−1)g ? g), which are
completely classified and constant scalar curvature manifolds (with R = λn), hence they
are neither “too” nor “too little” rigid.

We start by showing the computation of the first variation of the Einstein–Hilbert
action (1), whose nullity characterises Einstein manifolds.
Then, we “improve” the orthogonal decomposition of theWeyl tensor in dimension n = 4.
The standard decomposition of the space of algebraic curvature tensors consists of the
irreducible components under the action of the group O(n), but in dimension n = 4 the
space of the Weyl tensors can be further refined by considering its irreducible orthogonal
components under the action of SO(4) (if n 6= 4, the action of SO(n) does not provide any
new decomposition). Once applied to Riemannian manifolds, this refined decomposition
yields the so–called self–dual and anti–self–dual components W± of its Weyl tensor, as
well as a convenient matrix representation of the curvature 2–form. Moreover, the Chern–
Gauß–Bonnet formula (2) in dimension 4 can be rewritten in the form (3).
In Section 4.3, we introduce the signature τ(M), which is another topological invariant of
a four–manifoldM , and present (without proof, for which we refer the reader to [28]) the
Hirzebruch theorem, showing the equality

τ(M) = 1
48π2

ˆ
M

(
|W+|2 − |W−|2

)
dVM .

We then proceed by studying the Weyl functional,

W(g) =
ˆ

M
|Weylg|n/2 dVg ,

which is quadratic in dimension four. We compute its first variation and we show that
conformal Einstein metrics (i.e. metrics having an Einstein metric in their conformal class)
and half–conformally flat metrics , (i.e. for which eitherW+ orW− vanishes) are critical
metrics, in dimension four.
In the last section, we discuss four–dimensional Einstein manifolds. By combining the
Chern–Gauß–Bonnet andHirzebruch formulae (3), (4), we then obtain the Hitchin–Thorpe
inequality (5)

χ(M) ≥ 3
2

|τ(M)|

13After the French mathematician Émile Clément Cotton (1872–1950) [52].
14After Hermann Klaus HugoWeyl and the Dutch mathematician Jan Arnoldus Schouten (1883–1971) [53].
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which is a necessary condition for a compact oriented 4–dimensional manifold to be Ein-
stein. We underline that this inequality is a necessary (only) condition for a compact and
oriented 4–dimensional manifold to be Einstein and no sufficient conditions are known
up to now, unless we restrict ourselves to more rigid classes of Riemannian manifolds (e.g.
Kähler manifolds15, see [7]). In light of that, the chapter and the thesis end by providing
some examples of manifolds which do not admit any Einstein metric, being the converse
problem very difficult, the readers of the book of A. L. Besse [6] “[…] are offered a meal in
a starred restaurant in exchange for a new example [of an Einstein manifold]”.

15After the German mathematician Erich Kähler (1906–2000) [54].
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Chapter 1

Some prerequisites of Riemannian
geometry

1.1 Differential manifolds

Definition 1.1.1. An n–dimensional topological manifold with boundary is a topological
space that is Hausdorff, admits a countable base and such that for every point p ∈ M there
exists an open neighbourhood U ⊆ M of p and a homeomorphism ϕ : U → Ω, with Ω
open set of Hn =

{
(x1, . . . , xn) ∈ Rn

∣∣ xn ≥ 0
}
. The pair (U,ϕ) is called a coordinate

chart (or a local chart). If U ∩ Hn = Ø we will call U an interior chart, otherwise we will
call it a boundary chart.
A point p ∈ M is said to be an interior point if it admits an interior chart as neighbourhood,
otherwise it is called a boundary point. We will denote by

◦
M and ∂M the set of interior

and boundary points respectively.

Definition 1.1.2. Let k ∈ N ∪ {∞}. Two charts (U,ϕ) and (V, ψ) are Ck–compatible if
either U ∩ V = Ø or the transition map (which is a homeomorphism)

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)

is a Ck–diffeomorphism (which accounts for the boundary, in case there is one).
A Ck–atlas onM is a cover ofM with Ck–compatible charts.
A chart is compatible with a Ck–atlas if it is Ck–compatible with each of its charts.
Two Ck–atlases are equivalent if their union is another Ck–atlas.
A Ck–atlas is maximal if it contains all charts compatible with it.
A Ck–differential structure onM is a maximal Ck–atlas onM .

Definition 1.1.3. ACk–differential manifold with boundary is a topological manifold with
boundary where a Ck–differential structure has been chosen.

Definition 1.1.4. A topological (resp. differential) manifold (without boundary) is a topo-
logical (resp. differential) manifoldM with ∂M = 0.

Remark 1.1.5. Every manifold with boundary M is the disjoint union of
◦
M and ∂M

which are, respectively, an n–dimensional and an (n− 1)–dimensional manifold without
boundary.

We refer the reader to [1, 12, 23] for the basic notions recalled in this section; in particular,
for the standard definitions and properties of C∞ functions, tangent, cotangent and tensor
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1.1. DIFFERENTIAL MANIFOLDS

bundles, vector fields, tensor fields, differential forms, differential operators, etc. We will also
assume familiarity with the canonical topological, differential and Riemannian structures of
standard spaces like Rn, Sn and Hn.

We will write xi to denote the i–th coordinate induced by a chart (U,ϕ), with associated
local vector fields ∂

∂xi (which we will mostly denote by ∂i) and 1–forms dxi. We will denote
by C∞(M,N) the space of C∞ functions between the two differential manifoldsM and N
and C∞(M) := C∞(M,R).

In the entire text, unless stated otherwise, all manifolds will be without boundaries, con-
nected,C∞ and n–dimensional. We shall also use the Einstein convention for summation over
repeated indices, for example, a vector field X overM will be written in local coordinates as
X = Xi∂i = Xi ∂

∂xi =
∑n

i=1X
i ∂

∂xi .

Let π : E → B be a vector bundle of rank k. We will denote by Γ(E) the space of its
(global) sections, that is, functions s : B → E such that π ◦ s = id. A (local) frame for the
vector bundle on a subset U ⊆ B is a choice of k linearly independent sections for every
point of U . If U = B the frame is said to be a global frame and the bundle a trivial bundle.
The most common vector bundles we will deal with are:

• the line bundleM × R, with sections Γ(M × R) = C∞(M);

• the tangent bundle TM , whose sections are the vector fields;

• the sphere bundle SM , whose sections are the unitary vector fields;

• the cotangent bundle TM∗, whose sections, Γ(TM∗) = Ω1(M), are the differential
1–forms;

• the vector bundle T r
sM = TM∗⊗s ⊗ TM⊗r , whose sections are the tensor (fields)

of type (r, s) (r is the number of contravariant components and s the number of
covariant components, T 1

0M = TM , T 0
1M = TM∗ and T 0

0M = M × R);

• the bundle of the alternating k–forms ΛkM , who sections, Γ(ΛkM) = Ωk(M), are
the differential k–forms;

• the bundle of the symmetric k–forms SkM , with sections Γ(SkM) = Σk(M).

If T ∈ Γ(T r
sM), we will denote by Tp the tensor at the point p ∈ M , which is an

element of the vector space T r
sMp = TpM

∗⊗s ⊗ TpM
⊗r . There is a natural linear iso-

morphism between T r
sMp and the space of multilinear functions from TpM

⊕s ⊕TpM
∗⊕r

to R. In local coordinates an (r, s)–tensor T is therefore given by

T = T i1...ir
j1...js

dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
,

where
T i1...ir

j1...js
:= T

(
∂

∂xj1
, . . . ,

∂

∂xjs
, dxi1 , . . . , dxir

)
.

These considerations let us see a tensor T ∈ Γ(T r
sM) as a C∞(M)–linear map from the

C∞(M)–module Γ(TM⊕s ⊕ TM∗⊕r) to C∞(M).
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1.1. DIFFERENTIAL MANIFOLDS

1.1.1 Symmetric and skew–symmetric forms on vector spaces

LetV be a real vector space of dimensionn.We denote byΛk(V ∗) andSk(V ∗) respectively
the sets of the alternating and symmetric multilinear forms on V k. For any such form η,
we call degree of η the value |η| = k. Recall that

dim Λk(V ∗) =
(
n

k

)
for 0 ≤ k ≤ n ,

dimSk(V ∗) =
(
n+ k − 1

k

)
for k ≥ 0 .

(1.1)

We define the exterior (or wedge) product of a k–form η and an s–form ζ as the (k + s)–
form

(η ∧ ζ)(α1, . . . , αk+s) = 1
k!s!

∑
σ∈Σk+s

sgn(σ)(η ⊗ ζ)(ασ(1), . . . , ασ(k+s)) (1.2)

= 1
k!s!

∑
σ∈Σk+s

sgn(σ) η(ασ(1), . . . , ασ(k))ζ(ασ(k+1), . . . , ασ(k+s)) ,

with Σk+s the set of permutation of k + s elements and αi ∈ V for i ∈ {1, . . . , k + s}.
This product endows the space

Λ(V ∗) :=
n⊕

k=0
Λk(V ∗)

with a supercommutative algebra structure, as the product satisfies

η ∧ ζ = (−1)|η||ζ| ζ ∧ η .

In the particular case of two 1–forms, formula (1.2) becomes

α ∧ β = α⊗ β − β ⊗ α ,

for α, β ∈ Λ1(V ∗).

Definition 1.1.6. Two nonzero n–forms η, ζ ∈ Λn(V ∗) are equioriented if η = λζ for a
positive number λ; if instead λ is negative the forms are said to have the reverse orientation.
An orientation on V is the choice of a nonzero η ∈ Λn(V ∗). The pair (V, η) is said to be
an oriented vector space. We will say that a basis {ui}n

i=1 of V ∗ is oriented if the form
u1 ∧ · · · ∧ un is equioriented with η.

On a vector space V with a scalar product g wewill limit ourselves to considering only
orientations Θ that can be expressed as

Θ = ϑ1 ∧ · · · ∧ ϑn ,

for an orthonormal basis {ϑi}n
i=1 of V ∗.

Then, in any other oriented basis {ui}n
i=1 such an orientation can be expressed as

Θ =
√

det gij u
1 ∧ · · · ∧ un .
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1.1. DIFFERENTIAL MANIFOLDS

Definition 1.1.7. Let (V, g,Θ) be an oriented n–dimensional vector space, as above and
k ∈ {0, . . . , n}. Define the linear Hodge operator1 ? : Λk(V ∗) → Λn−k(V ∗) by

ζ ∧ ?η = g(ζ, η) Θ ,

for ζ, η ∈ Λk(V ∗).

Reversing the orientation on V changes the sign for the Hodge operator. In particular,
if η, ζ ∈ Λk(V ∗), then η ∧ ?ζ = ζ ∧ ?η and η ∧ ?η = |η|2 Θ. Note also that ?1 = Θ.
The explicit formula for ? on an oriented basis can be given as

?(ui1 ∧ · · · ∧uik) =
√

det gij

(n− k)!
∑

σ∈Σn

sgn(σ) gi1σ(1) · · · gikσ(k) uσ(k+1) ∧ · · · ∧uσ(n) . (1.3)

Where Σn is the set of permutation of {1, . . . , n}. and {ui}n
i=1 is a basis of V ∗

For an orthonormal basis {ϑi}n
i=1 of V ∗ formula (1.3) just reads

?(ϑi1 ∧ · · · ∧ ϑik) = sgn(σ̃)ϑik+1 ∧ · · · ∧ ϑin ,

where (ik+1, . . . , in) are the ordered remaining indices and σ̃ is the permutation (i1 . . . in).

Remark 1.1.8. Applying ? twice yields the formula

? ? η = (−1)k(n−k)η

for every η ∈ Λk(V ∗), which implies that ? is an isomorphism with inverse ?−1 =
(−1)k(n−k)?. We also remark that if n is even then ? : Λn/2(V ∗) → Λn/2(V ∗) is an auto-
morphism with inverse ?−1 = (−1)n/2?. In particular if n is a multiple of 4, then ?−1 = ?.

1.1.2 Differential forms on manifolds

As already mentioned, let ΛkM := Λk(TM∗), SkM := Sk(TM∗) and call Ωk(M) =
Γ(ΛkM) and Σk(M) = Γ(SkM), the spaces of differential k–forms onM and symmetric
k–forms onM respectively. We define the differential operator d by

dη(X0, X1, . . . , Xk) =
k∑

i=0
(−1)iXi

(
η(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jη([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) ,

where X̂i indicates that the i–th field is missing, η ∈ Ωk(M), Xi ∈ Γ(TM) for i ∈
{0, 1, . . . , n} and [·, ·] is the Lie brackets2 on TM defined by

[X,Y ] = X ◦ Y − Y ◦X .

In local coordinates

dη = d
∑

1≤i1<···<ik≤n

ηi1...ik
dxi1 ∧ · · · ∧ dxik

=
∑

1≤i1<···<ik≤n

dηi1...ik
∧ dxi1 ∧ · · · ∧ dxik .

1After the British mathematician Sir William Vallance Douglas Hodge (1903–1975) [55].
2After the Norwegian mathematician Marius Sophus Lie (1842–1899) [56].
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1.1. DIFFERENTIAL MANIFOLDS

Definition 1.1.9. LetM be a differential manifold.
Two charts (U,ϕ), (V, ϕ) are equioriented if U ∩ V 6= Ø and the Jacobian determinant of
the transition map (which is always nonzero) is a positive function.
An atlas is oriented if all of its charts with nonempty intersections are equioriented.
Two atlases are equioriented if their union is an oriented atlas.
An orientation onM is a maximal oriented atlas onM .
The manifoldM is said to be orientable if it admits an orientation.

Definition 1.1.10. An oriented manifold is an orientable manifold where an orientation
has been chosen. IfM is an orientedmanifold, wewill denote by−M its reverse orientation,
that is, the oriented manifold obtained by reversing the orientation of every chart ofM .

Remark 1.1.11. An orientation onM induces an orientation on ∂M by restriction of the
atlas. If the dimension is even, we define that as the standard orientation on ∂M , otherwise,
as the reverse orientation.

It can be shown that every connected orientable manifold has exactly two possible ori-
entations and that a connected nonorientable manifold has a universal (differential) cov-
ering of degree 2 which is an orientable manifold. it follows that every simply connected
differential manifold is orientable.

Definition 1.1.12. A diffeomorphism f : M → N between two oriented manifolds is said
to orientation–preserving if the induced atlas from M to N is equioriented with the atlas
on N . It is said to be orientation–reversing if the induced atlas has the reverse orientation.

Definition 1.1.13. A volume form on the n–dimensional manifoldM is a global frame of
Ωn(M), that is, a never vanishing differential n–form.

If η and η′ are two volume forms, then there exists a never vanishing C∞ function f
such that η′ = fω and ifM is connected such function has constant sign.
It can be shown that choosing an orientation on M is equivalent to choosing a volume
form and that a diffeomorphism preserves (resp. reverses) the orientation if and only if it
“pulls–back” the volume form of the image manifold onto the volume form of the domain
without (resp. with) applying a change of sign.

Let η ∈ Ωn(M) be any n–form on M with compact support contained in a chart
(U,ϕ). Then there exists a function f ∈ C∞(Rn) such that (ϕ−1)∗η = f dx1 ∧ · · · ∧ dxn

and we define ˆ
M
η :=

ˆ
Rn

f(x) dx .

In general, if η is a compactly supported n–form and {%α}α∈A is a partition of unity sub-
ordinated to an oriented atlas (Uα, ϕα)α∈A, we define

ˆ
M
η :=

∑
α∈A

ˆ
M
%αη .

It can then be shown that this integral is independent of the choice of the partition of
unity and the oriented atlas. If −M is the same manifold with the reverse orientation,
then

´
−M η = −

´
M η. More generally, if f : M → N is any diffeomorphism between two

oriented, connected manifolds, then
ˆ

M
f∗η = ±

ˆ
N
η , (1.4)

10



1.1. DIFFERENTIAL MANIFOLDS

where the sign depends on whether f preserves or reverses the orientation.
For a differential form η ∈ Ωn−1(M) on a differential manifold with boundaryM and

inclusion map ι : ∂M ↪→ M , we define

η|∂M := ι∗η ,

and ˆ
∂M

η :=
ˆ

∂M
η|∂M .

Theorem 1.1.14 (Stokes theorem3). Let M be an oriented n–dimensional manifold with
boundary and η ∈ Ωn−1(M) a differential form with compact support. Then

ˆ
M

dη =
ˆ

∂M
η .

Definition 1.1.15. A differential form η ∈ Ωk(M) is said to be closed if dη = 0, exact
if η = dζ for some differential form ζ ∈ Ωk−1(M) and locally exact if for every p ∈ M
there exists a neighbourhood U of p such that η|U is exact.

As d2 = 0, every exact differential form is also closed. We denote by dk := d|Ωk(M).

Definition 1.1.16. We define for k ∈ N the k–th de Rham cohomology group4 as the real
vector space

Hk(M) := ker dk

im dk−1

and we call its dimension
βk(M) := dimHk(M)

the k–th Betti number5.

The de Rham groups can be “pasted together” into a graded algebra

H(M) =
n⊕

k=0
Hk(M) ,

with a so–called cup product
[η] ^ [ζ] := [η ∧ ζ]

for [η], [ζ] ∈ H(M).

Theorem 1.1.17 (Poincaré lemma). Let k ≥ 1 and U be a star–convex open set of Rn. Then
any closed k–form on U is exact.

Corollary 1.1.18. Let k ≥ 1, then any closed k–form onM is locally exact.

Definition 1.1.19. For ann–dimensionalmanifoldM with finite Betti numbers, the Euler–
Poincaré characteristic ofM is defined as

χ(M) =
n∑

k=0
(−1)kβk(M) .

3After the Irish mathematician and physicist Sir George Gabriel Stokes (1819–1903) [57].
4After the Swiss mathematician Georges de Rham (1903–1990) [58].
5After the Italian mathematician Enrico Betti Glaoui (1823–1892) [59].
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1.1. DIFFERENTIAL MANIFOLDS

We recall that ifM is a compact 2–dimensional manifold without boundary (that is, a
closed surface) of genus g (the number of “holes” if the surface is oriented, roughly speak-
ing), then χ(M) = 2 − 2g.

Remark 1.1.20. It can be shown that the de Rham cohomology groups, the Betti numbers
and the Euler characteristic are topological invariants. In particular, if M and N are two
n–dimensional, complete differential manifold without boundary,

• if M is compact, every Hk(M) is finite–dimensional and Hk(M) and Hn−k(M)
are isomorphic (by Poincaré duality, see [16, Section 3.3]),

• H0(M) = R, ifM is connected,

• H1(M) = 0, ifM is simply connected,

• Hn(M) = R, ifM is connected, compact and orientable,

• Hn(M) = 0, ifM is noncompact or nonorientable,

• χ(M) = 0, ifM is an odd–dimensional compact manifold, by the first point,

• χ(M × N) = χ(M)χ(N), if M and N are compact (by the Künneth formula6,
see [16, Section 3.B]),

• χ(M#N) = χ(M) + χ(N) − χ(Sn), ifM and N are compact and connected.

Moreover, we recall the Euler–Poincaré characteristic of some commonmanifolds, namely,
for every positive integer k one has χ(S2k) = 2, χ(RP2k) = 1, χ(CPk) = k + 1.

1.1.3 The Frobenius theorem

We state the Frobenius theorem7 in its classical form, about the existence of solutions of
overdetermined systems of first–order differential equations on Rn. We refer the reader
to [23, Proposition 19.29] for a proof and to [23, Theorem 19.21] for a geometric version of
the theorem.

Theorem 1.1.21. LetXi : V ×U ⊆ Rm×Rn → Rn beC∞ vector fields, for i ∈ {1, . . . ,m}
and V,U open sets. Then, for every (x0, y0) ∈ V × U there exist a connected neighbourhood
W ⊆ V of x0 and a unique C∞ function u : W → U such that

∂u

∂xi
(x) = Xi

(
x, u(x)

)
for every x ∈ W and i ∈ {1, . . . ,m} ,

u(x0) = y0 ,
(1.5)

if and only if the following integrability condition is satisfied on V × U :

∂Xi

∂xj
+Xk

j

∂Xi

∂yk
= ∂Xj

∂xi
+Xk

i

∂Xj

∂yk
. (1.6)

Remark 1.1.22. If u is a solution of equation (1.5) then the two sides of equation (1.6)
are just the second derivatives of u with switched indices, so the necessity of its validity
follows from the Schwarz theorem8.

6After the German mathematician Hermann Lorenz Künneth (1892–1975) [60].
7After the German mathematician Ferdinand Georg Frobenius (1849–1917) [61].
8After the German mathematician Karl Hermann Amandus Schwarz (1843–1921) [62].
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1.2. RIEMANNIAN MANIFOLDS

Remark 1.1.23. The integrability condition (1.6) may be also written as

∂

∂xj
Xi
(
x, u(x)

)
= ∂

∂xi
Xj
(
x, u(x)

)
where every instance of ∂u/∂xi has been substituted by Xi.

1.2 Riemannian manifolds

A good reference for this section is the book [22].

Definition 1.2.1. Let M be a differential manifold. A (Riemannian) metric on M is a
positive definite bilinear symmetric form g ∈ Σ2(M). A Riemannian manifold is a pair
(M, g) with g a Riemannian metric onM .

Theorem 1.2.2 (Theorem “zero” of Riemannian geometry). Every differential manifold ad-
mits a Riemannian metric.

Definition 1.2.3. Since a metric is identifiable with a scalar product on every tangent
plane, we can define for every v, w ∈ TpM the norm and angles between (nonzero) vectors
as

|v| =
√
g(v, v) , ∠(v, w) = arccos g

(
v

|v|
,
w

|w|

)
.

The components of the metric in a chart gij = g(∂/∂xi, ∂/∂xj) define an invertible
matrix (gij)n

i,j=1. We will denote by gij the components of the inverse matrix and with
g−1 the 2–vector with such components.

Definition 1.2.4. Let (M, g) be an oriented Riemannianmanifold.The Riemannian volume
form dVM is defined as

dVM =
√

det gij dx1 ∧ · · · ∧ dxn ,

for every oriented chart
(
U, (x1, . . . , xn)

)
.

It can be shown that such form is globally defined and that in an oriented frame {ei}n
i=1

with dual frame {ϑi}n
i=1 it satisfies

dVM = ϑ1 ∧ · · · ∧ ϑn . (1.7)

Having a canonical volume form, we can introduce as in Definition 1.1.7 the Hodge op-
erator ?, which we extend pointwise to a C∞–linear map on the whole space Ωk(M) for
0 ≤ k ≤ n by

ζ ∧ ?η = g(ζ, η) dVM , (1.8)

for ζ, η ∈ Ωk(M).

Definition 1.2.5. Let (M, g) be an oriented Riemannian manifold. We define a scalar
product on Ωk(M) by

〈ζ, η〉 :=
ˆ

M
ζ ∧ ?η =

ˆ
M
g(ζ, η) dVM ,

for every ζ, η ∈ Ωk(M) with at least one of them having compact support.
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1.2. RIEMANNIAN MANIFOLDS

Definition 1.2.6. Let M be a differential manifold and π : E → M a vector bundle. A
connection on the bundle E is a map

∇ : Γ(TM) × Γ(E) → Γ(E)
(X, η) 7→ ∇Xη ,

such that

• ∇ is C∞(M)–linear in X ,

• ∇ is linear in η,

• for every X ∈ Γ(TM), η ∈ Γ(E) and f ∈ C∞(M), there holds

∇X(fη) = X(f) + f∇Xη .

We will call ∇Xη the covariant derivative of η with respect to X .
If E = TM , we will call ∇ an affine connection.9

For every η ∈ Γ(E), we will denote by ∇η the C∞(M)–linear map

∇η : X ∈ Γ(TM) → ∇Xη ∈ Γ(E) .

Remark 1.2.7. It can be shown that the value ∇Xη|p only depends on the value of η
along a curve passing through p with velocity X at p.

We set ∇i := ∇ ∂

∂xi
and define the Christoffel symbols10 for a connection ∇ as

∇iξj = Γk
ijξk ,

with {ξj}m
j=1 a local frame for E.

In this way, for every section η = ηjξj , we have

∇Xη = Xi(∂iη
k + Γk

ijη
j)ξk .

Any affine connection can be uniquely extended to the whole tensor bundle Γ(T r
sM)

by imposing that

• ∇ : f 7→ df for all f ∈ C∞(M) (we, however, will reserve the symbol ∇f for the
vector satisfying g(∇f,X) = df(X) = X(f) for all X ∈ Γ(TM)),

• ∇(T ⊗ S) = ∇T ⊗ S + T ⊗ ∇S for all T, S ∈ Γ(T r
sM),

• ∇ commutes with the contractions.

For every T ∈ Γ(T r
sM) we will denote by ∇`T the `–times application of ∇ to T and by

∇k1...k`
T i1...ir

j1...js
= (∇`T )i1...ir

k1...k`j1...js

its components.
9The reason for this name will become clear in light of Lemma 2.1.1.

10After the German mathematician Elwin Bruno Christoffel (1829–1900) [63].
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1.2. RIEMANNIAN MANIFOLDS

Definition 1.2.8. We define the divergence divT of a tensor T ∈ Γ(T r
sM), with r ≥ 1,

as the contraction of ∇T between its first covariant entry and its first contravariant entry;
in coordinates

divT = ∇kT
ki2...ir
j1...js

.

If ω ∈ Γ(T 0
sM) is an s–form, with s ≥ 1, we define

divω = ghk∇hωkj2...ks .

For every tensor T ∈ Γ(T r
sM) we define the Laplacian11 ∆T as the trace of ∇2T on its

first two covariant entries; in coordinates

∆T = gij∇ijT
i1...ir
j1...js

.

Definition 1.2.9. For an affine connection ∇, we define the torsion tensor

T∇(X,Y ) = ∇XY − ∇Y X − [X,Y ] , (1.9)

and, given a metric g, the non–metricity tensor

M∇,g(X,Y, Z) = (∇Xg)(Y, Z) := Xg(Y, Z) − g(∇XY, Z) − g(Y,∇XZ) . (1.10)

We will say that ∇ is symmetric if T∇ = 0 and metric compatible ifM∇,g = 0.

Remark 1.2.10. Symmetry and metric compatibility can be explicitly expressed using the
Christoffel symbols, since for T∇ = 0, formula (1.9) is equivalent to

Γk
ij = Γk

ji ,

and forM∇,g = 0 equation (1.10) becomes

Γijk + Γikj = ∂igjk .

Theorem 1.2.11 (Fundamental theorem of Riemannian geometry). On every Riemannian
manifold (M, g) there exists a unique connection ∇, which we will call the Levi–Civita con-
nection12 on (M, g), that is symmetric and metric compatible.

Remark 1.2.12. Theexplicit expression for the Levi–Civita connection through its Christof-
fel symbols and the metric g is given by

Γijk = 1
2
(
∂igjk + ∂jgik − ∂kgij

)
. (1.11)

An important equation linking the Levi–Civita connection (and in general, any sym-
metric connection) with the differential operator d is the following,

dη(X0, . . . , Xk) =
k∑

i=0
(−1)i(∇Xiη)(X0, . . . , X̂i, . . . , Xk) , (1.12)

for any η ∈ Ωk(M).
One of the most fundamental results for the Levi–Civita connection (and in general,

for any metric connection) is the divergence theorem.
11After the French mathematician Pierre–Simon, marquis de Laplace (1749–1827) [64].
12After the Italian mathematician Tullio Levi–Civita (1873–1941) [65].
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Theorem 1.2.13 (divergence theorem). Let (M, g) be an oriented n–dimensional Rieman-
nian manifold and X ∈ Γ(TM) a vector field with compact support. Then,

ˆ
M

divX dVM =
ˆ

∂M
g(X, ν) dV∂M ,

where ν : ∂M → TM the outward–pointing unit normal vector

In the whole thesis we will use exclusively the Levi–Civita connection.

Definition 1.2.14. The Riemann operator is the tensor defined by

R(X,Y )Z = ∇2
Y,XZ−∇2

X,Y Z = [∇Y ,∇X ]Z−∇[Y,X]Z , for X,Y, Z ∈ Γ(TM)

and the Riemann tensor Riem is the (0, 4)–version of the Riemann operator, denoted by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ) , for X,Y, Z,W ∈ Γ(TM) .

Remark 1.2.15. In local coordinates, by means of the Christoffel symbols, the Riemann
operator can be written as

Rl
ijk = ∂jΓl

ik − ∂iΓl
jk + Γs

ikΓl
sj − Γs

jkΓl
si .

Proposition 1.2.16 (Symmetries of the Riemann tensor). The following properties hold:

• skew–symmetry in the first two entries

R(X,Y, Z,W ) = −R(Y,X,Z,W ) ,
Rijkl = −Rjikl ;

• skew–symmetry in the last two entries

R(X,Y, Z,W ) = −R(X,Y,W,Z) ,
Rijkl = −Rijlk ;

• symmetry between the first and second pair

R(X,Y, Z,W ) = R(Z,W,X, Y ) ,
Rijkl = Rklij ,

for all X,Y, Z,W ∈ Γ(TM) and i, j, k, l ∈ {1, . . . , n}.

Proposition 1.2.17 (Bianchi identities13). The following properties hold:

• first (or algebraic) Bianchi identity

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0 ,
Rijkl +Rkijl +Rjkil = 0 ;

• second (or differential) Bianchi identity

∇XR(Y, Z) + ∇ZR(X,Y ) + ∇Y R(Z,X) = 0 ,
∇iRjklm + ∇kRijlm + ∇jRkilm = 0 , (1.13)

13After the Italian mathematician Luigi Bianchi (1856–1928) [66].

16



1.2. RIEMANNIAN MANIFOLDS

for all X,Y, Z ∈ Γ(TM) and i, j, k, l,m ∈ {1, . . . , n}.

Due to the symmetries of the (0, 4)–Riemann tensor, it is possible to define an associ-
ated bilinear symmetric form R and a linear self–adjoint map R on Γ

(
Λ2(TM)

)
, which

we will call the curvature form and curvature operator respectively, by linear extension
from

R(X,Y, Z,W ) = R(X ∧ Y, Z ∧W ) = 1
2g
(
R(X ∧ Y ), Z ∧W

)
withX,Y, Z,W ∈ Γ(TM), where we are considering the extension of the scalar product
g to Γ

(
Λ2(TM)

)
.

From the Riemann curvature tensor one can define the so–called sectional curvature of
any 2–plane π = 〈v, w〉 ⊆ TpM at p ∈ M ,

Sec(v, w) := Rp(v, w, v, w)
|v|2|w|2 −

(
gp(v, w)

)2 =
gp
(
Rp(v ∧ w), v ∧ w

)
gp(v ∧ w, v ∧ w)

,

which has a more direct geometrical interpretation, as it is equal to the standard Gaußian
curvature at p of the 2–dimensional submanifold locally swept out by the geodesics tan-
gent to the 2–plane π around p, once embedding such surface in R3, if possible (see [22,
Proposition 8.29]). We define Sec(v, w) := 0 if v and w are linearly dependent.

Other forms of curvature are obtained through one or two applications of the trace
operator to the Riemann tensor, leading to the definition of the Ricci curvature tensor R
(or Ric), the scalar curvature R and the trace–free Ricci tensor

◦
Ric, as follows:

Ric(X,Y ) := (tr1,3R)(X,Y ) = gikR

(
∂

∂xi
, X,

∂

∂xk
, Y

)
;

R := tr Ric = gikgjlR

(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl

)
;

◦
Ric(X,Y ) := Ric(X,Y ) − R

n
g(X,Y ) ,

for X,Y ∈ Γ(TM).
We conclude this section by recalling some well–known facts about flat and, more in

general, manifolds with constant (sectional) curvature (see [22], for instance).

Theorem 1.2.18. Let (M, g) be an n–dimensional Riemannian manifold. The following
properties are equivalent:

(i) M is flat, i.e., Riem = 0;

(ii) every point p ∈ M admits a neighbourhood isometric to an open set of Rn;

(iii) every point p ∈ M admits a local coordinate chart in which gij = δij ;

(iv) every point p ∈ M admits a local coordinate chart such that
{

∂
∂xi

}n

i=1 is an orthonor-
mal frame;

(v) every point p ∈ M admits a local coordinate chart in which the Christoffel symbols
Γk

ij vanish everywhere.

Theorem 1.2.19. Let (M, g) be a complete n–dimensional Riemannian manifold with con-
stant curvature k, then the universal covering ofM is

• Rn, with its canonical metric, if k = 0;

• Sn, with its canonical metric, if k > 0;

• Hn, with its canonical metric, if k < 0.

17
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1.3 Algebraic curvature tensors

The properties of the Riemann tensor may be categorised into algebraic and differential.
The ones which are algebraic in nature do not really depend upon the manifold structure
but are rather pointwise properties valid in the more general setting of the algebraic cur-
vature tensors. These are tensors on a real vector space endowed with a scalar product
satisfying all the algebraic symmetries of the Riemann tensor. We will compute the di-
mension of the vector space of these tensors, which corresponds to finding the number of
independent components of the Riemann tensor; we then present its orthogonal decompo-
sition to introduce the “Weyl–like” tensors, by means of the Kulkarni–Nomizu product;14
and express a few initial properties of those tensors which will motivate the next chapter.

Let (V, g) denote an n–dimensional vector space with a scalar product g.

Definition 1.3.1. Given h, k ∈ S2(V ∗) define their Kulkarni–Nomizu product as

(h? k)(x, y, z, w) = h(x, z)k(y, w) + h(y, w)k(x, z) − h(x,w)k(y, z) − h(y, z)k(x,w) ,

for x, y, z, w ∈ V .

Remark 1.3.2. The natural extension of g onto Λ2(V ) is given by

g(x ∧ y, z ∧ w) = g(x⊗ y − y ⊗ x, z ⊗ w − w ⊗ z)
= 2g(x, z)g(y, w) − 2g(x,w)g(y, z)
= (g ? g)(x, y, z, w) .

Definition 1.3.3. Let F4(V ) denote the set of (0, 4)–tensors on V satisfying the Riemann
symmetries in Proposition 1.2.16, that is, P ∈ F4(V ) if and only if

(i) P (x, y, z, w) = −P (y, x, z, w) ,

(ii) P (x, y, z, w) = −P (x, y, w, z) ,

(iii) P (x, y, z, w) = P (z, w, x, y) ,

for x, y, z, w ∈ V .
For each P ∈ F4(V ) we define the correspondent operator P ∈ S2(Λ2(V )∗) and the map
P : Λ2(V ) → Λ2(V ) by linear extension from

P (x, y, z, w) = P(x ∧ y, z ∧ w) = 1
2g(P(x ∧ y), z ∧ w) , for x, y, z, w ∈ V .

Then, we denote by Pic the (1, 3)–trace of P , with P its complete trace, with
◦

Pic the trace–
free component of Pic and with Pec its sectional curvature, that is, given a basis {ei}n

i=1
and four vectors x, y, v, w such that v and w are independent,

• Pic(x, y) = (tr1,3 P )(x, y) = gikP (ei, x, ek, y) ,

• P = tr Pic = tr(tr1,3 P ) = gikgjlP (ei, ej , ek, ej) ,

•
◦

Pic = Pic −P
n
g ,

14After the Indian mathematician Ravindra Shripad Kulkarni (1942) [67] and the Japanese–American math-
ematician Katsumi Nomizu (野水克己, 1924–2008) [68].
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• Pec(v, w) = P (v, w, v, w)/1
2(g?g)(v, w, v, w) = g(P(v∧w), v∧w)/g(v∧w, v∧

w) .

Moreover, we also define Pec(v, w) := 0 if v and w are linearly dependent.
We call P an algebraic curvature tensor if it satisfies the relations (i)–(ii)–(iii) above and
the first Bianchi identity:

(iv) P (x, y, z, w) + P (z, x, y, w) + P (y, z, x, w) = 0 ,

for all x, y, z, w ∈ V .
We denote by C4(V ) the set of all algebraic curvature tensors on V .

Remark 1.3.4. The denominator in the definition of Pec is given by

1
2(g ? g)(v, w, v, w) = 1

2

(
2g(v, v)g(w,w) − 2

(
g(v, w)

)2) = |v|2|w|2 −
(
g(v, w)

)2
,

which is the area of the parallelogram with sides the vectors v and w in π; in particular, if
{e1, e2} is an orthonormal basis of π, then 1

2(g ? g)(e1, e2, e1, e2) = 1 and

Pec(e1, e2) = P (e1, e2, e1, e2) .

It is easy to verify that we can always limit ourselves to orthonormal bases as the value of
Pec(v, w) is only dependent on the 2–plane spanned by v, w; indeed, given another basis
{u1, u2} of π = 〈v, w〉 and writing v = viui and w = wiui, we get

Pec(v, w) = P (viui, w
juj , v

kuk, w
lul)

1
2(g ? g)(viui, wjuj , vkuk, wlul)

=
P (u1, u2, u1, u2)

(
(v1)2(w2)2 + (v2)2(w1)2 − 2v1v2w1w2)

1
2(g ? g)(u1, u2, u1, u2)

(
(v1)2(w2)2 + (v2)2(w1)2 − 2v1v2w1w2)

= P (u1, u2, u1, u2)
1
2(g ? g)(u1, u2, u1, u2)

= Pec(u1, u2) .

Remark 1.3.5. Since P is symmetric, the operator P is self–adjoint and can be diago-
nalised.

Definition 1.3.6. We say that P ∈ F4(V ) is simple if so is a basis of eigenvectors of P ,
i.e., there exist vectors {xi, yi}n

i=1 such that {xi ∧ yj}i,j is an eigenbasis for P .
We say that P is pure if it is simple and {xi, yj}i,j is an orthonormal basis of V .

Remark 1.3.7. If h, k ∈ S2(V ∗) then h?k ∈ C4(V ). In fact, for h?k properties (i)-(ii)-
(iii) in Definition 1.3.3 are easily checked and

(h? k)(x, y, z, w) + (h? k)(z, x, y, w) + (h? k)(y, z, x, w)
= h(x, z)k(y, w) + h(y, w)k(x, z) − h(x,w)k(y, z) − h(y, z)k(x,w)

+ h(z, y)k(x,w) + h(x,w)k(z, y) − h(z, w)k(x, y) − h(x, y)k(z, w)
+ h(y, x)k(z, w) + h(z, w)k(y, x) − h(y, w)k(z, x) − h(z, x)k(y, w)

= 0 .

We would now like to compute the dimension of C4(V ).
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Definition 1.3.8. We define the Bianchi map b : F4(V ) → Λ4(V ∗) as

b(A)(x, y, z, w) = 1
3 [A(x, y, z, w) +A(z, x, y, w) +A(y, z, x, w)] ,

for every x, y, z, w ∈ V .

Remark 1.3.9. We recall that Λ4(V ∗) ⊆ F4(V ) ⊆ T 0
4 (V ).

Proposition 1.3.10. The Bianchi map is well–defined, self–adjoint,

ker(b) = C4(V ) , im(b) = Λ4(V ∗) and F4(V ) = C4(V ) ⊕⊥ Λ4(V ∗) .

Remark 1.3.11. If n ∈ {2, 3} then F4(V ) = C4(V ), indeed by the symmetry properties
of the algebraic curvature tensors the Bianchi identity in these dimensions is identically
zero.

Proof. Let x, y, z, w ∈ V and A,B ∈ F4(V ), then in any basis of V

g
(
A, b(B)

)
= Aijklb(B)ijkl

= 1
3A

ijkl(Bijkl +Bkijl +Bjkil)
= 1

3(AijklBijkl +AijklBkijl +AijklBjkil)
= 1

3(AijklBijkl +AjkilBijkl +AkijlBijkl)
= 1

3(Aijkl +Akijl +Ajkil)Bijkl

= g(A)ijklBijkl

= g
(
b(A), B

)
,

hence, the Bianchi map is g–self–adjoint.
To check that b(A) belongs to Λ4(V ∗) we first notice that

b(A)(x, y, z, w) = b(A)(z, x, y, w) = b(A)(y, z, x, w) , (1.14)

then

b(A)(w, x, y, z) = 1
3 [A(w, x, y, z) +A(y, w, x, z) +A(x, y, w, z)]

= 1
3 [−A(y, z, x, w) −A(z, x, y, w) −A(x, y, z, w)]

= −b(A)(x, y, z, w) . (1.15)

and

b(A)(x, x, z, w) = 1
3 [A(x, x, z, w) +A(z, x, x, w) +A(x, z, x, w)]

= 1
3 [A(z, x, x, w) −A(z, x, x, w)]

= 0 . (1.16)

Then, from equation (1.14) and (1.16), we have

b(A)(x, x, z, w) = b(A)(z, x, x, w) = b(A)(x, z, x, w) = 0

and finally, by using equation (1.15), we also obtain

b(A)(x, y, z, x) = b(A)(y, x, z, x) = b(A)(y, z, x, x) = 0 ,
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hence, b(A) ∈ Λ4(V ∗).
Clearly ker(b) = C4(V ). To see that the map b is a projection onto Λ4(V ∗), we consider
A ∈ Λ4(V ∗) and evaluate

b(A)(x, y, z, w) = 1
3

[A(x, y, z, w) +A(z, x, y, w) +A(y, z, x, w)]

= 1
3

[A(x, y, z, w) +A(x, y, z, w) +A(x, y, z, w)]

= A(x, y, z, w) ,

thus im(b) = Λ4(V ∗) and b2(A) = b(A) for every A ∈ F4(V ).
As a consequence A ∈ F4(V ) can be decomposed in A =

(
A − b(A)

)
+ b(A) with

A− b(A) ∈ ker(b) since b
(
A− b(A)

)
= b(A) − b(A) = 0.

If A ∈ ker(b) and B = b(C) ∈ im(b) then

g(A,B) = g
(
A, b(C)

)
= g(b(A), C) = 0

and F4(V ) = ker(b) ⊕⊥ im(b) = C4(V ) ⊕⊥ Λ4(V ∗).

Proposition 1.3.12. dimC4(V ) = n2(n2 − 1)
12

.

Proof. From S2(Λ2(V )∗) ' F4(V ) = C4(V ) ⊕⊥ Λ4(V ∗) and formulae (1.1) it follows

dim F4(V ) = dimS2(Λ2(V )∗) = n(n− 1)(n2 − n+ 2)
8

(1.17)

and

dimC4(V ) = dim F4(V ) − dim Λ4(V ∗)

= n(n− 1)(n2 − n+ 2)
8

− n(n− 1)(n− 2)(n− 3)
24

= n2(n2 − 1)
12

.

We will now establish some relations between a tensor P and its traces Pic and P.
Let v, w be two independent vectors and choose an orthonormal basis {ei}n

i=1. We have

Pic(v, w) =
n∑

i=1
P (ei, v, ei, w) ,

Pic(v, v) =
n∑

i=1
P (ei, v, ei, v) =

n∑
i=1

Pec(v, ei) · 1
2(g ? g)(v, ei, v, ei) , (1.18)

and observe that by choosing {ei}n
i=2 so that they complete {v/|v|} to an orthonormal

basis of V , expression (1.18) reduces to

Pic(v, v) = |v|2
n∑

i=2
Pec(v, ei) .

Writing P̃ec(v, w) = Pec(v, w)· 1
2(g?g)(v, w, v, w) and choosing a complete orthonormal

basis {ei}n
i=i, from equality (1.18) we obtain

Pic(v, w) = 1
2

n∑
i=1

[
P̃ec(v + w, ei) − P̃ec(v, ei) − P̃ec(w, ei)

]

21



1.3. ALGEBRAIC CURVATURE TENSORS

and
P =

n∑
i,j=1

P (ei, ej , ei, ej) =
n∑

i,j=1
i 6=j

Pec(ei, ej) = 2
n∑

i,j=1
i<j

Pec(ei, ej) , (1.19)

which shows that we can express Pic and P through Pec.

Proposition 1.3.13. If for P, P ′ ∈ C4(V ) we have Pec = Pec′, then P = P ′.

Proof. First notice that

P (x+ z, y, x+ z, y) = P (x, y, x, y) + P (z, y, z, y) + 2P (x, y, z, y) ,

thus any term as P (x, y, z, y) with at least one repetition can be obtained by combining
sectional curvatures. Then we evaluate

P (x+ z, y + w, x+ z, y + w)
= 2[P (x, y, z, w) + P (x,w, z, y)]

+ 2[P (x, y, z, y) + P (x, y, x, w) + P (x,w, z, w) + P (z, y, z, w)]
+ P (x, y, x, y) + P (x,w, x, w) + P (z, y, z, y) + P (z, w, z, w) ,

P (x+ w, y + z, x+ w, y + z)
= 2[P (x, y, w, z) + P (x, z, w, y)]

+ 2[P (x, y, w, y) + P (x, y, x, z) + P (x, z, w, z) + P (w, y, w, z)]
+ P (x, y, x, y) + P (x, z, x, z) + P (w, y, w, y) + P (w, z, w, z) .

From the two equalities, we get{
P (x, y, z, w) + P (x,w, z, y) = A

P (x, y, w, z) + P (x, z, w, y) = B

where A and B can be expressed in terms of sectional curvatures. Then, by means of the
Bianchi identity, one can solve the system, obtaining

P (x, y, z, w) = 1
3

(A−B) ,

which proves the result. We underline that expanding also P (x+ y, z +w, x+ y, z +w)
does not provide a new independent equation; it is necessary to use the Bianchi identity
in order to conclude the argument.

The explicit formula for P (x, y, z, w) is then

P (x, y, z, w) = 1
6

{
P̃ec(x+ z, y + w) − P̃ec(x+ w, y + z)

+ P̃ec(x+ w, y) + P̃ec(x, y + z) + P̃ec(x+ w, z) + P̃ec(w, y + z)

− P̃ec(x+ z, y) − P̃ec(x, y + w) − P̃ec(x+ z, w) − P̃ec(z, y + w)

+ P̃ec(x,w) + P̃ec(y, z) − P̃ec(x, z) − P̃ec(y, w)
}
,

with P̃ec(x, y) = P (x, y, x, y) = Pec(x, y) · 1
2(g ? g)(x, y, x, y) .

Lemma 1.3.14. If Pec is constant over all 2–planes, that is, Pec = K , then P = K
2 g ? g.

Proof. The two algebraic curvature tensors P and K
2 g ? g have the same associated sec-

tional curvatures, hence they coincide.
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Dimension 2. If n = 2 then dimC4(V ) = 22(22 − 1)/12 = 1 so it should in principle
be possible to express P ∈ C4(V ) in terms of its complete trace P, indeed taking an
orthonormal basis {e1, e2} of the unique 2–plane in V (which is V itself) we get

P (e1, e2, e1, e2) = Pec(e1, e2) = 1
2

P

which is the only value of P required to describe it, as all other values are either 0, equals
to it, or to its opposite. Then, as a consequence of the previous lemma, we get

P = P
4
g ? g ,

hence,
C4(V ) = 〈g ? g〉 .

Before discussing dimensions 3 and higher, let us take a closer look at the properties
of the Kulkarni–Nomizu product.

Proposition 1.3.15. Ifα ∈ R, h, k ∈ S2(V ∗) andP ∈ F4(V ), then the following equalities
hold:

(i) h? k = k ? h ;

(ii) αh? k = h? αk = α(h? k) ;

(iii) tr1,3(h? g) = (trh)g + (n− 2)h ;

(∗) tr1,3(g ? g) = 2(n− 1)g ;

(iv) tr tr1,3(h? g) = 2(n− 1) trh ;

(∗) tr tr1,3(g ? g) = 2n(n− 1) ;

(v) g(h? g, P ) = 4g(h,Pic) ;

(∗) g(h? g, g ? g) = 8(n− 1) trh ;
(∗∗) |h? g|2 = 4

(
(n− 2)|h|2 + (trh)2) ;

(∗ ∗ ∗) |g ? g|2 = 8n(n− 1) ;

(vi) |h? k|2 = 4
(
|h|2|k|2 +

(
g(h, k)

)2 − 2
(
g(h2, k2)

)2)
,

where for a tensor p ∈ S2(V ∗), we define p2 = tr2,3(p⊗ p), i.e., (p2)ij = pikg
klplj .

Remark 1.3.16. Property (v) may be interpreted by saying that the operators P 7→ 4 Pic
and h 7→ h? g between S2(V ∗) and F4(V ) are g–adjoint.

Remark 1.3.17. If trh = 0 then tr tr1,3(h? g) = 0 and (h? g) ⊥ (g ? g).

Proof of Proposition 1.3.15. Properties (i) and (ii) are straightforward. Computing in any
basis

tr1,3(h? g)jl = (h? g)i
jil

= hi
igjl + hjlg

i
i − hi

lgji − hjig
i
l

= (trh)gjl + hjl(tr g) − hlj − hjl

= (trh)gjl + (n− 2)hjl ,
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gives relations (iii), (iii)∗, (iv) and (iv)∗.
Now we evaluate

g(h? g, P ) = (h? g)ijklPijkl

= (hikgjl + hjlgik − hilgjk − hjkgil)Pijkl

= hik(tr1,3 P )ik + hjl(tr2,4 P )jl − hil(tr2,3 P )il − hjk(tr1,4 P )jk

= hik Picik +hjl Picjl +hil Picil +hjk Picjk

= 4g(h,Pic) ,

which is (v) and also implies equalities (v)∗ and (v)∗∗, as

g(h? g, g ? g) = 4g
(
h, tr1,3(g ? g)

)
= 8(n− 1)g(h, g) = 8(n− 1) trh ,

|h? g|2 = g(h? g, h? g) = 4g
(
h, tr1,3(h? g)

)
= 4

(
(trh)g(h, g) + (n− 2)g(h, h)

)
= 4

(
(trh)2 + (n− 2)|h|2

)
and similarly for (v)∗∗∗. Finally, about formula (vi), we compute in an orthonormal basis
{ei}n

i=1,

|h? k|2 =
n∑

i,j,k,l=1

(
(h? k)ijkl

)2
=

n∑
i,j,k,l=1

(hikkjl + hjlkik − hilkjk − hjkkil)2

=
n∑

i,j,k,l=1
(h2

ikk
2
jl + h2

jlk
2
ik + h2

ilk
2
jk + h2

jkk
2
il)

+ 2
n∑

i,j,k,l=1
(hikkjlhjlkik + hilkjkhjkkil)

− 2
n∑

i,j,k,l=1
(hikkjlhilkjk + hikkjlhjkkil + hjlkikhilkjk + hjlkikhjkkil)

= 4
n∑

i,j,k,l=1
h2

ijk
2
kl + 4

n∑
i,j,k,l=1

hijkijhklkkl − 8
n∑

i,j,k,l=1
hijhjkkilklk

= 4
(
|h|2|k|2 +

(
g(h, k)

)2 − 2
(
g(h2, k2)

)2)
.

Dimension 3. If n = 3 then dimC4(V ) = 32(32 − 1)/12 = 6 = 3(3 + 1)/2 =
dimS2(V ∗) so it should again be possible in principle to express P ∈ C4(V ) in terms of
its (1, 3)–trace Pic. Take indeed any 2–plane π expressed using an orthonormal basis by
π = 〈e1, e2〉 and add a vector {e3} so that {e1, e2, e3} is an orthonormal basis of V . Then,

Pic(e1, e1) = Pec(e1, e2) + Pec(e1, e3) ,
Pic(e2, e2) = Pec(e1, e2) + Pec(e2, e3) ,
Pic(e3, e3) = Pec(e1, e3) + Pec(e2, e3) ,

hence, solving in terms of Pec(e1, e2), which is the sectional curvature of π, we have

Pec(e1, e2) = Pic(e1, e1) + Pic(e2, e2) − Pic(e3, e3) .
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Thus, any sectional curvature can be obtained through Pic, hence, it determines the ten-
sor P .

To get an explicit formula of P in terms of Pic and g, the idea is to orthogonally
decompose P applying “successive divisions” by g, that is, finding a and B such that

P = ag ? g +B ? g (1.20)

with trB = 0, so that ag ? g ⊥ B ? g (Remark 1.3.17).
Suppose that formula (1.20) is correct, then using formulae in Proposition 1.3.15 we com-
pute

Pic = tr1,3 P = a tr1,3(g ? g) + tr1,3(B ? g) = 2a(n− 1)g + (n− 2)B ,
P = tr Pic = 2an(n− 1) ,

hence, 
a = P

2n(n− 1)

B = 1
n− 2

(
Pic −P

n
g

)
= 1
n− 2

◦
Pic

giving the formula
P = P

2n(n− 1)
g ? g + 1

n− 2
◦

Pic ? g , (1.21)

and since we are in dimension n = 3,

P = P
12
g ? g +

◦
Pic ? g . (1.22)

Formula (1.22) does constitute a valid decomposition formula for P in terms of g and Pic.
Consider indeed the tensor

W = P − P
12
g ? g −

◦
Pic ? g ,

by construction we have tr1,3W = 0 and since W ∈ C4(V ), every trace tri,j W = 0,
i, j ∈ {1, 2, 3, 4}, i 6= j. In dimension n = 3 this must imply W = 0, in fact, in an
orthonormal basis {e1, e2, e3},

W1212
(tr1,3=0)= −W3232

(tr2,4=0)= W3131
(tr1,3=0)= −W2121 = −W1212 =⇒ W1212 = 0 ,

W1213
(tr1,3=0)= −W2223 −W3233 = 0 ,

thus,Wijkl = 0 for every i, j, k, l ∈ {1, 2, 3}.

General Case. If n ≥ 4 there actually exist nontrivial completely trace–free tensors
W ∈ C4(V ), hence equation (1.21) is not always valid. We define neverthelessWP as the
completely trace–free component of P as

WP := P − P
2n(n− 1)

g ? g − 1
n− 2

◦
Pic ? g .

This gives the decomposition formula

P = P
2n(n− 1)

g ? g + 1
n− 2

◦
Pic ? g +WP ,
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which again is an orthogonal decomposition of P , indeed as before g(g? g,
◦

Pic ? g) = 0,
since tr

◦
Pic = 0 and

g(h? g,WP ) = g(h, tr1,3WP ) = 0 for all h ∈ S2(V ∗) .

Definition 1.3.18. CallW aWeyl tensor on V ifW ∈ C4(V ) and is completely trace–free,
i.e., tr1,3W = 0. We denote by W4(V ) the set of all Weyl tensors on V .

Definition 1.3.19. We denote by S2
0(V ∗) the set of trace–free symmetric bilinear forms

on V .

Remark 1.3.20. If n = 2 thenS2
0(V ∗)?g = 0, despiteS2

0(V ∗) being nontrivial, due to the
high amount of constrictions on C4(V ). Let indeed h ∈ S2

0(V ∗), then in an orthonormal
basis {e1, e2} we have

(h? g)1212 = h11g22 + h22g11 − h12g21 − h21g12 = h11 + h22 = trh = 0 ,

so h? g = 0. However, if n ≥ 3 the map S2(V ∗) 3 h 7→ h? g ∈ C4(V ) is injective; let
indeed h? g = 0, then

0 = |h? g|2 = 4
(
(n− 2)|h|2 + (trh)2) ,

which implies h = 0, since n > 2.

Remark 1.3.21. There holds

|
◦

Pic|2 =
∣∣∣∣Pic −P

n
g

∣∣∣∣2 = |Pic|2 + P2

n2 |g|2 − 2P
n
g(Pic, g) = |Pic|2 − P2

n
.

All the previous results can be summarised in the following decomposition theorem.

Theorem 1.3.22. Let (V, g) be a real n-dimensional vector space with scalar product g. The
following decomposition formula holds:

C4(V ) = 〈g ? g〉 ⊕⊥ S2
0(V ∗) ? g ⊕⊥ W4(V ) ,

where if n = 1 all spaces are trivial.
If n = 2, then S2

0(V ∗) ? g and W4(V ) are trivial and every P ∈ C4(V ) can be decomposed
as

P = P
4
g ? g , (1.23)

hence,

|P | = |P|
4

|g ? g| = |P| .

If n = 3, then W4(V ) is trivial and every P ∈ C4(V ) can be decomposed as

P = P
12
g ? g +

◦
Pic ? g ,

hence,

|P |2 = P2

144
|g ? g|2 + |

◦
Pic ? g|2 = 1

3
P2 + 4|

◦
Pic|2 = 4|Pic|2 − P2 .
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If n ≥ 4 all spaces are nontrivial and every P ∈ C4(V ) can be decomposed as

P = P
2n(n− 1)

g ? g + 1
n− 2

◦
Pic ? g +WP , (1.24)

hence,

|P |2 = P2

4n2(n− 1)2 |g ? g|2 + 1
(n− 2)2 |

◦
Pic ? g|2 + |WP |2

= 2
n(n− 1)

P2 + 4
n− 2

|
◦

Pic|2 + |WP |2

= |WP |2 + 4
n− 2

|Pic|2 − 2
(n− 1)(n− 2)

P2 .

From equation (1.24), using
◦

Pic = Pic −Pg/n, for n ≥ 3 we also get the orthogonal
decomposition C4(V ) = S2(V ∗) ? g ⊕⊥ W4(V ) with

P = 1
n− 2

(
Pic − P

2(n− 1)
g

)? g +WP .

Definition 1.3.23. If n ≥ 3, we denote by

SP = 1
n− 2

(
Pic − P

2(n− 1)
g

)
the Schouten tensor of P .
We set SP := 0 for any P , if n ∈ {1, 2}.

Then, for n ≥ 3 we also have the decomposition

P = SP ? g +WP .

Remark 1.3.24. The dimensions of the spaces involved in the decomposition formula are
given by

dim〈g ? g〉 = dimR = 1 ,

dimS2
0(V ∗) = dimS2(V ∗) − dim〈g ? g〉 = (n+ 2)(n− 1)

2

and, for n ≥ 3,

dim W4(V ) = dimC4(V ) − dimS2(V ∗) = n(n+ 1)(n+ 2)(n− 3)
12

.

Let us now discuss the purity of the Riemann tensor.
We recall that if {ei}n

i=1 is an orthonormal basis ofV , then {ei∧ej}n
i<j=1 is an orthonormal

basis of Λ2(V ) with respect to 1
2g; take indeed i < j and k < l, then

1
2g(ei ∧ ej , ek ∧ el) = g(ei, ek)g(ej , el) − g(ei, el)g(ej , ek) = δikδjl − δilδjk

and it easily follows that the scalar product is 1 if and only if (i, j) = (k, l) and 0 otherwise.
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Remark 1.3.25. Any symmetric form h ∈ S2(V ∗) defines an adjoint operator h by

h(v, w) = g(h(v), w) for v, w ∈ V ,

such that the eigenvalue relation h(e) = λe is equivalent to

h(e, w) = λg(e, w) , for every w ∈ V .

Lemma 1.3.26. Let h ∈ S2(V ∗) and call h andH the operators defined by linear extension
from

h(v, w) = g(h(v), w)
(h? g)(x, y, z, w) = 1

2g(H (x ∧ y), z ∧ w)
for v, w ∈ V ,

for x, y, z, w ∈ V .

If {ei}n
i=1 is an orthonormal eigenbasis of h then {ei ∧ ej}n

i<j=1 is an eigenbasis of H .

Proof. Let h(ei) = λiei, we consider i < j, k < l and evaluate

(h? g)ijkl = hikgjl + hjlgik − hilgjk − hjkgil

= λigikgjl + λjgjlgik − λigilgjk − λjgjkgil

= (λi + λj)1
2(g ? g)ijkl .

Thus, by Remark 1.3.25 (with the metric 1
2g), we obtain

H (ei ∧ ej) = (λi + λj)(ei ∧ ej) .

Lemma 1.3.27. Let P ∈ C4(V ) and {ei}n
i=1 an orthonormal basis of V , we call c, C and

W the operators defined by linear extension from

Pic(v, w) = g(c(v), w)
(Pic ?g)(x, y, z, w) = 1

2g(C (x ∧ y), z ∧ w)
WP (x, y, z, w) = 1

2g(W (x ∧ y), z ∧ w)

for v, w ∈ V ,

for x, y, z, w ∈ V ,

for x, y, z, w ∈ V .

Then {ei ∧ ej}n
i<j=1 is an eigenbasis of P if and only if it is an eigenbasis of C and W .

Proof. Clearly, any such eigenbasis of C and W is an eigenbasis of P , by the decompo-
sition (1.24) (as it is also an eigenbasis of the form associated to 1

2(g ? g)). By the same
formula, any such eigenbasis of P and C is an eigenbasis of W . Hence, by Lemma 1.3.26,
it is only necessary to prove that {ei}n

i=1 is an eigenbasis of c.
We let P(ei ∧ ej) = λij(ei ∧ ej) and evaluate

Picij =
n∑

k=1
k 6=i

Pkikj =
n∑

k=1
k 6=i

λki
1
2(g ? g)kikj =

( n∑
k=1
k 6=i

λki

)
gij ,

Thus, by Remark 1.3.25, we obtain

c(ei) =
( n∑

k=1
k 6=i

λki

)
ei .
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Theorem 1.3.28. IfWP = 0 then P is pure; i.e., there exists an eigenbasis {ei ∧ ej}n
i<j=1

of P with {ei}n
i=1 orthonormal basis of V .

Proof. Since c is self–adjoint, it admits an orthonormal eigenbasis {ei}n
i=1 of V . Then, the

result follows from Lemmas 1.3.26 and 1.3.27, as W = 0.

Corollary 1.3.29. In dimension 3 all algebraic curvature tensors P ∈ C4(V ) are pure.

Proof. In dimension 3 there are no nontrivial Weyl tensors.

Remark 1.3.30. TheWeyl tensor of P ∈ C4(V ) is only dependent on the conformal class
of g. Let indeed g̃ = λg, with λ > 0 and denote by

P̃ic = t̃r1,3
P , P̃ = t̃r P̃ic ,

and W̃P the tensor obtained by the decomposition (1.24) such that

P = P̃
2n(n− 1)

g̃ ? g̃ + 1
n− 2

(
P̃ic − P̃

n
g̃

)? g̃ + W̃P .

Since in any basis (g̃ij)n
i,j=1 is the inverse matrix of (g̃ij)n

i,j=1 = (λgij)n
i,j=1, that is, g̃ij =

1
λg

ij , we have

P̃ic = t̃r1,3
P = 1

λ
tr1,3 P = 1

λ
Pic ,

P̃ = t̃r P̃ic = 1
λ

tr P̃ic = 1
λ2 P ,

so

P − W̃P = P̃
2n(n− 1)

g̃ ? g̃ + 1
n− 2

(
P̃ic − P̃

n
g̃

)? g̃

= P/λ2

2n(n− 1)
λg ? λg + 1

n− 2

( 1
λ

Pic −P/λ2

n
λg

)? λg

= P
2n(n− 1)

g ? g + 1
n− 2

(
Pic −P

n
g

)? g

= P −WP

andWP = W̃P .

We end this section by expressing the consequences of the decompositionTheorem 1.3.22
for an n–dimensional Riemannian manifold (M, g) and its Riemann tensor Riem.

The Riemann tensor admits the orthogonal decomposition

Riem = R
4
g ? g if n = 2 ,

Riem = R
12
g ? g +

◦
Ric ? g if n = 3 ,

Riem = R
2n(n− 1)

g ? g + 1
n− 2

◦
Ric ? g + Weyl if n ≥ 4 , (1.25)
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where the Weyl tensor Weyl is an algebraic curvature tensor, completely trace–free (i.e.,
each of its traces is zero).
It follows that |Riem| = |R|, when n = 2 and, for n ≥ 3 (setting Weyl = 0, if n = 3),

|Riem|2 = 4|Ric|2

n− 2
− 2R2

(n− 1)(n− 2)
+ |Weyl|2 = 4|

◦
Ric|2

n− 2
+ 2R2

n(n− 1)
+ |Weyl|2 (1.26)

as
|

◦
Ric|2 = |Ric|2 − R2/n . (1.27)

Moreover, by defining for n ≥ 3 the Schouten tensor S, which is clearly symmetric, as

S = 1
n− 2

(
Ric − R

2(n− 1)
g

)
,

we can also write the orthogonal decomposition as follows,

Riem = S ? g if n = 3 ,
Riem = S ? g + Weyl if n ≥ 4 .

For completeness, we also defineWeyl := 0 ifn ∈ {1, 2, 3},S := 0 ifn = 1 andS := Rg/4
if n = 2. Then, the decomposition

Riem = S ? g + Weyl

holds in every dimension. In local coordinates,

(n− 1)(n− 2)Rijkl = (n− 1)(n− 2)Wijkl − Rgikgjl + Rgilgjk (1.28)
+ (n− 1)(Rikgjl +Rjlgik −Rilgjk −Rjkgil) .

1.4 The Cartan formalism

The formalism we have been using up to now (and that we will continue to use in most
of the dissertation) to deal with the curvature is the standard (global, coordinate–free)
Koszul formalism.15 A (local) alternative consists in describing everything by looking at
the behaviour of a local moving frame, in particular an orthonormal frame. This is the
so–called Cartan formalism.

We work with vectors and matrices having differential forms as entries; such elements
belong to Ωk(M,E), which we call the space of E–valued differential k–forms, with E =
Rn and E = Rn×m, respectively.

In this section indices do not denote tensor components but rather the “position” in amatrix
or vector. The convention of summation over repeated indices is anyway still always adopted.

We extend to these spaces the exterior product through the usual operations between
matrices and vectors, as well as the differential d, as follows,

(η ∧ ζ)i
j := ηi

r ∧ ζr
j and (η ∧ z)i := ηi

r ∧ zr ,

(dη)i
j := dηi

j and (dz)j := dzj ,

for η ∈ Ωk(M,Rn×m), ζ ∈ Ωs(M,Rm×l), z ∈ Ωs(M,Rm), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.
We still denote by |η| = k and |z| = s, the degree of η ∈ Ωk(M,Rn×m) and z ∈
Ωs(M,Rm), respectively.

15After the French mathematician Jean–Louis Koszul (1921–2018) [69].
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Remark 1.4.1. The usual relation α ∧ β = (−1)|α||β|β ∧ α for ordinary forms α and β,
although still valid component–wise, has the following analogue in this setting

(η ∧ ζ)T = (−1)|η||ζ|ζT ∧ ηT ,

for η ∈ Ωk(M,Rn×m), ζ ∈ Ωs(M,Rm×l).
In particular, one should not be surprised to have η ∧ η 6= 0 for some 1–form η.

We nowfix ametric g and a local frame {ei}n
i=1 on an open setU ⊆ M , with associated

coframe {ϑi}n
i=1. Notice that ϑ = (ϑi)n

i=1 may be regarded as an Rn–valued differential
1–form.
Definition 1.4.2. We define the local 1–form ω = (ωi

j)n
i,j=1 and 2–form Ω = (Ωi

j)n
i,j=1

by

∇ej = ωi
j ⊗ ei , (1.29)

Ω = dω + ω ∧ ω , (1.30)

where ∇ is the Levi–Civita connection of the Riemannian manifold (M, g).
We call ω and Ω the (Levi–Civita) connection 1–form and the (Levi–Civita) curvature 2–
form, associated to the frame {ei}n

i=1 in U , respectively.
Remark 1.4.3. Equation (1.29) explicitly defines the 1–form ωi

j as

ωi
j(X) = ϑi(∇Xej) = Γi

kjX
k (1.31)

for any X = Xkek ∈ Γ(TM), where Γi
kj are the Christoffel symbols of ∇ in the local

basis {ei}n
i=1 (notice that they are not necessarily symmetric).

Equation (1.30) is called the second structural equation, the first structural equation be-
ing

dϑ = −ω ∧ ϑ .

They together, {
dϑ = −ω ∧ ϑ ,

dω = Ω − ω ∧ ω ,
(1.32)

are called Cartan structural equations. Once differentiated, they give{
0 = Ω ∧ ϑ ,

dΩ = Ω ∧ ω − ω ∧ Ω ,
(1.33)

which are called the Bianchi identities in the Cartan formalism.

Proof of the first structural equation. Take any two vectors X = Xiei and Y = Y iei then

(∇Xϑ
i)(Y ) = X

(
ϑi(Y )

)
− ϑi(∇XY )

= X(Y i) − ϑi(X(Y j)ej + Y jωs
j (X)es

)
= X(Y i) −X(Y i) − Y jωi

j(X)
= −ωi

j(X)ϑj(Y )

hence, using equation (1.12), we obtain

dϑi(X,Y ) = (∇Xϑ
i)(Y ) − (∇Y ϑ

i)(X)
= −ωi

j(X)ϑj(Y ) + ωi
j(Y )ϑj(X)

= −(ωi
j ∧ ϑj)(X,Y ) .
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Proof of the Bianchi identities. We simply take the differential of both sides of equations (1.32),{
0 = d(−ω ∧ ϑ) ,
0 = d(Ω − ω ∧ ω) ,

then, we have

0 = −dω ∧ ϑ+ ω ∧ dϑ = −Ω ∧ ϑ+ ω ∧ ω ∧ ϑ− ω ∧ ω ∧ ϑ = −Ω ∧ ϑ

and

0 = dΩ − dω ∧ ω + ω ∧ dω
= dΩ − Ω ∧ ω + ω ∧ Ω + ω ∧ ω ∧ ω − ω ∧ ω ∧ ω

= dΩ − Ω ∧ ω + ω ∧ Ω .

We now see how the connection and curvature forms transform under a change of the
local frame.

Proposition 1.4.4 (Transformation laws). Changing to a local frame {ẽi}n
i=1 via a trans-

formation ẽi = f j
i ej , the forms ω and Ω transform according to the relations{

ω̃ = f−1ωf + f−1df ,
Ω̃ = f−1Ωf .

(1.34)

Proof. We compute

∇ẽj = ∇fk
j ek = dfk

j ⊗ ek + fk
j ω

s
k ⊗ es

= dfk
j ⊗ (f−1)i

kẽi + fk
j ω

s
k ⊗ (f−1)i

sẽi

=
(
(f−1)i

kdfk
j + (f−1)i

sω
s
kf

k
j

)
⊗ ẽi ,

showing the relation for ω̃. Then we have

Ω̃ = dω̃ + ω̃ ∧ ω̃

= df−1 ∧ ωf + f−1dωf − f−1ω ∧ df + df−1 ∧ df
+ (f−1ωf + f−1df) ∧ (f−1ωf + f−1df)

= f−1(dω + ω ∧ ω)f + df−1 ∧ (ωf + df) + f−1(− ω + ω + dff−1) ∧ df
+ f−1dff−1 ∧ ωf

= f−1Ωf + df−1 ∧ (ωf + df) − f−1fdf−1 ∧ df − f−1fdf−1 ∧ ωf

= f−1Ωf ,

where we used the identity

dff−1 = d(ff−1) − fdf−1 = −fdf−1 .

This proves also the relation for Ω̃.
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Remark 1.4.5. Restricting ourselves to using only local orthonormal frames implies that
the transformation matrix f is orthogonal. Furthermore, in such frames the forms ω and
Ω are skew–symmetric, that is, ω

i
j = −ωj

i ,

Ωi
j = −Ωj

i .

Taking, indeed, any vector field X one obtains

0 = Xg(ei, ej) = g(∇Xei, ej) + g(ei,∇Xej)
= g

(
ωs

i (X)es, ej
)

+ g
(
ωs

j (X)es, ei
)

= ωj
i (X) + ωi

j(X)

then, the skew–symmetry of Ω follows from equation (1.30), as

Ωj
i = dωj

i + ωj
s ∧ ωs

i = −dωi
j − ωi

s ∧ ωs
j = −Ωi

j .

Remark 1.4.6. We remark that equations (1.32) and (1.33) are a consequence of the sym-
metry and metric compatibility of the Levi–Civita connection, respectively and that they
in general contain extra “error terms” given by the torsion and the covariant derivative of
the metric, for a general connection (see [11]).

Remark 1.4.7. Returning back to the Koszul formalism, the 1–forms ωi
j and 2–forms Ωi

j

are given by {
ωi

j = Γi
kjϑ

k ,

Ωi
j = 1

2R
i
jklϑ

k ∧ ϑl .
(1.35)

and a version of Ω can be globally defined as Ω(v, w) = R(v ∧ w).
Furthermore, the Bianchi identities in equation (1.33) correspond to the standard Bianchi
identities.

Proof of the Koszul relations. We express everything in Koszul formalism, starting with
equation (1.31)

ωi
j(X) = ϑi(∇Xej) = ϑi(XkΓt

kjet) = Γi
kjX

k = Γi
kjϑ

k(X) ,

then with equation (1.30)

∇X∇Y ej = ∇Xω
i
j(Y )ei = Xωi

j(Y )ei + ωi
j(Y )ωk

i (X)ek

which gives

R(X,Y )ej = ∇Y ∇Xej − ∇X∇Y ej − ∇[Y,X]ej

= Y ωi
j(X)ei + ωi

j(X)ωk
i (Y )ek −Xωi

j(Y )ei − ωi
j(Y )ωk

i (X)ek − ωi
j([Y,X])ei

= −dωi
j(X,Y )ei − (ω ∧ ω)k

j (X,Y )ek

= −Ωi
j(X,Y )ei ,

hence,

Ωi
j(X,Y ) = −ϑi(R(X,Y )ej

)
= −XkY lϑi(Rklj

ses) = Ri
jklX

kY l

= 1
2R

i
jkl(ϑk(X)ϑl(Y ) − ϑk(Y )ϑl(X))

= 1
2R

i
jkl(ϑk ∧ ϑl)(X,Y ) .
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Moreover, we recall that

R(ei ∧ ej) =
∑

1≤k<l≤n

Rij
klek ∧ el = 1

2Rij
klek ∧ el ,

by definition.

Proof of the Bianchi relations. By using the symmetries of the Riemann tensor, we have

0 = (Ω ∧ ϑ)i = 1
2R

i
jklϑ

k ∧ ϑl ∧ ϑj

=
∑

1≤j<k<l≤n

(Ri
jkl −Ri

kjl −Ri
lkj)ϑj ∧ ϑk ∧ ϑl

=
∑

1≤j<k<l≤n

(Ri
jkl +Ri

ljk +Ri
klj)ϑj ∧ ϑk ∧ ϑl ,

that is, the first (algebraic) Bianchi identity Ri
jkl +Ri

ljk +Ri
klj = 0.

About the second (differential) Bianchi identity, first we compute

0 = dΩi
j − Ωi

k ∧ ωk
j + ωi

k ∧ Ωk
j

= 1
2dRi

jst ∧ ϑs ∧ ϑt + 1
2R

i
jstdϑs ∧ ϑt − 1

2R
i
jstϑ

s ∧ dϑt

− 1
2R

i
kstϑ

s ∧ ϑt ∧ ωk
j + 1

2R
k

jstϑ
s ∧ ϑt ∧ ωi

k

= 1
2dRi

jst ∧ ϑs ∧ ϑt − 1
2R

i
jstω

s
r ∧ ϑr ∧ ϑt + 1

2R
i
jstϑ

s ∧ ωt
r ∧ ϑr

− 1
2R

i
kstϑ

s ∧ ϑt ∧ ωk
j + 1

2R
k

jstϑ
s ∧ ϑt ∧ ωi

k

= 1
2(dRi

jst +Rr
jstω

i
r −Ri

rstω
r
j −Ri

jrtω
r
s −Ri

jsrω
r
t ) ∧ ϑs ∧ ϑt ,

then, we just observe that the term in parentheses is the expression of ∇rR
i
jstϑ

r , hence,

0 = 1
2∇rR

i
jstϑ

r ∧ ϑs ∧ ϑt

=
∑

1≤r<s<t≤n

(∇rR
i
jst + ∇tR

i
jrs + ∇sR

i
jtr)ϑr ∧ ϑs ∧ ϑt ,

that is, ∇rR
i
jst + ∇tR

i
jrs + ∇sR

i
jtr = 0 and we are done.
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Chapter 2

TheWeyl tensor and LCF
manifolds

In this chapter we introduce the Weyl tensor and show its invariance under conformal
changes. Then, on the converse, we will prove the Weyl–Schouten theorem stating that a
Weyl–flat metric is locally conformal to a flat metric, in dimension at least four.
In dimensions n = 2 and n = 3 the Weyl tensor is trivial, hence, the respective conditions
differ. In particular, every 2–manifold is locally conformally flat, while in dimension n = 3
the role of the Weyl tensor is taken by the Cotton tensor (which in higher dimensions is
proportional to its divergence, hence it is zero if Weyl = 0).

2.1 Transformation rules under a conformal change

Recalling the final part of Section 1.3, we define the Weyl tensor Weyl (or W ) and the
Schouten tensor S of an n–dimensional Riemannian manifold (M, g) as the tensors giving
the decomposition, for n ≥ 4:

Riem = S ? g + Weyl , (2.1)

where, for n ≥ 3
S = 1

n− 2

(
Ric − R

2(n− 1)
g

)
.

We also define, for convenience,W := 0 if n ∈ {1, 2, 3}, S := 0 if n = 1 and S := Rg/4
if n = 2, so that formula (2.1) holds in every dimension.

First, we would like to prove, arguing similarly to Remark 1.3.30, thatW is conformally
invariant; differently from such computation, R̃iem 6= Riem, as in this case Riem also is
dependent on the metric g.

Lemma 2.1.1. If ∇ and ∇̃ are two connections on (M, g), then

T : (X,Y ) 7→ T (X,Y ) = ∇̃XY − ∇XY for X,Y ∈ Γ(TM)

defines a (2, 1)–tensor. If, in addition, ∇ and ∇̃ are torsion–free, then T is symmetric and

R̃(X,Y )Z−R(X,Y )Z = ∇Y T (X,Z)−∇XT (Y, Z)+T
(
Y, T (X,Z)

)
−T

(
X,T (Y, Z)

)
.

Proof. It is sufficient to check the C∞(M)–linearity on the second entry of T ,

T (X, fY ) = ∇̃X(fY )−∇X(fY ) = (Xf)Y +f∇̃XY −(Xf)Y −f∇XY = fT (X,Y ) .
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If ∇ and ∇̃ are torsion–free, then

T (Y,X) = ∇̃Y X − ∇Y X = ∇̃XY − [X,Y ] − ∇XY + [X,Y ] = T (X,Y ) .

We now evaluate

∇̃Y ∇̃XZ = ∇̃Y

(
∇XZ + T (X,Z)

)
= ∇Y ∇XZ + ∇Y

(
T (X,Z)

)
+ T (Y,∇XZ) + T

(
Y, T (X,Z)

)
= ∇Y ∇XZ + ∇Y T (X,Z) + T (∇Y X,Z) + T (X,∇Y Z)

+ T (Y,∇XZ) + T
(
Y, T (X,Z)

)
,

hence,

R̃(X,Y )Z = ∇Y ∇XZ − ∇X∇Y Z − ∇[X,Y ]Z − T ([X,Y ], Z)
+ ∇Y T (X,Z) − ∇XT (Y, Z)
+ T (∇Y X,Z) + T (X,∇Y Z) − T (∇XY, Z) − T (Y,∇XZ)
+ T (Y,∇XZ) − T (X,∇Y Z)
+ T

(
Y, T (X,Z)

)
− T

(
X,T (Y, Z)

)
= R(X,Y )Z + ∇Y T (X,Z) − ∇XT (Y, Z) + T

(
Y, T (X,Z)

)
− T

(
X,T (Y, Z)

)
and we are done.

Definition 2.1.2. A conformal change is a transformation of the metric g 7→ ug on a
manifoldM , with u a positive C∞ function.

Remark 2.1.3. We will always express such a function u in the form u = e2ϕ, with
ϕ ∈ C∞(M), to simplify the computations.

Theorem 2.1.4. Let g̃ = e2ϕg, with ϕ ∈ C∞(M) and denote by ∇̃, Γ̃k
ij , R̃iem, R̃ic, R̃, S̃,

W̃ the associated items. Then, the following relations hold:

(i) Γ̃k
ij = Γk

ij + T k
ij ,

(ii) ∇̃XY = ∇XY + T (X,Y ) ,

(iii) R̃iem = e2ϕ(Riem −A? g) ,

(iv) R̃ic = Ric −∆ϕg − (n− 2)
(

1
2 |∇ϕ|2g +A

)
,

(v) R̃ = e−2ϕ
{

R − 2(n− 1)
(
∆ϕ+ (n− 2)1

2 |∇ϕ|2
)}

,

(vi) S̃ = S −A , if n ≥ 3 and S̃ = S − 1
2∆ϕg , if n = 2,

(vii) W̃ = e2ϕW ,

with
T (X,Y ) = dϕ(X)Y + dϕ(Y )X − g(X,Y )∇ϕ

and
A = ∇2ϕ− dϕ⊗ dϕ+ 1

2 |∇ϕ|2g .
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Proof. By the Christoffel symbols formula (1.11),

Γ̃ijk = 1
2(∂ig̃jk + ∂j g̃ki − ∂kg̃ij)

= 1
2
(
∂i(e2ϕgjk) + ∂j(e2ϕgki) − ∂k(e2ϕgij)

)
= e2ϕ((∂iϕgjk + ∂igjk) + (∂jϕgki + ∂jgki) − (∂kϕgij + ∂kgij)

)
= e2ϕ(Γijk + ∂iϕgjk + ∂jϕgki − ∂kϕgij) ,

thus,

Γ̃k
ij = g̃ksΓ̃ijs = e−2ϕgksΓ̃ijs

= gksΓijs + gks(∂iϕgjs + ∂jϕgsi − ∂sϕgij)
= Γk

ij + ∂iϕδ
k
j + ∂jϕδ

k
i − gij∂

kϕ

= Γk
ij + T k

ij ,

giving relations (i) and (ii).
Now we compute, by means of Lemma 2.1.1 in a normal chart centred at a point p,

e−2ϕR̃iemijkl − Riemijkl

= ∇jTikl − ∇iTjkl + T s
ikTsjl − T s

jkTsil

= ∂jTikl − ∂iTjkl

+ (∂iϕδ
s
k + ∂kϕδ

s
i − δik∂

sϕ)(∂sϕδjl + ∂jϕδsl − δsj∂lϕ)
− (∂jϕδ

s
k + ∂kϕδ

s
j − δjk∂

sϕ)(∂sϕδil + ∂iϕδsl − δsi∂lϕ)
= ∂2

jiϕδkl + ∂2
jkϕδil − ∂2

jlϕδik − ∂2
ijϕδkl − ∂2

ikϕδjl + ∂2
ilϕδjk

+ ∂iϕ∂jϕδkl(1 − 1) + ∂iϕ∂kϕδjl(2 − 1) + ∂iϕ∂lϕδjk(−1 + 0)
+ ∂jϕ∂kϕδil(1 − 2) + ∂jϕ∂lϕδik(0 + 1) + ∂kϕ∂lϕδij(−1 + 1)
− ∂sϕ∂sϕδikδjl + ∂sϕ∂sϕδjkδil

= −(∂2
ikϕδjl + ∂2

jlϕδik − ∂2
jkϕδil − ∂2

ilϕδjk)
+ ∂iϕ∂kϕδjl + ∂jϕ∂lϕδik − ∂iϕ∂lϕδjk − ∂jϕ∂kϕδil

− (∂sϕ∂sϕδikδjl + ∂sϕ∂sϕδjkδil)
= −(∇2ϕ? g)ijkl +

(
(dϕ⊗ dϕ) ? g

)
ijkl

− 1
2 |∇ϕ|2(g ? g)ijkl

= −(A? g)ijkl ,

proving (iii).
Equality (iv) simply follows by relation (iii) and computing

R̃ic = e−2ϕ tr1,3 R̃iem = Ric − tr1,3(A? g) = Ric −(trA)g − (n− 2)A ,

with

trA = tr ∇2ϕ− tr(dϕ⊗ dϕ) + 1
2 |∇ϕ|2 tr g

= ∆ϕ− |∇ϕ|2 + n
2 |∇ϕ|2

= ∆ϕ+ (n− 2)1
2 |∇ϕ|2 .

Similarly for relation (v),

e2ϕR̃ = tr R̃ic = R − 2(n− 1) trA = R − 2(n− 1)
(
∆ϕ+ (n− 2)1

2 |∇ϕ|2
)
.
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For the Schouten tensor in (vi), we let n ≥ 3 and evaluate

S̃ = 1
n− 2

(
R̃ic − R̃

2(n− 1)
g̃

)

= 1
n− 2

(
Ric −(trA)g − (n− 2)A−

e−2ϕ
(
R − 2(n− 1)(trA)

)
2(n− 1)

e2ϕg

)
= S −A ,

then, we can compute the Weyl tensor,

e−2ϕW̃ = e−2ϕ(R̃− S̃ ? g̃) = R−A? g − e−2ϕ(S −A) ? e2ϕg = R− S ? g = W

hence getting (vii).

Remark 2.1.5. As a consequence, the (1, 3)–form of the Weyl tensor is conformally in-
variant, indeed

W̃ l
ijk = W̃ijksg̃

sl = e2ϕWijkse
−2ϕgsl = W l

ijk .

Before introducing the Cotton tensor, we recall the contracted forms of the differential
Bianchi identity.

Proposition 2.1.6. By contracting the differential Bianchi identity (1.13) we obtain

div Riemjkl = ∇k Riclj −∇l Rickj , (2.2)

and contracting again we obtain the so–called Schur’s lemma1,

2 div Ric = dR . (2.3)

Definition 2.1.7. A symmetric (0, 2)–tensor B is called Codazzi2 if the tensor ∇B is
completely symmetric, that is,

∇XB(Y, Z) − ∇Y B(X,Z) = 0 .

The Cotton tensor is defined as

C(X,Y, Z) = ∇XS(Y, Z) − ∇Y S(X,Z) .

The Cotton tensor thus “measures” the defect of the Schouten tensor from being a
Codazzi tensor. Explicitly, in local coordinates, we have, if n ≥ 3,

Cijk = 1
n− 2

(
∇i Ricjk −∇j Ricik − 1

2(n− 1)
(∂iRgjk − ∂jRgik)

)
,

and we set C := 0, if n ∈ {1, 2}.
We observe that, immediately from its definition and the symmetry of the Schouten tensor,
the Cotton tensor satisfies

• Cijk + Cjik = 0 ,

• Cijk + Cjki + Ckij = 0 .
1After the Russian mathematician Issai Schur (Иса́й Шур, 1875–1941) [70].
2After the Italian mathematician Delfino Codazzi (1824–1873) [71].
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Hence, like the Weyl tensor, the Cotton tensor is completely trace–free. Indeed, if n ≥ 3,
we have

Ci
ji = 1

n− 2

(
∇i Ricji −∇j Rici

i − 1
2(n− 1)

(∂iRgji − ∂jRgi
i)
)

= 1
n− 2

(
div Ricj −∂jR − 1

2(n− 1)
(∂jR − n∂jR)

)
= 1
n− 2

(
div Ricj −1

2
∂jR

)
= 0 ,

by Schur’s lemma, formula (2.3) and Cji
i = −Ci

ij − Ci
ji = 0 as Ci

ij = 0.

Remark 2.1.8. If B is a Codazzi tensor, then divB = d trB (that is, “tr ∇B = ∇ trB”),
as

∇jBji = ∇iB
j
j = ∂i trB .

In general, the Cotton tensor is nontrivial, hence the Schouten tensor is not necessarily
Codazzi. Despite that, it still satisfies

divS = d trS ,

indeed,

trS = 1
n− 2

(
tr Ric − 1

2(n− 1)
R tr g

)
= 1
n− 2

(
R − n

2(n− 1)
R
)

= 1
2(n− 1)

R

and using Schur’s lemma, formula (2.3),

divS = 1
n− 2

(
div Ric − 1

2(n− 1)
div(Rg)

)
= 1
n− 2

(1
2

dR − 1
2(n− 1)

dR
)

= 1
2(n− 1)

dR . (2.4)

If n ≥ 4 the Cotton tensor is directly related to the Weyl tensor as follows.

Theorem 2.1.9. There holds the relation

divWjkl = (n− 3)Cklj . (2.5)

Proof. The equality is trivial if n ∈ {1, 2, 3}. We let n ≥ 4 and we first compute in general

div(h? g)jkl = ∇i(hikgjl + hjlgik − hilgjk − hjkgil)
= ∇ihikgjl + ∇ihjlgik − ∇ihilgjk − ∇ihjkgil

= ∇ihikgjl − ∇ihilgjk + ∇khjl − ∇lhjk

= div hkgjl − div hlgjk + ∇khjl − ∇lhjk ,

hence, from equation (2.4) and the definition of the Cotton tensor,

div(S ? g)jkl = divSkgjl − divSlgjk + ∇kSjl − ∇lSjk

= 1
2(n− 1)

(∂kRgjl − ∂lRgjk) + Ckjl . (2.6)
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Then, by equations (2.2) and (2.6), we conclude

divWjkl = div Riemjkl − div(S ? g)jkl

= ∇k Riclj −∇l Rickj −Ckjl − 1
2(n− 1)

(∂kRgjl − ∂lRgjk)

= (n− 2)Cklj − Cklj + 1
2(n− 1)

(∂kRglj − ∂lRgkj − ∂kRglj + ∂lRgkj)

= (n− 3)Cklj .

Remark 2.1.10. It is worth computing here the divergence of the Cotton tensor, which is
the “double divergence” of the Weyl tensor, for n ≥ 3,

divCij = 1
2(n− 1)(n− 2)

(
2(n−1)(RikjlR

kl−RikR
k
j +∆Rij)−∆Rgij −(n−2)∇ijR

)
.

(2.7)
Indeed, using equation (2.4) and the definition of the Schouten tensor, we have

∇kCkij = ∇k
kSij − ∇kiS

k
j

= ∆Sij − ∇ikS
k
j +Rik

klSlj +RikjlS
kl

= ∆Sij − 1
2(n− 1)

∇ijR −RikS
k
j +RikjlS

kl

= 1
n− 2

∆Rij − 1
2(n− 1)(n− 2)

∆Rgij − 1
2(n− 1)

∇ijR

− 1
n− 2

RikR
k
j + 1

2(n− 1)(n− 2)
RRij + 1

n− 2
RikjlR

kl − 1
2(n− 1)(n− 2)

RRij

= 1
n− 2

∆Rij − 1
2(n− 1)(n− 2)

∆Rgij − 1
2(n− 1)

∇ijR

− 1
n− 2

RikR
k
j + 1

n− 2
RikjlR

kl .

Remark 2.1.11. As a consequence of Theorem 2.1.9, if n ≥ 4 and W = 0, then C = 0.
This is, however, not necessarily true if n = 3.

Theorem 2.1.12. Let g̃ = e2ϕg, as in Theorem 2.1.4, then

C̃(X,Y, Z) = C(X,Y, Z) −W (X,Y, Z,∇ϕ) ,
C̃ijk = Cijk −W l

ijk∂lϕ ,

for all X,Y, Z ∈ Γ(TM).

Remark 2.1.13. If n = 3 this clearly shows that the Cotton tensor is conformally invari-
ant.

Proof of Theorem 2.1.12. If n ∈ {1, 2} all tensors are trivial, thus we let n ≥ 3. We recall
that the transformation formula for the Schouten tensor and the Levi–Civita connection
under the conformal change g 7→ g̃ = e2ϕg, are given by

S̃ = S −A ,

∇̃XY = ∇XY + T (X,Y ) ,
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where

Aij = ∇i∂jϕ− ∂iϕ∂jϕ+ 1
2 |∇ϕ|2gij ,

T k
ij = ∂iϕδ

k
j + ∂jϕδ

k
i − gij∂

kϕ .

Considering local normal coordinates centred at a point p, we compute

∇iAjk = ∇ijkϕ− ∇i(∂jϕ∂kϕ) + 1
2∇i|∇ϕ|2δjk

= ∇2
ij∂kϕ− ∂2

ijϕ∂kϕ− ∂jϕ∂
2
ikϕ+ 1

2∂i|∇ϕ|2δjk ,

hence,

∇iAjk − ∇jAik = ∇2
ij∂kϕ− ∇2

ji∂kϕ− ∂jϕ∂
2
ikϕ+ ∂iϕ∂

2
jkϕ+ 1

2∂i|∇ϕ|2δjk − 1
2∂j |∇ϕ|2δik

= Rijkl∂
lϕ− ∂jϕ∂

2
ikϕ+ ∂iϕ∂

2
jkϕ+ 1

2∂i|∇ϕ|2δjk − 1
2∂j |∇ϕ|2δik ,

then,

T l
ijAlk = (∂iϕδ

l
j + ∂jϕδ

l
i − δij∂

lϕ)(∂2
lkϕ− ∂lϕ∂kϕ+ 1

2 |∇ϕ|2δlk)
= ∂iϕ∂

2
jkϕ+ ∂jϕ∂

2
ikϕ− δij∂

lϕ∂2
lkϕ

− (∂iϕ∂jϕ∂kϕ+ ∂jϕ∂iϕ∂kϕ− δij∂kϕ|∇ϕ|2)
+ 1

2 |∇ϕ|2(∂iϕδjk + ∂jϕδik − ∂kϕδij)
= ∂iϕ∂

2
jkϕ+ ∂jϕ∂

2
ikϕ− δij∂

lϕ∂2
lkϕ− 2∂iϕ∂jϕ∂kϕ

+ 1
2 |∇ϕ|2(∂iϕδjk + ∂jϕδik + ∂kϕδij) .

Finally, we get

C̃ijk − Cijk = ∇̃iS̃jk − ∇̃jS̃ik − ∇iSjk + ∇jSik

= ∇̃i(Sjk −Ajk) − ∇̃j(Sik −Aik) − ∇iSjk + ∇jSik

= ∇jAik − ∇iAjk + T t
ijAtk + T t

ikAjt − T t
jiAtk − T t

jkAit

− T t
ijStk − T t

ikSjt + T t
jiStk + T t

jkSit

= ∇jAik − ∇iAjk + T t
ikAjt − T t

jkAit − T t
ikSjt + T t

jkSit

= −(Rijkl∂
lϕ− ∂jϕ∂

2
ikϕ+ ∂iϕ∂

2
jkϕ+ 1

2∂i|∇ϕ|2δjk − 1
2∂j |∇ϕ|2δik)

+ ∂iϕ∂
2
kjϕ+ ∂kϕ∂

2
ijϕ− δik∂

tϕ∂2
tjϕ− 2∂iϕ∂kϕ∂jϕ

+ 1
2 |∇ϕ|2(∂iϕδkj + ∂kϕδij + ∂jϕδik)

− (∂jϕ∂
2
kiϕ+ ∂kϕ∂

2
jiϕ− δjk∂

tϕ∂2
tiϕ− 2∂jϕ∂kϕ∂iϕ)

− 1
2 |∇ϕ|2(∂jϕδki + ∂kϕδji + ∂iϕδjk)

− (∂iϕδ
t
k + ∂kϕδ

t
i − δik∂

tϕ)Sjt + (∂jϕδ
t
k + ∂kϕδ

t
j − δjk∂

tϕ)Sit

= −Wijkl∂
lϕ− (Sikδjl + Sjlδik − Silδjk − Sjkδil)∂lϕ

− 1
2∂i|∇ϕ|2δjk + 1

2∂j |∇ϕ|2δik − δik∂
tϕ∂2

tjϕ+ δjk∂
tϕ∂2

tiϕ

− ∂iϕSjk − ∂kϕSji + δik∂
tϕSjt + ∂jϕSik + ∂kϕSij − δjk∂

tϕSit

= −Wijkl∂
lϕ− (∂jϕSik + ∂lϕSjlδik − ∂lϕSilδjk − ∂iϕSjk)

− ∂iϕSjk + δik∂
lϕSjl + ∂jϕSik − δjk∂

lϕSil

= −Wijkl∂
lϕ .
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Remark 2.1.14. If n ≥ 4, the result could have been obtained also by using equation (2.5),
indeed

(n− 3)
(
C̃ijk − Cijk

)
= d̃ivW kij − divWkij = e−2ϕgsl∇̃se

2ϕWlkij − gsl∇sWlkij

= gsl(∇sWlkij − T t
slWtkij − T t

skWltij − T t
siWlktj − T t

sjWlkit) − gsl∇sWlkij

+ 2gsl∂sϕWlkij

= −gslWtkij(∂sϕδ
t
l + ∂lϕδ

t
s − gls∂

tϕ) − gslWltij(∂sϕδ
t
k + ∂kϕδ

t
s − gks∂

tϕ)
− gslWlktj(∂sϕδ

t
i + ∂iϕδ

t
s − gis∂

tϕ) − gslWlkit(∂sϕδ
t
j + ∂jϕδ

t
s − gjs∂

tϕ)
+ 2∂lϕWlkij

= −Wtkij(∂tϕ+ ∂tϕ− n∂tϕ) −Wltij(∂lϕδt
k + ∂kϕg

tl − δl
k∂

tϕ)
−Wlktj(∂lϕδt

i + ∂iϕg
tl − δl

i∂
tϕ) −Wlkit(∂lϕδt

j + ∂jϕg
tl − δl

j∂
tϕ)

+ 2∂lϕWlkij

= (n− 2)Wtkij∂
tϕ+ 2∂lϕWlkij

− (Wltij(∂lϕδt
k − δl

k∂
tϕ) +Wlktj(∂lϕδt

i − δl
i∂

tϕ) +Wlkit(∂lϕδt
j − δl

j∂
tϕ)

= nWlkij∂
lϕ

− (Wlkij∂
lϕ−Wktij∂

tϕ+Wlkij∂
lϕ−Wiktj∂

tϕ+Wlkij∂
lϕ−Wjkit∂

tϕ)
= nWlkij∂

lϕ− ∂lϕ(Wlkij −Wklij +Wlkij −Wiklj +Wlkij −Wjkil)
= nWlkij∂

lϕ− 3∂lϕWlkij

= (n− 3)Wlkij∂
lϕ .

2.2 LCF manifolds

Definition 2.2.1. A Riemannian manifold (M, g) is said to be conformally flat if there
exists a positive function u ∈ C∞(M) such that (M,ug) is flat.
A Riemannian manifold is said to be locally conformally flat (or LCF ) if every point has a
conformally flat neighbourhood.

Let us start by observing that speaking of 2–dimensional LCF manifolds is redundant.

Theorem 2.2.2. Any 2–manifold is LCF.

Proof. Let g̃ = e2ϕg for ϕ ∈ C∞(M). Since for n = 2 the curvature is completely deter-
mined by the scalar curvature as Riem = Rg ? g/4, by relation (1.23), fixed some point
p ∈ M , it is enough to show that R̃ = 0 for some function ϕ defined in a neighbourhood
of p.

ByTheorem 2.1.4–(v), there holds R̃ = e−2ϕ(R−2∆ϕ), hence we need to solve locally
the PDE ∆ϕ = R/2. , which in coordinates reads

gij∂2
ijϕ− gijΓk

ij∂kϕ = 1
2

R . (2.8)

This is a uniform elliptic equation with smooth coefficients, which is well known to have
a unique C∞ solution in any smooth domain U compactly contained in the local chart,
once we set a boundary data, let us say ϕ = 0 on ∂U (see [14], for instance).
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Remark 2.1.5 and Theorem 2.1.12 imply that an LCF manifold must have W = 0, if
n ≥ 3 and C = 0, if n = 3. The following theorem proves that these conditions are also
sufficient to be locally conformally flat.
Theorem 2.2.3 (Weyl–Schouten theorem). Let dimM ≥ 3, then (M, g) is LCF if and only
if

• C = 0, if dimM = 3 ,

• W = 0, if dimM ≥ 4 .
Proof. If n = 3 the Cotton tensor is conformally invariant and if n ≥ 4 a (version) of
the Weyl tensor is conformally invariant, hence the conditions are necessary since for the
Euclidean spaces these tensors are both zero.
Now, assuming that the conditions hold, both in the case n = 3 and n ≥ 4, we have
W = C = 0, as if n = 3 this is clearly true simply sinceW = 0, while if n ≥ 4 we have
thatW = 0 implies C = 0, by relation (2.5). Moreover, beingW = 0, the Riemann tensor
simply reads as

Riem = S ? g ,

by the decomposition formula (2.1).
We consider a function ϕ ∈ C∞(M) and set g̃ = e2ϕg, as in Theorem 2.1.4. Imposing

R̃iem = 0 and using relation (v) of the same theorem, we obtain the following equation
that we want to solve locally for ϕ,

0 = R̃iem = e2ϕ(Riem −A? g) = e2ϕ(S ? g −A? g) = e2ϕ(S −A) ? g ,

where A = ∇dϕ− dϕ⊗ dϕ+ 1
2 |dϕ|2g. This then equivalent to S = A, that is,

∇dϕ = S + dϕ⊗ dϕ− 1
2 |dϕ|2g , (2.9)

by Remark 1.3.20, since n ≥ 3 .
To solve equation (2.9) we now show that there exists a smooth 1–form ω solving

∇ω = S + ω ⊗ ω − 1
2 |ω|2g (2.10)

and that such ω is (locally) exact. To see this latter, we set

F (ω) = S + ω ⊗ ω − 1
2 |ω|2g ,

hence equation (2.10) becomes ∇ω = F (ω) and being F (ω) symmetric, we recall equa-
tion (1.12) to notice that a solution of equation (2.10) satisfies

dωij = ∇iωj − ∇jωi = F (ω)ij − F (ω)ji = 0 .

Hence, the solutionω is a closed 1–form, thus locally exact due to the Poincaré Lemma 1.1.18.
In order to deal with the existence point, we suppose again thatω solves equation (2.10)

and compute

∇iF (ω)jk = ∇iSjk + ∇i(ωjωk) − 1
2∇i(ωlωl)gjk

= ∇iSjk + ωj∇iωk + ωk∇iωj − gjkω
l∇iωl

= ∇iSjk + ωjF (ω)ik + ωkF (ω)ij − gjkω
lF (ω)il

= ∇iSjk + ωkF (ω)ij + ωj(Sik + ωiωk − 1
2 |ω|2gik) − gjkω

l(Sil + ωiωl − 1
2 |ω|2gil)

= ∇iSjk + Sikgjlω
l − Silgjkω

l

+ ωkF (ω)ij + ωiωjωk − 1
2 |ω|2ωjgik − |ω|2ωigjk + 1

2 |ω|2ωigjk

= ∇iSjk + Sikgjlω
l − Silgjkω

l

+ ωkF (ω)ij + ωiωjωk − 1
2 |ω|2ωjgik − 1

2 |ω|2ωigjk ,
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hence,

Rijklω
l = ∇2

ijωk − ∇2
jiωk = ∇iF (ω)jk − ∇jF (ω)ik = Cijk + (S ? g)ijklω

l

= Rijklω
l + Cijk −Wijklω

l .

This indicates that W = C = 0 is necessary in order to satisfy equation (2.10). It also
shows how

∇XF (ω)(Y, Z) − ∇Y F (ω)(X,Z) = R(X,Y, Z, ω\) (2.11)

can be obtained by substituting F (ω) to ∇ω whenever it occurs in the computations.
This particular fact makes the condition W = C = 0 also sufficient, by the following
Lemma 2.2.5, which concludes the proof.

Remark 2.2.4. We observe that condition (2.11) resembles, in a Riemannian setting, the
formulation of Frobenius theorem as in Remark 1.1.23. Indeed, considering the overdeter-
mined system of first–order differential equations

∂ωk

∂xj
(x) = Gjk(x, ω(x))

where
Gjk(x, ω(x)) = F (ω)(x)jk + Γl

jk(x)ωl(x) ,

one sees that writing F (ω) in place of ∇ω is equivalent to writing Gjk(x, ω(x)) in place
of ∂jωk(x). This is expressed more formally in the following lemma.

Lemma 2.2.5. Let (M, g) be a Riemannian manifold and consider the equation

∇ω = F (ω) , (2.12)

where F : Γ(T 0
1M) → Γ(T 0

2M) is a C∞ bundle morphism such that the equality

∇̂iFjk − ∇̂jFik = Rijklω
l (2.13)

is satisfied by the quantity

∇̂iFjk := (∇iFjk)(ω) + ∂Fjk

∂ωl
(ω)
(
F (ω)il + Γt

ilωt
)
.

Then, for every p ∈ M and ω0 ∈ TpM
∗ there is a unique solution ω of equation (2.12) in a

connected open set U of p such that ωp = ω0 .

We notice that ∇̂Fjk is “almost equal” to the expression of ∇(F ◦
(
·, ω)

)
, except for

the fact that F (ω) is in place of ∇ω.

Proof of Lemma 2.2.5. Equation (2.12) in a coordinate chart reads

∂jωk(x) = F (ω)(x)jk + Γl
jk(x)ωl(x) =: Gjk

(
x, ω(x)

)
,

and FrobeniusTheorem 1.1.21 guarantees that a unique solution exists, given that the con-
dition

∂Gjk

∂xi
+Gil

∂Gjk

∂ωl
= ∂Gik

∂xj
+Gjl

∂Gik

∂ωl

is satisfied. Let us denote by

∂i := ∂

∂xi
and ∂̂i := ∂

∂ωi
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to compute

∂Gjk

∂xi
+Gil

∂Gjk

∂ωl
− ∂Gik

∂xj
−Gjl

∂Gik

∂ωl

= (∂iFjk + ∂iΓl
jkωl) + (Fil + Γt

ilωt)(∂̂lFjk + Γl
jk)

− (∂jFik + ∂jΓl
ikωl) − (Fjl + Γt

jlωt)(∂̂lFik + Γl
ik)

= ∂iFjk − Γl
ijFlj − Γl

ikFlk − ∂jFik + Γl
ijFlj + Γl

jkFil

+ ∂iΓl
jkωl − ∂jΓl

ikωl + Γt
ilΓl

jkωt − Γt
jlΓl

ikωt

+ ∂̂lFjk(Fil + Γt
ilωt) − ∂̂lFik(Fjl + Γt

jlωt)
= ∇iFjk − ∇jFik + ωl(∂iΓl

jk − ∂jΓl
ik + Γl

itΓt
jk − Γl

jtΓt
ik)

+ ∂̂lFjk(Fil + Γt
ilωt) − ∂̂lFik(Fjl + Γt

jlωt)

= ∇iFjk − ∇jFik −Rijklω
l + ∂̂lFjk(Fil + Γt

ilωt) − ∂̂lFik(Fjl + Γt
jlωt)

= ∇̂iFjk − ∇̂jFik −Rijklω
l

= 0 ,

which proves the lemma.

Remark 2.2.6. The explicit computation that condition (2.13) is satisfied for the function
F in the proof of Theorem 2.2.3 goes as follows,

∇̂iFjk = ∇iFjk + ∂̂lFjk(Fil + Γt
ilωt)

= ∇i(Sjk + ωjωk − 1
2 |ω|2gjk)

+
[
∂̂l(Sjk + ωjωk − 1

2 |ω|2gjk)
]
(Sil + ωiωl − 1

2 |ω|2gil + Γt
ilωt)

= ∇iSjk + ωj∇iωk + ωk∇iωj − gjkω
l∇iωl

+ (ωjδ
l
k + ωkδ

l
j − ωlgjk)(Sil + ωiωl − 1

2 |ω|2gil + Γt
ilωt)

= ∇iSjk − ωjΓt
ikωt − ωkΓt

ijωt + gjkω
lΓt

ilωt

+ Sikωj + Sijωk − Silgjkω
l

+ ωiωjωk + ωiωjωk − |ω|2ωigjk

− (1
2 |ω|2ωjgik + 1

2 |ω|2ωkgij − 1
2 |ω|2ωigjk)

+ Γt
ikωtωj + Γt

ijωtωk − Γt
ilωtω

lgjk

= ∇iSjk + Sikgjlω
l − Silgjkω

l

+ Sijωk + 2ωiωjωk − 1
2 |ω|2(ωjgik + ωkgij + ωigjk) ,

hence,

∇̂iFjk − ∇̂jFik = Cijk + ωl(Sikgjl − Silgjk − Sjkgil + Sjlgik)
= Cijk −Wijklω

l +Rijklω
l

= Rijklω
l .

On an LCF manifold (M, g) of dimension n ≥ 3, the method used in Theorem 2.2.3
implies that one has to fix, for a point p, both ϕ(p) and dϕp in order to guarantee the
uniqueness of the local conformal change u = e2ϕ (because of Poincaré lemma and Frobe-
nius theorem) turning g into the flat metric g̃, in a neighbourhood of p.
Then, one may wonder about uniqueness conditions for a global conformal changemaking
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the metric flat. If dimM = 2, clearly uniqueness cannot be granted, as equation (2.8) on
R2 reads

∆ϕ = 0 ,

which is solved by any harmonic function.
If n ≥ 3 however, the next theorem gives that such uniqueness holds, up to a constant.

Theorem 2.2.7. Let (M, g) be a conformally flat n–dimensional Riemannian manifold with
n ≥ 3. Then any two positive functions u, u′ ∈ C∞(M) such that (M,ug) and (M,u′g) are
flat, are proportional by a positive factor.

Proof. We only need to prove that for a flat manifold such a conformal change can only be
conveyed through multiplication by a positive factor, hence, the conformal change u′/u
turning ug into u′g will have to be a constant. Furthermore, we only need to prove this
for the special case of Rn, as a flat manifold would transfer its nonconstant conformal
change to its universal Riemannian covering, which is Rn (see Theorem 1.2.19), by means
of ũ = u ◦ π : Rn → R, with π : Rn → M the projection map of the covering.
Thus, let us assume g to be the canonical metric on Rn and u = e2ϕ to be a conformal
change that makes e2ϕg flat, then, equation (2.9) on Rn reads

∂2
ijϕ = ∂iϕ∂jϕ− 1

2 |∇ϕ|2δij .

We set f = 1/
√
u = e−ϕ and compute

∂

∂xj
∂if = ∂2

jif = (−∂2
jiϕ+ ∂jϕ∂iϕ)e−ϕ = 1

2 |∇ϕ|2e−ϕδji = |∇f |2

2f
δji ,

so that the function ∂if is only dependent on xi. Setting R 3 xi 7→ Ai(xi) = ∂if(x) ∈ R,
for i ∈ {1, . . . , n}, we observe that the functions Ai have to be linear, as

∂1A1(x1) = . . . = ∂nAn(xn) = |∇f |2

2f
= constant = k ,

so Ai(xi) = kxi + ai for (a1, . . . , an) = a ∈ Rn.
Assuming k 6= 0, we have Ai(−ai/k) = 0 and the contradiction

k = |∇f(−a/k)|2

2f(−a/k)
=
∑n

i=1
[
Ai(−ai/k)

]2
2f(−a/k)

= 0 .

Therefore, k = 0, hence |∇f |2 = 0, f is constant and ϕ and u are constant.
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Chapter 3

The Chern–Gauß–Bonnet theorem

The famous “classical” Gauß–Bonnet theorem for a connected, compact and oriented sur-
face S, without boundary, immersed in the 3–dimensional Euclidean space R3, says that

ˆ
S
K dVS = 2πχ(S) ,

whereK is the Gaußian curvature of S, that is, the determinant of the second fundamental
form, or equivalently, the product of its two eigenvalues (the principal curvatures of the
surface).
Actually, the result holds also for abstract Riemannian surfaces, substituting the Gaußian
curvatureK with R/2 (half the scalar curvature, which coincides withK for an immersed
surface), that is, ˆ

S
R dVS = 4πχ(S) . (3.1)

This formula shows a wonderful relation between the curvature and the topology of the
underlying surface, as the Euler–Poincaré characteristic is an “intrinsic” topological in-
variant. No matter how we deform the surface, we “produce the same amount” of new
negative and positive curvature, as the total curvature (the Gauß–Bonnet integral) has to
stay unaltered.

A generalisation of the theorem to hypersurfaces of even dimensions was given in 1926
by H. Hopf [19], stating that for a connected, compact and oriented n–dimensional mani-
fold M without boundary, embedded in the (n + 1)–dimensional Euclidean space Rn+1,
there holds ˆ

M
K dVM = Vol(Sn)

2
χ(M) = (2π)n/2

(n− 1)!!
χ(M) ,

where K is the Gaußian curvature of the hypersurface (still, the determinant of the sec-
ond fundamental form of the hypersurface). However, even ifK can be expressed in terms
of the curvature tensor of an abstract Riemannian manifold, hence suggesting the state-
ment of the general theorem, Hopf’s proof was “extrinsic”, relying on the existence of
a codimension–one embedding in Rn+1 (we will be more precise and we will discuss
such proof at the end of Section 3.2). It was later shown by C. B. Allendoerfer [2] and
W. Fenchel [13] that any embedding in a Euclidean space of arbitrary codimension was
sufficient, but Nash embedding theorem1 [27] was not yet known at the time (they were
anyway able to get the conclusion also for abstract Riemannian manifolds, by means of a
different technique) and even more importantly, with the words of Michael Spivak [33],

1After the American mathematician John Forbes Nash, Jr. (1928–2015) [72].
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“[…] an intrinsic theorem ought to have an intrinsic proof”. S.–S. Chern provided such a
proof of the right abstract generalisation of the theorem in 1944 [10], showing that

ˆ
M

Pf(Ω) = (2π)n/2χ(M) ,

where Ω is the curvature 2–form of the manifold (in the setting of Cartan formalism) and
Pf(Ω) is its Pfaffian2, which we will define and discuss in the next sections.

Such Pfaffian is equal to a polynomial of order n/2 in the components of the Riemann
curvature tensor, but in practice (because of the complexity in its computation) such an
explicit expression is present in literature only for dimensions two, four and six (up to
our knowledge). In dimension two, one recovers the Gauß–Bonnet formula (3.1) for sur-
faces, while in dimension four (which is relevant for us in view of the discussion about the
Einstein manifolds in the next chapter), there holds

ˆ
M

(
|Riem|2 − 4|Ric|2 + R2

)
dVM = 32π2χ(M)

for every compact oriented 4–dimensional Riemannian manifold (M, g).
Finally, we mention that Chern’s proof inspired a whole new theory of characteristic

classes, which evolved into what is now referred to as Chern–Weil theory3, in light of which
the Chern–Gauß–Bonnet theorem may be written as

ˆ
M
e(E) = χ(E) ,

where e(E) := Pf(ΩE/2π) = Pf(ΩE)/(2π)n/2 is the so–called Euler class of the vector
bundle E over M and ΩE is the curvature 2–form of any metric connection on E. We
refer the interested reader to [24, 28, 33].

3.1 Preliminaries

We introduce some results and technical tools that we need for the proof of the theorem.

Lemma 3.1.1. On every compact Riemannian manifold (M, g) there exists a vector field
X ∈ Γ(TM) with finitely many isolated zeroes.

Proof. It is well known that there exists severalMorse functions on anymanifoldM , that is,
functionswith only nondegenerate critical points p, i.e., such that∇fp = 0 and det ∇2fp 6=
0 (see [4, 25], for instance). It is then clear that they have finitely many isolated critical
points, hence, the field X = ∇f has the required property.

Remark 3.1.2. If X is like above, then X/|X| is a unit vector field on M with finitely
many isolated singularities. We will denote by SM ⊆ Γ(TM) the set of all unit vector
fields onM .

The following two definitions are well–posed (see [29], for instance).
2After the German mathematician Johann Friedrich Pfaff (1765–1825) [73], doctoral advisor of Johann Carl

Friedrich Gauß.
3After Shiing–Shen Chern and the French mathematician André Weil (1906–1998) [74].
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Definition 3.1.3. Wedefine the degree of a smoothmap f : M → N between two oriented
n–dimensional differential manifolds as the number deg(f) satisfying

ˆ
M
f∗ω = deg(f)

ˆ
N
ω (3.2)

for every compactly supported form ω ∈ Ωn(N).

Remark 3.1.4. Comparing equation (3.2) with equation (1.4), it is easy to see that the de-
gree of a diffeomorphism between two connectedmanifolds is±1, with the sign depending
on whether it preserves or reverses the orientation.

Definition 3.1.5. Let X be a vector field on an n–dimensional Riemannian manifoldM
having z ∈ M as isolated zero. Choosing a (small) closed ball B around z such that it
contains no other zeroes ofX and SB ∼= B×Sn−1, we denote by πSn−1 : SB → Sn−1 the
induced projection. We define the index at z of the vector field X as

indz(X) = deg(Sz) ,

where the map Sz : ∂B → Sn−1 is given by Sz(p) = πS
n−1(Xp/|Xp|).

We are then ready to state the Poincaré–Hopf index theorem, whose proof can be found
in [29, 35], for instance.

Theorem 3.1.6 (Poincaré–Hopf index theorem4). Let (M, g) be a compact oriented Rie-
mannian manifold andX a vector field onM with finitely many isolated zeroes z1, . . . , zm,
such that X is “pointing outward” at every point of the boundary ofM , if present. Then,

m∑
i=1

indzi(X) = χ(M) ,

where χ(M) is the Euler–Poincaré characteristic ofM .

We denote by Σn the symmetric group over n elements and with n!! the product of all
the integers from 1 up to n that have the same parity (odd or even) as n, that is, for even n,
the double factorial is n(n− 2)(n− 4) · · · 4 · 2 and for odd n, it is n(n− 2)(n− 4) · · · 3 · 1.
In particular, for n = 2p we have (2p)!! = 2pp!.

Definition 3.1.7. We define the Pfaffian of a skew–symmetric matrix A ∈ Rn×n as

Pf(A) =


1
n!!

∑
σ∈Σn

sgn(σ)
n/2∏
i=1

A
σ(2i−1)
σ(2i) if n is even

0 if n is odd

Theorem 3.1.8. If A,B ∈ Rn×n with A skew–symmetric and B nonsingular then

Pf(BTAB) = det(B) Pf(A) . (3.3)
4After Jules Henri Poincaré and the German mathematician Heinz Hopf (1894–1971) [75].
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Proof. The equality is trivial if n is odd. We let n be even and compute

Pf(BTAB) = 1
n!!

∑
σ∈Σn

sgn(σ)
n/2∏
i=1

(BTAB)σ(2i−1)
σ(2i)

= 1
n!!

∑
σ∈Σn

sgn(σ)
n/2∏
i=1

(BT )σ(2i−1)
s As

tB
t
σ(2i)

= 1
n!!

∑
σ,τ∈Σn

sgn(σ)
n/2∏
i=1

B
τ(2i−1)
σ(2i−1)B

τ(2i)
σ(2i)A

τ(2i−1)
τ(2i)

= 1
n!!

∑
σ,τ∈Σn

sgn(σ)
n/2∏
i=1

B
τ(2i−1)
σ(2i−1)B

τ(2i)
σ(2i)

n/2∏
i=1

A
τ(2i−1)
τ(2i)

= 1
n!!

∑
σ,τ∈Σn

sgn(τ) sgn(σ)
n∏

i=1
B

τ(i)
στ(i)

n/2∏
i=1

A
τ(2i−1)
τ(2i)

= 1
n!!

∑
τ∈Σn

sgn(τ) det(B)
n/2∏
i=1

A
τ(2i−1)
τ(2i)

= det(B) Pf(A) .

We explain the passage from the second to the third line above, where we transformed the
sum over s, t ∈ {1, . . . , n} (for each permutation σ ∈ Σn and i ∈ {1, . . . , n/2}) to the
sum over all permutations τ ∈ Σn. The product is between terms each one consisting of
the n2 summands

∑n
s,t=1B

s
σ(2i−1)A

s
tB

t
σ(2i), hence giving a sum of terms like (with all the

tk distinct each other and the same for the sk)

Bs1
σ(1)A

s1
t1B

t1
σ(2) · · ·Bsn/2

σ(n−1)A
sn/2
tn/2

B
tn/2
σ(n) .

If some tk coincides with sk, then we have no contribution, as Ask
tk

is zero, by the skew–
symmetry of A, while if tk = sm = `, with k 6= m, supposing k < m, the term

sgn(σ)Bs1
σ(1)A

s1
t1B

t1
σ(2) · · ·Bsk

σ(2k−1)A
sk
tk
Btk

σ(2k) · · ·Bsm

σ(2m−1)A
sm
tm
Btm

σ(2m) · · ·Bsn/2
σ(n−1)A

sn/2
tn/2

B
tn/2
σ(n)

which is equal to

sgn(σ)Bs1
σ(1)A

s1
t1B

t1
σ(2) · · ·Bsk

σ(2k−1)A
sk
` B

`
σ(2k) · · ·B`

σ(2m−1)A
`
tm
Btm

σ(2m) · · ·Bsn/2
σ(n−1)A

sn/2
tn/2

B
tn/2
σ(n) ,

is cancelled by

sgn(σ)Bs1
σ(1)A

s1
t1B

t1
σ(2) · · ·Bsk

σ(2k−1)A
sk
tk
Btk

σ(2k) · · ·Bsm

σ(2m−1)A
sm
tm
Btm

σ(2m) · · ·Bsn/2
σ(n−1)A

sn/2
tn/2

B
tn/2
σ(n)

which is equal to

sgn(σ)Bs1
σ(1)A

s1
t1B

t1
σ(2) · · ·Bsk

σ(2k−1)A
sk
` B

`
σ(2m−1) · · ·B`

σ(2k)A
`
tm
Btm

σ(2m) · · ·Bsn/2
σ(n−1)A

sn/2
tn/2

B
tn/2
σ(n) ,

if σ differs from σ only for σ(2m− 1) = σ(2k) and σ(2k) = σ(2m− 1). Indeed, differing
by a single transposition, the two permutations have opposite signs, implying that these
two coincident terms cancel each other in the final sum. It follows that in every product
above, we can assume that t1, . . . , tn/2, s1, . . . , sn/2 are all distinct, hence they must be a
permutation τ of the set {1, . . . , n} and we get the expression at the third line.
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Lemma 3.1.9. Let n be even, then any skew–symmetric matrix A ∈ Rn×n can be written
as

BTAB =



S
. . .

S
0

. . .
0


where B is nonsingular and

S =
(

0 1
−1 0

)
.

The proof is a linear algebra exercise (see [33, Chapter 3, Section 3, Corollary 11]).
We observe that a matrix as above has determinant equal to 1 if there are no zeroes

on the diagonal and it is zero otherwise. Similarly, its Pfaffian is equal to 1 if there are no
zeroes on the diagonal and it is zero otherwise (it can be proved, for example, by induction).

Proposition 3.1.10. For every skew–symmetric matrix A ∈ Rn×n there holds

Pf(A)2 = det(A) .

Proof. If n is odd the equality is trivial, as any skew–symmetric matrix has determinant
equal to zero. Ifn is even, recalling the above observation, the result follows ifA is singular,
hence we assume that A is a nonsingular skew–symmetric matrix. By Lemma 3.1.9 one
has that such a matrix has no zeroes on the diagonal, thus

1 = det

S . . .
S

 = det(BTAB) = det(B)2 det(A)

and, by equation (3.3),

1 = Pf

S . . .
S

 = Pf(BTAB) = det(B) Pf(A)

and we are done.

3.2 Proof of the Chern–Gauß–Bonnet theorem

From now on, we assume that

• (M, g) is a compact oriented Riemannian manifold,

• dimM = 2p, even,

• all the local frames {ei}2p
i=1 that wewill consider are orthonormal and their coframes

{ϑi}2p
i=1 are oriented with respect to the volume form dVM (see Definition 1.1.6 and

equation (1.7)).
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We then recall here some notions of Cartan formalism from Section 1.4. In particular, the
defining equation (1.29) of the connection 1–form ω

∇ej = ωi
j ⊗ ei , (3.4)

the Cartan structural equations (1.32) and the Bianchi identities (1.33){
dϑ = −ω ∧ ϑ

dω = Ω − ω ∧ ω

{
0 = Ω ∧ ϑ

dΩ = Ω ∧ ω − ω ∧ Ω
(3.5)

Moreover, as a consequence of working with orthonormal frames, we have the skew–
symmetry of the connection and curvature forms (Remark 1.4.5)ω

i
j = −ωj

i

Ωi
j = −Ωj

i

(3.6)

and the following transformation formulae under a local change of frame ei 7→ ẽi = f j
i ej{

ω̃ = f−1ωf + f−1df
Ω̃ = f−1Ωf

(3.7)

where at each point p ∈ M , fp is an orthogonal linearmap, i.e., f−1 = fT with det(f) = 1.

Remark 3.2.1. We also remark that there exists an orthonormal frame in an open set U
such that ω|q = 0 for a specific point q ∈ U . To construct it, we choose an orthonormal ba-
sis (e1|q, . . . , e2p|q) of TqM and for every other point q′ sufficiently close to q we consider
the frame given by parallel transporting the frame at q through the geodesics from q to q′.
As the parallel transport maintains both norms and angles, the frame is orthonormal; the
parallel transport guarantees that the Christoffel symbols Γk

ij all vanish at q and so does
ω, because of equation (1.35).

Theorem3.2.2. There exists a unique globally defined 2p–differential formPf(Ω) ∈ Ω2p(M)
with local expression

Pf(Ω)
∣∣
U

= 1
2pp!

∑
σ∈Σ2p

sgn(σ)
p∧

i=1
Ωσ(2i−1)

σ(2i) , (3.8)

in any open set U with a local orthonormal frame {ei}2p
i=1.

Remark 3.2.3. By means of equality (1.35)

Ωi
j = 1

2
Ri

jkl ϑ
k ∧ ϑl ,

formula (3.8) can be written in terms of the Riemann tensor as

Pf(Ω)
∣∣
U

= 1
2pp!

∑
1≤i1,...,i2p≤n

εi1...i2pΩi1
i2

∧ Ωi3
i4

∧ · · · ∧ Ωi2p−1
i2p

= 1
22pp!

∑
1≤i1,...,i2p≤n

εi1...i2pRi1
i2j1j2

. . . R
i2p−1

i2pj2p−1j2p
ϑj1 ∧ ϑj2 ∧ · · · ∧ ϑj2p−1 ∧ ϑj2p

= 1
22pp!

∑
1≤i1,...,i2p≤n
1≤j1,...,j2p≤n

εi1...i2pεj1...j2pRi1i2,j1j2 . . . Ri2p−1i2p,j2p−1j2p dVM ,

where we used the Levi–Civita symbol εi1...i2p , which is equal to 0 if any index is repeated
and to sgn(σ) otherwise, with σ the permutation (i1 . . . i2p) ∈ Σ2p.
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Proof of Theorem 3.2.2. Under a change of orthonormal local frames ẽi = f j
i ej , by using

formula (1.34) and equation (3.3), one has

Pf(Ω̃)
∣∣
U

= Pf(f−1Ωf)
∣∣
U

= Pf(fT Ωf)
∣∣
U

= det(f)Pf(Ω)
∣∣
U

= Pf(Ω)
∣∣
U
,

being det(f) = 1. Hence, the form Pf(Ω) is independent of the choice of the local frame
and all the local expressions can be pasted together into a (smooth) global section.

Lemma 3.2.4 (Transgression lemma). Let π : SM → M be the unit tangent bundle of
(M, g), then the form π∗ Pf(Ω) is exact. That is, there exists Π ∈ Ω2p−1(SM) such that

π∗ Pf(Ω) = dΠ .

Proof. To simplify the notation, in the following we identify forms onM with their pull-
backs on SM .
We consider on the open set U ⊆ M an orthonormal frame {ei}2p

i=1 and on SU ⊆ SM the
coordinates (v1, . . . , v2p) given by such a frame, that is,

v = viei for any v ∈ SM .

Clearly there holds
viv

i = 1 , (3.9)

and, applying the exterior differential to this relation, we have

vidvi = 0 . (3.10)

We then denote by ηi the 1–forms defined by

ηi = dvi + vjωi
j (3.11)

and we observe that they play a similar role of the connection 1–form ω, compare indeed
equation (3.4) to

∇v = ∇viei = (dvi + vjωi
j) ⊗ ei = ηi ⊗ ei .

Moreover, they satisfy {
viη

i = 0
dηi = ηj ∧ ωi

j + vjΩi
j

(3.12)

indeed, using equation (3.10) and the skew–symmetry of ω (see relations (3.6)), we have

viη
i = vidvi + viω

i
jv

j = 0 .

and using Cartan second structural equation (3.5),

dηi = dvj ∧ ωi
j + vjdωi

j

= (ηj − vkωj
k) ∧ ωi

j + vj(ωk
j ∧ ωi

k + Ωi
j)

= ηj ∧ ωi
j − vkωj

k ∧ ωi
j + vjωk

j ∧ ωi
k + vjΩi

j

= ηj ∧ ωi
j + vjΩi

j .
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Let us define now, for 0 ≤ k ≤ p− 1, the differential forms

Φk|SU =
∑

σ∈Σ2p

sgn(σ) vσ(1)ησ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i) , (3.13)

Ψk|SU =
∑

σ∈Σ2p

sgn(σ) Ωσ(1)
σ(2) ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i) , (3.14)

and Ψ−1 := 0.
For every k, Φk and Ψk are (2p− 1) and 2p–differential forms, respectively. We underline
that in the expression of Φk and Ψk, changing the index from k to k + 1 amounts to
substituting a pair ησ(j) ∧ ησ(j+1) with Ωσ(j)

σ(j+1). In particular, for k = p − 1, the form
Ψp−1 reduces to the expression (3.8) of Pf(Ω), up to a constant.
We now want to prove that these forms are globally well–defined (they are independent
of the choice of the local orthonormal frame) and satisfy the recurrence relation

dΦk = Ψk−1 + 2(p− k) − 1
2(k + 1)

Ψk , for k ∈ {0, 1, . . . , p− 1} . (3.15)

As a consequence,

Ψk =
k∑

r=0
(−1)r

r∏
i=0

2(k − i+ 1)
2(p− k + i) − 1

dΦk−r

=
k∑

r=0
(−1)r

(
2(k + 1)

)
!!(

2(k − r)
)
!!

(
2(p− k − 1) − 1

)
!!(

2(p− k + r) − 1
)
!!

dΦk−r

=
k∑

r=0
(−1)r2r+1 (k + 1)!

(k − r)!

(
2(p− k − 1) − 1

)
!!(

2(p− k + r) − 1
)
!!

dΦk−r

and
Pf(Ω) = 1

2pp!
Ψp−1 = dΠ ,

with

Π =
p−1∑
r=0

(−1)r 1
2rr!

(
2(p− r) − 1

)
!!

Φr . (3.16)

To this aim, we observe that after a change of local frame ei 7→ ẽi = f j
i ej the terms

involved in equations (3.13) and (3.14) transform according to{
ṽi = f i

jv
j

η̃i = f i
jη

j

indeed,
ṽi = ϑ̃i(ṽj ẽj) = f i

kϑ
k(vjej) = f i

kv
k ,

and by the transformation rule (3.7) for ω,

η̃i = dṽi + ṽjω̃i
j

= df i
jv

j + f i
jdvj + f j

s v
s(f i

kdfj
k + f i

kω
k
t fj

t)
= vjdf i

j + f i
jdvj + f j

s v
s(d(f i

kfj
k) − df i

kfj
k) + f i

kω
k
t v

t

= vjdf i
j + f i

jdvj − vkdf i
k + f i

jω
j
t v

t

= f i
jη

j .
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Hence, we can see that in the expressions (3.13) and (3.14) for Φk and Ψk, respectively, the
factors viηj and ηi ∧ ηj transform, under a change of frame, according to the formulae

ṽiη̃j = f i
kv

kf j
s η

s = f i
k(vkηs)fs

j ,

η̃i ∧ η̃j = f i
kη

k ∧ f j
s η

s = f i
k(ηk ∧ ηs)fs

j ,

which are the same transformation rules for Ωi
j . Then, the very same computations used

to show that Pf(Ω) is globally well–defined (Theorem 3.2.2) prove that the same holds also
for the forms Φk and Ψk.

To prove the recurrence relation (3.15), we fix k ∈ {0, 1, . . . , p−1} and compute using
equations (3.11), (3.12) and the Bianchi identities (3.5) as follows,

dΦk =
∑

σ∈Σ2p

sgn(σ) dvσ(1) ∧ ησ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

+ (2p− 2k − 1)
∑

σ∈Σ2p

sgn(σ) vσ(1)dησ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

+ k
∑

σ∈Σ2p

sgn(σ) vσ(1)ησ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧ dΩσ(2p−2k+1)

σ(2p−2k+2) ∧
p∧

i=p−k+2
Ωσ(2i−1)

σ(2i)

=
∑

σ∈Σ2p

sgn(σ) ησ(1) ∧ ησ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

+ (2p− 2k − 1)
∑

σ∈Σ2p

sgn(σ) vσ(1)vtΩσ(2)
t ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i)

+ F (ω)
= Ψk−1 + (2p− 2k − 1)Λk + F (ω) ,

where we grouped together all the terms involving ω into F (ω) and called Λk the form
(locally) defined as

Λk|SU =
∑

σ∈Σ2p

sgn(σ) vσ(1)vtΩσ(2)
t ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i) . (3.17)

We now show that Λk is just a multiple of Ψk. This implies that also the term F (ω) has to
be independent of the choice of the local frame. As such, taking a frame as in Remark 3.2.1
at a point q, we have ω|q = 0 and F (ω)|q = 0. As the values of F (ω) are independent of
the choice of the frame, we must have F (ω) ≡ 0 identically on SU and

dΦk = Ψk−1 + (2p− 2k − 1)Λk . (3.18)

To obtain Ψk from Λk we define the following auxiliary forms:

Ak|SU =
∑

σ∈Σ2p

sgn(σ) vσ(1)v
σ(1)Ωσ(1)

σ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i) ;

Bk|SU =
∑

σ∈Σ2p

sgn(σ) vσ(1)vσ(3)Ω
σ(3)
σ(2) ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i) ;

Ck|SU =
∑

σ∈Σ2p

sgn(σ) vσ(3)v
σ(3)Ωσ(1)

σ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i) ,
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hence, we can rewrite Λk, as expressed in equation (3.17), as

Λk = Ak + 2(p− k − 1)Bk . (3.19)

Indeed, expanding the (implicit) summation over the index t in equation (3.17),

• when t = σ(1), we get Ak;

• when t = σ(2), we get zero, as Ωσ(2)
σ(2) = 0;

• when t = σ(3), . . . , σ
(
2(p− k)

)
, we get 2(p− k − 1)–times the term Bk;

• when t = σ(2(p−k)+1), . . . , σ(2p), we get zero, due to terms of the form (no sum
intended) Ωσ(2)

t ∧ Ωσ(j)
t and Ωσ(2)

t ∧ Ωt
σ(j) which produce cancellations for the same

argument used in the proof Theorem 3.1.8.

Then, by equation (3.9), we write

vσ(1)v
σ(1) = 1 −

2p∑
i=2

vσ(i)v
σ(i)

and we put it in the expression of Ak, as follows

Ak =
∑

σ∈Σ2p

sgn(σ) vσ(1)v
σ(1)Ωσ(1)

σ(2) ∧
2(p−k)∧

i=3
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

=
∑

σ∈Σ2p

sgn(σ)
(

1 −
2p∑

i=2
vσ(i)v

σ(i)
)

Ωσ(1)
σ(2) ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i)

= Ψk −Ak − 2(p− k − 1)Ck − 2kAk ,

where at the last step we expanded the sum inside the parentheses taking into account
that

• when i = 1, we get Ψk;

• when i = 2, we get −Ak;

• when i = 3, . . . , 2(p− k), we get 2(p− k − 1)–times the term −Ck;

• when i = 2(p− k) + 1, . . . , 2p, we get 2k–times the term −Ak.

Hence, we conclude
Ψk = 2(k + 1)Ak + 2(p− k − 1)Ck . (3.20)

Arguing similarly, using now relations (3.12), we write

vσ(3)η
σ(3) = −

2p∑
i=1
i 6=3

vσ(i)η
σ(i)
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and we use it in order to deal with Bk, obtaining

Bk =
∑

σ∈Σ2p

sgn(σ) vσ(1)vσ(3)Ω
σ(3)
σ(2) ∧

2(p−k)∧
i=3

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i)

=
∑

σ∈Σ2p

sgn(σ) vσ(1)(vσ(3)η
σ(3)) ∧ Ωσ(3)

σ(2) ∧
2(p−k)∧

i=4
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

=
∑

σ∈Σ2p

sgn(σ) vσ(1)
(

−
2p∑

i=1
i 6=3

vσ(i)η
σ(i)
)

∧ Ωσ(3)
σ(2) ∧

2(p−k)∧
i=4

ησ(i) ∧
p∧

i=p−k+1
Ωσ(2i−1)

σ(2i)

= Ck − (1 + 2k)Bk ,

where, in expanding the sum inside the parentheses at the last step, we took into account
that

• when i = 1, we get Ck;

• when i = 2, we get −Bk;

• when i = 4, . . . , 2(p− k), we get zero, as ησ(i) ∧ ησ(i) = 0;

• when i = 2(p− k) + 1, . . . , 2p, we get 2k–times the term −Bk.

Hence, we have the equality
Ck = 2(k + 1)Bk . (3.21)

Putting equations (3.19), (3.20) and (3.21) together, we finally obtain

Ψk = 2(k + 1)
(
Ak + 2(p− k − 1)Bk

)
= 2(k + 1)Λk ,

that, once plugged in equation (3.18), gives the relation (3.15), proving the lemma.

We are now ready to state and show the Chern–Gauß–Bonnet theorem.

Theorem3.2.5 (Chern [10]). Let (M, g) be a compact oriented 2p–dimensional Riemannian
manifold, then ˆ

M
Pf(Ω) = (2π)pχ(M) , (3.22)

where χ(M) is the Euler–Poincaré characteristic ofM .

Proof. The proof of the theorem consists of the following series of steps:

• By Remark 3.1.2 we can consider on M a unit vector field X with finitely many
singularities.

• We “isolate” the singularity points of X using small balls B such that SB ∼= B ×
S2p−1 and we split the integral of Pf(Ω) in its parts inside and outside these balls.

• Since sending the radii of such balls to zero, the contributions of the integrals on the
insides go to zero, we can focus on computing the integral on the outside (showing
that it is independent of such radii).
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• Outside the balls we use the unit vector fieldX to express the integral of the Pfaffian
onM as an integral on SM , “pulling–back” the formPf(Ω) via themapX−1 defined
on the image ofX , where it coincides with the projection map π : SM → M of the
unit tangent bundle of (M, g).

• Thanks to the transgression Lemma 3.2.4 the above pullback π∗ Pf(Ω) is the differ-
ential of the form Π defined by equation (3.16), hence, we can apply Stokes Theo-
rem (1.1.14) and obtain that the integral of the Pfaffian outside the balls is equal to
the integral of Π over the (image by X of the) boundaries of such balls.

• We compute these integrals by making use of Definition 3.1.5 of the index of a vector
field, which allows us to “substitute” each integral with one on the standard sphere
S2p−1, for every singularity point of the field X .

• The proof is concluded by applying the Poincaré–Hopf index theorem 3.1.6.

As said above, let us consider a unit vector field X ∈ Γ(TM) with finitely many
isolated singularities z1, . . . , zm (Remark 3.1.2) and define S = X(M \ {z1, . . . , zm}) to
be its image. We then choose a family of closed balls Bε(zi) of radius ε > 0 around each
point zi, such that they are mutually disjoint and call Bε their union. We let π : SM →
M be the unit tangent bundle of M and, since S ⊆ SM , we consider the restriction
π
∣∣
S = X−1 : S → M . Then, by means of the transgression Lemma 3.2.4 and Stokes

theorem 1.1.14, we evaluateˆ
M

Pf(Ω) =
ˆ
Bε

Pf(Ω) +
ˆ

M\Bε

Pf(Ω)

=
ˆ
Bε

Pf(Ω) +
ˆ

X(M\Bε)
π
∣∣ ∗
S Pf(Ω)

=
ˆ
Bε

Pf(Ω) +
ˆ

S\X(Bε)
dΠ

=
ˆ
Bε

Pf(Ω) +
ˆ

∂
(

S\X(Bε)
)Π ,

as π
∣∣ ∗
S Pf(Ω) = π∗ Pf(Ω)

∣∣
S = dΠ

∣∣
S .

Now, the first integral clearly goes to zero, as ε → 0, hence it will give no contribution
if we show that the second one is independent of ε. The domain of the integration of this
latter is given by

∂
(
S \X(Bε)

)
= ∂

(
S \

m⋃
i=1

X
(
Bε(zi)

))
=

m⋃
i=1

X
(
∂Bε(zi)

)
,

hence, by formula (3.16) for Π, we have
ˆ

M\Bε

Pf(Ω) =
m∑

i=1

ˆ
X
(

∂Bε(zi)
)Π =

m∑
i=1

p−1∑
r=0

(−1)r 1
2rr!

(
2(p− r) − 1

)
!!

ˆ
X
(

∂Bε(zi)
)Φr

where, once chosen an orthonormal frame {ei}2p
i=1 on an open setU ⊆ M and coordinates

(v1
q , . . . , v

2p
q ) on SMq at each point q ∈ U , locally

Φr =
∑

σ∈Σ2p

sgn(σ)vσ(1)
2(p−k)∧

i=2
ησ(i) ∧

p∧
i=p−k+1

Ωσ(2i−1)
σ(2i)

58
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and ηi = dvi + vjωi
j .

We now fix a singular point z of X and we take the corresponding ball B around z small
enough, such that SB ∼= B × S2p−1, denoting by π : SB → S2p−1 the induced projection
on the second factor. In order to compute the index of the vector field X at z and apply
the Poincaré–Hopf index Theorem 3.1.6, we consider the map π ◦ X : B → SMz , where
we are identifying S2p−1 with SMz . This map allows us, by Definition 3.1.5, to change the
domain of integration to SMz up to multiplying by the index ofX at z. Then, by choosing
a frame at z as in Remark 3.2.1, we obtain ω|z = 0, hence Ω|z = dω|z (see equation (3.4))
and ηi|z = dvi|z . Consequently, if r ≥ 1, by applying again Stokes theorem, we have
ˆ
SMz

Φr =
∑

σ∈Σ2p

sgn(σ)
ˆ
SMz

vσ(1)
2(p−k)∧

i=2
ησ(i) ∧

p−1∧
i=p−k+1

Ωσ(2i−1)
σ(2i) ∧ dωσ(2p−1)

σ(2p)

= −
∑

σ∈Σ2p

sgn(σ)
ˆ
SMz

d

vσ(1)
2(p−k)∧

i=2
ησ(i) ∧

p−1∧
i=p−k+1

Ωσ(2i−1)
σ(2i) ∧ ω

σ(2p−1)
σ(2p)


= −

∑
σ∈Σ2p

sgn(σ)
ˆ

∂SMz

vσ(1)
2(p−k)∧

i=2
ησ(i) ∧

p−1∧
i=p−k+1

Ωσ(2i−1)
σ(2i) ∧ ω

σ(2p−1)
σ(2p)

= 0 ,

and if r = 0,
ˆ
SMz

Φ0 =
∑

σ∈Σ2p

sgn(σ)
ˆ
SMz

vσ(1)
2p∧

i=2
ησ(i)

= (2p− 1)!
n∑

j=1
(−1)j+1

ˆ
SMz

vj
2p∧

i=1
i 6=j

dvi

= (2p− 1)!
ˆ
S2p−1

dVS2p−1 .

Hence, ˆ
M

Pf(Ω) =
m∑

i=1

1
(2p− 1)!!

ˆ
X
(

∂Bε(zi)
)Φ0

=
m∑

i=1
deg(Szi)

1
(2p− 1)!!

ˆ
SMzi

Φ0

=
m∑

i=1
indzi(X) (2p− 1)!

(2p− 1)!!

ˆ
S2p−1

dVS2p−1

= (2p− 2)!! Vol(S2p−1)
m∑

i=1
indzi(X)

= (2π)p
m∑

i=1
indzi(X) ,

by the well–known formula Vol(S2p−1) = 2πp/(p− 1)!.
The conclusion (3.22) ˆ

M
Pf(Ω) = (2π)pχ(M)

then follows by applying the Poincaré–Hopf index Theorem (3.1.6).
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Remark 3.2.6.

• In odd dimensions, the Pfaffian Pf(Ω) is zero by definition, then the theorem still
holds (even if trivial), being the Euler–Poincaré characteristic of every odd–dimensional
manifold equal to zero (see Remark 1.1.20).

• If (M, g) is nonorientable, by “passing” to its canonical 2–sheets (orientable) Rie-
mannian covering M̃ , satisfying χ(M̃) = 2χ(M) (see [16, Section 2.2], for instance)
and applying the theorem to M̃ , we get

2(2π)n/2χ(M) = (2π)n/2χ(M̃) =
ˆ

M̃
Pf(Ω̃) = 2

ˆ
M

Pf(Ω)

where the last integral is computed by using the canonical Riemannian measure of
the manifold in place of the volume form (which is not defined for M ). Hence, the
conclusion holds also in the nonorientable case.

• If the manifold (M, g) has a boundary, the theorem takes the form
ˆ

M
Pf(Ω) = (2π)n/2χ(M) +

ˆ
∂M

ν∗Π

where ν : ∂M → SM is the outward–pointing unit normal vector. We refer to [33,
Chapter 13, Addendum 2], for further reading.

TheChern–Gauß–Bonnet theorem asserts that there exists an “intrinsic” quantityPf(Ω),
related to the curvature of an even–dimensional Riemannian manifold (M, g), such that
its integral is a multiple (depending on the dimension) of the Euler–Poincaré characteris-
tic, which is a topological invariant ofM . In the case (historically relevant, being studied
earlier) of a closed, embedded hypersurface M in the Euclidean space Rn+1, in trying to
generalise the “classical” Gauß–Bonnet theorem for surfaces in R3, H. Hopf [19] in 1926
proved that ˆ

M
K dVM = Vol(Sn)

2
χ(M) = (2π)n/2

(n− 1)!!
χ(M) . (3.23)

Here, K = det dν is the Gaußian curvature of the manifold, where ν : M → Sn is a
(smooth) pointwise choice of a unit normal vector field onM , i.e., the Gauß map.
In even dimension,K is independent of the choice (up to the sign) of the normal, moreover
it is easy to see, by pointwise diagonalising the second fundamental form in an orthonor-
mal basis {ei}n

i=1 that then the basis {(ei ∧ ej)/
√

2 }n
i<j=1 of Λ2(TM) diagonalises the

curvature operator R : Λ2(TM) → Λ2(TM), with eigenvalues λiλj , where λi are the
eigenvalues of the second fundamental form. Hence,

K =
n∏

i=1
λi and det R =

n∏
i,j=1
i<j

λiλj =
( n∏

i=1
λi

)n−1
,

implying
K =

(
det R

) 1
n−1 .

In particular, if n = 2, we recover

K = λ1λ2 = det R = Sec(e1, e2) = R/2 .
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Since the integral of dν is the area of the image of the Gauß map, counted with multiplicity,
it follows that ˆ

M
K dVM =

ˆ
M
ν∗dVSn = Vol(Sn) deg(ν) ,

then, the conclusion follows from the relation

deg(ν) + (−1)n deg(ν) = χ(M) , (3.24)

which gives equality (3.23) in even dimensions.
This can be seen by considering a closed tubular neighbourhood ofM (which always exists,
beingM embedded – see [15], for instance),

N =
{
p ∈ Rn+1

∣∣∣ dist(p,M) ≤ ε
}
,

for ε > 0 small enough such that ∂N is diffeomorphic to two copies ofM and the (unique,
orthogonal) projection map π : N → M is well defined. Then, if X is a tangent vector
field toM with isolated zeroes z1, . . . , zn, we consider the field Y on N given by

Y (p) =
(
p− π(p)

)
+X(π(p))

and it is easy to see that Y has the same zeroes of X , each one with the same index, that
is indzi(Y ) = indzi(X). Moreover, it is clear that Y is outward–pointing at the boundary
of N , hence χ(M) = χ(N) by the Poincaré–Hopf index theorem 3.1.6.
Then, considering the unit vector field Z = Y/|Y | on N , with finitely many singularities,
enclosed in a family of disjoint closed balls Bi ⊆

◦
N , whose union we denote by B, we

have that the boundary of N \ B is given by the union of ∂N and ∂B, endowed with
opposite orientation (for how the boundary of a manifold is canonically oriented). Hence,
deg

(
Z|∂(N\B)

)
= deg(Z|∂N ) − deg(Z|∂B) and for any form ω ∈ Ωn(Sn), we have

(
deg(Z|∂N ) − deg(Z|B)

)ˆ
Sn

ω =
ˆ

∂(N\B)
Z∗ω =

ˆ
N\B

dZ∗ω =
ˆ

N\B
Z∗dω = 0 ,

thus,

deg(Z|∂N ) = deg(Z|B) =
m∑

i=1
deg(Z|Bi) =

m∑
i=1

indzi(Z) = χ(N)

again by the Poincaré–Hopf index Theorem (3.1.6).
Being the fieldZ|∂N homotopic to the unit normal vector field ν outward–pointing on ∂N ,
we conclude that deg(ν) = χ(N) = χ(M). Relation (3.24) then follows by the easy fact
that deg(ν) = deg(ν)+(−1)n deg(ν), as ∂N is diffeomorphic to two copies ofM and we
considered on one of them the same orientation of M (induced by ν and ν, respectively)
and on the other the opposite one (see [32, Chapter 6, Addendum 2], for more details).

The result was later generalised in 1940 with a quite more complex proof by C. B. Al-
lendoerfer [2] and W. Fenchel [13] to an n–manifold M embedded in higher (odd) codi-
mension Rn+k. Their proof consisted in using again a closed tubular neighbourhoodN of
M in Rn+k (hence, with a hypersurface boundary ∂N of codimension 1) and applying to
its boundary the previous result to get

ˆ
∂N

K∂N dV∂N = Vol(Sn+k−1)
2

χ(∂N) .
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Then, after showing that χ(∂N) = χ(Sk−1)χ(M) = 2χ(M), they expressed the integral
of the Gaußian curvature of ∂N in terms of an integral involving the curvature of M ,
getting formula (3.23) with

K = 1
2n/2n!

∑
1≤i1,...,in≤n
1≤j1,...,jn≤n

εi1...inεj1...jnRi1i2j1j2 · · ·Rin−1injn−1jn (3.25)

in an orthonormal frame, coinciding with
(
det R

) 1
n−1 and reducing to formula (3.23) in

codimension one. Recalling Remark 3.2.3, notice that

K dVM = 1
(n− 1)!!

Pf(Ω) .

Theywere later able to get the same conclusion also for abstract Riemannian manifolds, by
means of a different (still quite involved) technique, see [33, Chapter 13] for more details.
The Nash embedding theorem [27] in 1956 clearly simplified such second part of the proof,
however, in the spirit of the classical theorem of Gauß and Bonnet, one would have liked to
have a purely “intrinsic” proof, without involving any embedding in the Euclidean space.

In order to use formula (3.25) in practice, we actually want to express more explicitlyK
or Pf(Ω) in terms of the Riemann tensor. Even if from such formula follows that it must be
a homogenous polynomial of degree n/2 in the components of Riem, in general, a simple
expression is not known: only in the “classic” case of dimensions n = 2, the Pfaffian is
easy to compute, indeed

Pf(Ω) = 1
2R12ijϑ

i ∧ ϑj = R1212ϑ
1 ∧ ϑ2 = 1

2R dVM ,

where R is the scalar curvature, hence,
ˆ

M
R dVM = 4πχ(M) , (3.26)

which implies the Gauß–Bonnet theorem for a surface in R3 (as the Gaußian curvatureK
of a surface satisfiesK = R/2).
We will analyse in detail the four–dimensional case in the next section, which will be
fundamental for the discussion of the next chapter. About the higher dimensions, we only
mention that in dimension 6 a computation by S. Takashi [30] yields

Pf(Ω) = 1
48

(R3 − 12R|Ric|2 + 3R|Riem|2 + 16RijRk
iRjk + 24RijRklRijkl

− 24RstR ijk
s Rtijk − 8RijklR s t

i kRjtls + 2RijklR st
ij Rklst) dVM ,

which, in the special case of an Einstein manifold (i.e., Ric = Rg/6), becomes

Pf(Ω) = 1
48
(
(1/9)R3 − R|Riem|2 − 8RijklR s t

i k Rjtls + 2RijklR st
ij Rklst

)
dVM

and that, up to our knowledge, no formula is present in literature in dimension n ≥ 8.

3.3 The Chern–Gauß–Bonnet theorem in dimension four

In order to write an integral formula involving the Riemann tensor, we start “expand-
ing” the Pfaffian and expressing it in terms of the components Rijkl of Riem, in a local
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orthonormal frame.

Pf(Ω) = 1
4

(R12ijR34kl +R13ijR24kl +R14ijR23kl)ϑi ∧ ϑj ∧ ϑk ∧ ϑl

= 1
4
{
4(R1212R3434 +R1312R2434 +R1412R2334)

+ 4(R1213R3424 +R1313R2424 +R1413R2324)
+ 4(R1214R3423 +R1314R2423 +R1414R2323)
+ 4(R1223R3414 +R1323R2414 +R1423R2314)
+ 4(R1224R3413 +R1324R2413 +R1424R2313)
+ 4(R1234R3412 +R1334R2412 +R1434R2312)

}
ϑ1 ∧ ϑ2 ∧ ϑ3 ∧ ϑ4

=
{
R1212R3434 +R1313R2424 +R1414R2323

+ 2(R1213R2434 +R1214R2334 +R1314R2324)
+ 2(R1223R1434 +R1224R1334 +R1323R1424)
+R2

1234 +R2
1324 +R2

1423
}

dVM . (3.27)

We nowprove in Lemma 3.3.1 below that there exists a local orthonormal frame (e1, e2, e3, e4)
such that

R1213 = R1214 = R1314 = R1223 = R1224 = R1323 = 0 ,

hence, equality (3.27) reduces to

Pf(Ω) =
(
R1212R3434 +R1313R2424 +R1414R2323 +R2

1234 +R2
1324 +R2

1423

)
dVM

=
(
K12K34 +K13K24 +K14K23 +R2

1234 +R2
1324 +R2

1423

)
dVM , (3.28)

where we are denoting withKij the sectional curvatures Sec(ei, ej).
From now on, we will work in this particular frame.

Lemma 3.3.1. Let p ∈ M and π a 2–plane in TpM with maximal sectional curvature.
We choose e1 ∈ π and e3 ∈ π⊥ orthonormal vectors such that Sec(e1, e3) is the maximal
sectional curvature among all 2–planes 〈v, w〉, with v ∈ π and w ∈ π⊥. Finally, we choose
the remaining unit vectors e2 ⊥ e1 and e4 ⊥ e3 such that π = 〈e1, e2〉 and π⊥ = 〈e3, e4〉.
Then, the terms R1213, R1214, R1223, R1224, R1323, R1314 all vanish at p ∈ M .

Remark 3.3.2. The vanishing terms are precisely the ones of the formRikjk, where i 6= j
and k is the lowest of the remaining two indices.

Proof. Let for ϑ, ϕ ∈ R, i, j ∈ {1, 2} and k ∈ {3, 4},

fijk(ϑ) = Sec
(
ei, (cosϑ)ej + (sinϑ)ek

)
,

g(ϑ, ϕ) = Sec
(
(cosϑ)e1 + (sinϑ)e2, (cosϕ)e3 + (sinϕ)e4

)
.

Since Sec(ei, ej) maximises fijk for ϑ = 0 and Sec(e1, e3) maximises g for (ϑ, ϕ) = (0, 0),

∂fijk(0)
∂ϑ

= ∂g(0, 0)
∂ϑ

= ∂g(0, 0)
∂ϕ

= 0 .

For everymutually orthogonal unit vectorsu, v, w ∈ SpM andϑ ∈ R, we have the formula

Sec
(
u, (cosϑ)v+(sinϑ)w

)
= cos2(ϑ) Sec(u, v)+sin2(ϑ) Sec(u,w)+sin(2ϑ)R(u, v, u, w) ,
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hence,
∂

∂ϑ

∣∣∣∣
ϑ=0

Sec
(
u, (cosϑ)v + (sinϑ)w

)
= 2R(u, v, u, w) .

Therefore,
0 = ∂fijk(0)

∂ϑ
= 2Rijik

for any i, j ∈ {1, 2}, k ∈ {3, 4} and

0 = ∂g(0, ϕ)
∂ϑ

∣∣∣∣
ϕ=0

= 2R
(
e1, (cosϕ)e3 + (sinϕ)e4, e2, (cosϕ)e3 + (sinϕ)e4

)∣∣
ϕ=0 = 2R1323 ,

0 = ∂g(ϑ, 0)
∂ϕ

∣∣∣∣
ϑ=0

= 2R
(
(cosϑ)e1 + (sinϑ)e2, e3, (cosϑ)e1 + (sinϑ)e2, e4

)∣∣
ϑ=0 = 2R1314 ,

proving the lemma.

We want now to express the right–hand side of equation (3.28) in terms of |Riem|2,
|Ric|2 and R2. Computing in the orthonormal frame given by Lemma 3.3.1, by equa-
tion (1.19), we have

R2 =
(

2
∑

1≤s<t≤4
Kst

)2
= 4
(
K12 +K13 +K14 +K23 +K24 +K34

)2
= 4
(
K2

12 +K2
13 +K2

14 +K2
23 +K2

24 +K2
34

+ 2(K12K13 +K12K14 +K12K23 +K12K24 +K12K34

+K13K14 +K13K23 +K13K24 +K13K34 +K14K23

+K14K24 +K14K34 +K23K24 +K23K34 +K24K34)
)

(3.29)

and

R2
ii =

( 4∑
s=1

Risis

)2
= (Kij +Kik +Kil)2

= K2
ij +K2

ik +K2
il + 2KijKik + 2KijKil + 2KikKil ,

R2
ij =

( 4∑
s=1

Risjs

)2
= (Rikjk +Riljl)2 = R2

iljl ,

for every i < j and k < l all different, as we recall that then Rikjk = 0 (Remark 3.3.2).
Hence,

|Ric|2 =
4∑

i,j=1
R2

ij = 2
(
K2

12 +K2
13 +K2

14 +K2
23 +K2

24 +K2
34

+K12K13 +K12K14 +K13K14 +K12K23

+K12K24 +K23K24 +K13K23 +K13K34

+K23K34 +K14K24 +K14K34 +K24K34

+R2
1334 +R2

1424 +R2
1434 +R2

2324 +R2
2334 +R2

2434
)
. (3.30)

We now see that the addends which are products of different sectional curvatures in equa-
tions (3.28)–(3.30) can be adequately combined to cancel and we get (ignoring dV in the
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expression of Pf(Ω), for simplicity)

8 Pf(Ω) + 4|Ric|2 − R2 = 8
(
R2

1234 +R2
1324 +R2

1423

)
+ 8

(
R2

1334 +R2
1424 +R2

1434 +R2
2324 +R2

2334 +R2
2434

)
+ 8

(
K2

12 +K2
13 +K2

14 +K2
23 +K2

24 +K2
34

)
− 4

(
K2

12 +K2
13 +K2

14 +K2
23 +K2

24 +K2
34

)
+ 8

(
K12K34 +K13K24 +K14K23

)
+ 8

(
K12K13 +K12K14 +K13K14 +K12K23

+K12K24 +K23K24 +K13K23 +K13K34

+K23K34 +K14K24 +K14K34 +K24K34
)

− 8
(
K12K13 +K12K14 +K12K23 +K12K24 +K12K34

+K13K14 +K13K23 +K13K24 +K13K34 +K14K23

+K14K24 +K14K34 +K23K24 +K23K34 +K24K34
)

= 8
(
R2

1234 +R2
1324 +R2

1423

+R2
1334 +R2

1424 +R2
1434 +R2

2324 +R2
2334 +R2

2434

)
+ 4

(
K2

12 +K2
13 +K2

14 +K2
23 +K2

24 +K2
34

)
= 8

(
R2

1234 +R2
1324 +R2

1423

+R2
1334 +R2

1424 +R2
1434 +R2

2324 +R2
2334 +R2

2434

)
+ 4

(
R2

1212 +R2
1313 +R2

1414 +R2
2323 +R2

2424 +R2
3434

)
= |Riem|2 , (3.31)

writing explicitly the norm of the Riemann tensor in the special orthonormal frame given
by Lemma 3.3.1, where several components are zero. Indeed, considering its symmetries,
except the Bianchi identity and taking into account the 6 zero–conditions given by such
lemma, the Riemann tensor is determined by the 15 components appearing in the second–
last line of the above computation (whose squares must be added with the appropriate
multiplicities in order to give |Riem|2).
We then get

Pf(Ω) = 1
8

(
|Riem|2 − 4|Ric|2 + R2

)
dVM

and equation (3.22) becomes the following Chern–Gauß–Bonnet formula, when n = 4,

1
32π2

ˆ
M

(
|Riem|2 − 4|Ric|2 + R2

)
dVM = χ(M) .

Recalling equalities (1.26) and (1.27), that, when n = 4, become

|Riem|2 = 2|Ric|2 − R2/3 + |Weyl|2 = 2|
◦

Ric|2 + R2/6 + |Weyl|2

|
◦

Ric|2 = |Ric|2 − R2/4 ,
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we have the following alternative expressions:

χ(M) = 1
32π2

ˆ
M

(
|Riem|2 − 4|Ric|2 + R2

)
dVM

= 1
32π2

ˆ
M

(
|Riem|2 − 4|

◦
Ric|2

)
dVM

= 1
96π2

ˆ
M

(
3|Weyl|2 − 6|Ric|2 + 2R2

)
dVM

= 1
192π2

ˆ
M

(
6|Weyl|2 − 12|

◦
Ric|2 + R2

)
dVM

= 1
32π2

ˆ
M

(
|Weyl|2 + 16σ2(S)

)
dVM , (3.32)

where in the last line S = 1
12(6 Ric −Rg) is the Schouten tensor and σ2(S) is the second

elementary symmetric polynomial in its eigenvalues, i.e.,

σ2(S) = 1
2
(
(trS)2 − |S|2

)
= 1

2

( 1
144

(6R − 4R)2 − 1
144

(36|Ric|2 − 12R2 + 4R2)
)

= 1
288

(4R2 − 36|Ric|2 + 8R2)

= 1
24

(R2 − 3|Ric|2) = 1
96

(R2 − 12|
◦

Ric|2) .

As a consequence of the previous formulae, since the Weyl functional (i.e., the integral of
the square norm of the Weyl tensor) is conformally invariant in dimension four (by direct
computation – we will see that in equation (4.14)) and the Euler–Poincaré characteristic
is a topological invariant, we get the following result.
Corollary 3.3.3. For a compact oriented 4–dimensional Riemannian manifold, the integralˆ

M
σ2(S) dVM = 1

24

ˆ
M

(
R2 − 3|Ric|2

)
dVM = 1

96

ˆ
M

(
R2 − 12|

◦
Ric|2

)
dVM

is conformally invariant. In particular, a compact oriented 4–dimensional conformally flat
manifold must have

3
ˆ

M
|Ric|2 dVM =

ˆ
M

R2 dVM = 12
ˆ

M
|

◦
Ric|2 dVM .

In the next chapter we will be interested in results connecting the curvature and the
topology of a manifold. We start by noticing that it follows immediately by the Chern–
Gauß–BonnetTheorem 3.2.5, in any dimension, that if (M, g) is flat, then its Euler–Poincaré
characteristic must be zero. The following examples show that, in general, the converse
does not hold.
Example 3.3.4. Consider the 4–dimensional manifold M = S1 × S3. As S1, S3 are
connected, compact and oriented, the same holds for M . We now recall that the Euler–
Poincaré characteristic of the product is the product of the Euler–Poincaré characteristics
of the factors (Remark 1.1.20), thus χ(M) = χ(S1)χ(S3) = 0, as both S1 and S3 are
odd-dimensional, then we notice that no metric can make S1 × S3 flat, as then its univer-
sal Riemann covering would be R4 (Theorem 1.2.19) and that is not the case as R4 is not
homeomorphic to R × S3.
The same considerations apply to N = T2 × S2 = S1 × S1 × S2 with χ(N) = 0 and
universal covering R2 × S2.
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Moreover, another result and a weaker converse can be obtained by means of expres-
sion (3.28), in dimension four.

Corollary 3.3.5. A compact oriented 4–dimensional Riemannian manifold whose nonzero
sectional curvatures all share the same sign, has nonnegative Euler–Poincaré characteristic. If
in addition, no sectional curvature vanishes, then the Euler–Poincaré characteristic is positive.

Proof. The first assumption clearly makes all terms in equation (3.28) nonnegative; the
second assumption makes at least three of them positive. The conclusion follows from the
Chern–Gauß–Bonnet Theorem 3.2.5.

We notice that a similar result to Corollary 3.3.5 also holds trivially for 2–dimensional
manifolds by the classical Gauß–Bonnet theorem (3.26), as the only sectional curvature
is (half of) the scalar curvature. More precisely, the Euler–Poincaré characteristic is pos-
itive, negative or zero if and only if the scalar curvature R is positive, negative or zero,
respectively. The general statement is known in literature as the Hopf conjecture.

Conjecture 3.3.6 (Hopf conjecture [7], [86, Problems 8 and 10]). A compact even–dimensional
Riemannian manifold with positive (respectively nonnegative) sectional curvature has posi-
tive (respectively nonnegative) Euler–Poincaré characteristic. A compact 2p–dimensional Rie-
mannian manifold with negative (respectively nonpositive) sectional curvature has Euler-
Poincaré characteristic of sign (−1)p (respectively (−1)p or zero).

To our knowledge, the conjecture is still open in dimension n ≥ 6.
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Chapter 4

Einstein manifolds

We are going to analyse Einstein manifolds, that is Riemannian manifolds such that the
Ricci tensor is proportional to the metric, with special attention to the dimension four.
Most of the material of this chapter is taken from [5, 6, 9].
Satisfying Ric = λg for some constant λ ∈ R, Einstein manifolds “stay in the middle”
between constant curvature manifolds (with Riem = λ

2(n−1)g ? g), which are completely
classified and constant scalar curvature manifolds (with R = λn), hence they are neither
“too” nor “too little” rigid.
We start by showing the computation of the first variation of the Einstein–Hilbert action,
whose nullity characterises Einstein manifolds and we also discuss the relations with the
general relativity, as the Euler–Lagrange equation of the Einstein–Hilbert action gives the
Einstein’s field equation.
Then, we deal with “improving” the orthogonal decomposition of the Weyl tensor in di-
mension n = 4. In dimension n = 4 the space of the Weyl tensors can be further decom-
posed by considering its irreducible orthogonal components under the action of SO(4)
and, once applied to a Riemannian manifold, this refined decomposition yields the so–
called self–dual and anti–self–dual components W± of its Weyl tensor. One can then de-
fine half–conformally flat manifolds, i.e., manifolds for which eitherW+ orW− vanishes.
As a consequence, the Chern–Gauß–Bonnet formula in dimension 4 can be rewritten as

χ(M) = 1
192π2

ˆ
M

(
6|W+|2 + 6|W−|2 − 12|

◦
Ric|2 + R2

)
dVM .

In Section 4.3, we introduce the signature τ(M), which is another topological invariant, of
a four–manifoldM and present (without proof, for which we refer the reader to [28]) the
Hirzebruch theorem, showing the equality

τ(M) = 1
48π2

ˆ
M

(
|W+|2 − |W−|2

)
dVM .

We then proceed by studying the Weyl functional,

W(g) =
ˆ

M
|Weylg|n/2 dVg ,

which is quadratic in dimension four. We compute its first variation and we show that
conformal Einstein metrics (i.e., metrics having an Einstein metric in their conformal class)
and half–conformally flat metrics are critical metrics, in dimension four.
In the last section, we finally discuss four–dimensional Einstein manifolds. By combining
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the Hirzebruch and Chern–Gauß–Bonnet formulae, we will obtain the so–called Hitchin–
Thorpe inequality

χ(M) ≥ 3
2

|τ(M)|

which is a necessary (only) condition for a compact oriented 4–dimensional manifold to
be Einstein. As in general no sufficient conditions are known in literature, we conclude
the chapter (and the thesis) by providing some examples of manifolds which do not admit
any Einstein metric. Being the converse problem very difficult, the readers of the book of
A. L. Besse [6] “[…] are offered a meal in a starred restaurant in exchange for a new example
[of an Einstein manifold]”.

4.1 The Einstein–Hilbert action

LetM be a compact oriented n–dimensional differential manifold and g any Riemannian
metric onM . We define the Einstein–Hilbert action as the total curvature of (M, g), i.e.

S(g) =
ˆ

M
Rg dVg ,

where Rg and dVg are, respectively, the scalar curvature and the volume form of (M, g).
As for n = 2 the classical Gauß–Bonnet formula (3.26) gives

S(g) =
ˆ

M
Rg dVg = 4πχ(M) ,

the functional is constant on a fixed 2–dimensional differential manifold, then we will
always assume that the dimension n ofM is at least three.
We define the gradient of S at g as the (0, 2)–tensor ∇S(g), satisfying

d
dt

∣∣∣∣
t=0

S(g + th) =
ˆ

M
g
(
∇S(g), h

)
dVg

for every symmetric bilinear form h (this equation express the first variation of the func-
tional S at g). In order to compute it, we need the following two equalities,

d
dt

∣∣∣∣
t=0

dV (g + th) = 1
2

trhdVg , (4.1)

d
dt

∣∣∣∣
t=0

R(g + th) = −∆g trh+ ∇ij
g hij − Ricij

g hij . (4.2)

We show in detail how to get the first formula, while for the second one (for which one
has to compute the variations of the Christoffel symbols, the Riemann tensor and the Ricci
tensor), we refer [9, Section 2.1]).
In a coordinate chart, we have

dV (g + th) =
√

det(g + th) dx1 ∧ · · · ∧ dxn

=
√

det(Id +tg−1h)
√

det g dx1 ∧ · · · ∧ dxn

=
√

det(Id +tg−1h) dVg ,
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therefore,

d
dt

∣∣∣∣
t=0

dV (g + th) = d
dt

∣∣∣∣
t=0

√
det(Id +tg−1h) dVg

=
( tr

( d
dt tg

−1h)
2
√

det(Id +tg−1h)

)∣∣∣∣
t=0

dVg

= 1
2

trhdVg ,

where we intended g−1h as a matrix multiplication, hence

tr (g−1h)i
j = tr gikhkj = gikhki = trh

and we used the well–known Jacobi identity1

d
dt

det
(
Id +A(t)

)
= trA′(t) .

By means of equations (4.1) and (4.2), we obtain

d
dt

∣∣∣∣
t=0

S(g + th) =
ˆ

M

d
dt

∣∣∣∣
t=0

R(g + th) dVg +
ˆ

Rg
d
dt

∣∣∣∣
t=0

dV (g + th)

=
ˆ

M

(
−∆g trh+ ∇ij

g hij − Ricij
g hij + Rg

2
trh

)
dVg

= −
ˆ

M

(
divg ∇g trh− divg divg h+ g

(
Ricg −Rg

2
g, h

))
dVg

= −
ˆ

M
g
(

Ricg −Rg

2
g, h

)
dVg (4.3)

where we used the divergence theorem (1.2.13). Hence, ∇S(g) is the opposite of

Eg := Ricg −Rgg/2

which is called (in every dimension) the Einstein tensor. We remark that the Einstein tensor
is a divergence–free symmetric (2, 0)–tensor due to Schur’s lemma (2.3).

The normalised action. Of equal interest is the normalised Einstein–Hilbert action

S(g) = Vol−
n−2

n
g S(g)

which is scaling invariant.
Indeed, if ũ = λg for λ > 0, then√

det g̃ = λn/2√det g , dV (g̃) = λn/2 dVg , Vol(g̃) = λn/2 Volg ,

and R(g̃) = λ−1Rg (see Theorem 2.1.4), hence

S(g̃) = Vol(g̃)− n−2
n

ˆ
M

R(g̃) dV (g̃) = λ− n
2 +1 Vol−

n−2
n

g

ˆ
M
λ−1Rg λ

n/2 dVg = S(g) .

1After the German mathematician Carl Gustav Jacob Jacobi (1804–1851) [76].
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Using equation (4.3), the first variation of the normalised action is given by

d
dt

∣∣∣∣
t=0

S(g + th)

= d
dt

∣∣∣∣
t=0

(
Vol(g + th)− n−2

n

ˆ
M

R(g + th) dV (g + th)
)

= −n− 2
n

Vol−
n−2

n
−1

g

ˆ
M

1
2

trhdVg

ˆ
M

Rg dVg − Vol−
n−2

n
g

ˆ
M
g(Eg, h) dVg

= − Vol−
n−2

n
g

ˆ
M
g

(
Eg + n− 2

2n
Rgg, h

)
dVg ,

and
∇S(g) = − Vol−

n−2
n

g

(
Eg + n− 2

2n
Rgg

)
,

where Rg = Vol−1
g

´
M Rg dVg is the average of the scalar curvature on (M, g).

The Einstein’s field equation. The action considered in general relativity, on a four–
manifoldM and defined on Lorentzian metrics g, is of the form

S∗(g) =
ˆ

M

( 1
2κ

(Rg − 2Λ) + LM(g)
)

dVg ,

where Λ is the so–called cosmological constant, κ is the Einstein’s gravitational constant
and LM(g) is a Lagrangian describing a possibly present matter field.
In this case the first variation is given by

d
dt

∣∣∣∣
t=0

S∗(g + th)

= d
dt

∣∣∣∣
t=0

ˆ
M

( 1
2κ
(
R(g + th) − 2Λ

)
+ LM(g + th)

)
dV (g + th)

= − 1
2κ

ˆ
M
g(Eg, h) dVg − Λ

2κ

ˆ
M

trhdVg

+
ˆ

M

( dLM(g + th)
dt

∣∣∣∣
t=0

+ trh
2

LM(g)
)

dVg

= − 1
2κ

ˆ
M
g
(
Eg + Λg − 2κ∇LM(g) − κLM(g)g, h

)
dVg

= − 1
2κ

ˆ
M
g(Eg + Λg − κTg, h) dVg ,

hence,
∇S∗(g) = − 1

2κ
(Eg + Λg − κTg) ,

where
Tg := 2∇LM(g) + LM(g)g

is called the stress–momentum tensor.
The equations we obtain when the gradient of these functionals vanishes (i.e., the

Euler–Lagrange equations of the functionals) are

(i) ∇S(g) = 0 = Eg =⇒ Ricg = Rgg/2 ,

(ii) ∇S(g) = 0 = Eg + n−2
2n Rgg =⇒ Ricg = (Rg/2 − n−2

2n Rg)g ,
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(iii) ∇S∗(g) = 0 = Eg + Λg − κTg =⇒ Ricg = (Rg/2 − Λ)g + κTg ,

(the last equation is the so–called Einstein’s field equation).
In the vacuum (that is, in the absence of mass) one has Tg = 0 and the third equation
becomes Ricg = (Rg/2 − Λ)g, then all three equations can be written as Ricg = λg, for
some λ ∈ C∞(M). After contracting with the (inverse of the) metric, one sees that such a
λ has necessarily to be equal to Rg/n and the Ricci trace–free tensor

◦
Ricg = Ricg −Rgg/n

must vanish identically for all such critical metrics, which are then all Einstein metrics on
M (notice that the first equation, since we assumed n ≥ 3, implies that g is a Ricci–flat
metric, i.e., Ricg = 0).

Before proceeding further we recall some facts about Einstein manifolds, always as-
suming to be in dimension n ≥ 3 and that all the manifolds are connected.

Definition 4.1.1. An n–dimensional Riemannian manifold (M, g) is said to be Einstein
if the tensor

◦
Ric = Ric −Rg/n is identically zero.

Proposition 4.1.2. Themanifold (M, g) is Einstein if and only if Ric = λg for some λ ∈ R,
in which case R = λn, hence constant. Such λ is called the Einstein constant of the manifold.

Proof. The fact that R = λn, immediately follows by contracting equation Ric = λg with
the metric g. Applying Schur’s lemma (2.3) to the equation Ric = Rg/n, we obtain

dR = 2 div Ric = 2
n

div(Rg) = 2
n

dR

and, asn ≥ 3, this implies dR = 0, henceR constant.Thenλ = R/n is also a constant.

Proposition 4.1.3. The manifold (M, g) has constant curvature if and only if
◦

Ric = W =
0. In particular, 3–dimensional Einstein manifolds have constant curvature and if n ≥ 4, then
(M, g) has constant curvature if and only if it is Einstein and LCF.

Proof. If
◦

Ric = W = 0 then the decomposition formula (1.25) reduces to

Riem = R
2n(n− 1)

g ? g ,

moreover, being (M, g) is Einstein, the scalar curvatureR = λn is constant, henceRiem =
K
2 g ? g withK = λ/(n− 1) ∈ R. The converse statement is trivial.

As three–dimensional Einstein manifolds coincide with the constant curvature ones,
hence they are “classified” by Theorem 1.2.19, the first interesting (dimensional) case is
when n = 4, which will be the subject of the next sections.

4.2 Algebraic curvature tensors in dimension four

In order to study four–dimensional (Einstein) manifolds, we discuss the special decomposi-
tion of the algebraic curvature tensors which holds only in this dimension. More precisely,
in the case of a 4–dimensional vector space, the orthogonal decomposition of the space
of the algebraic curvature tensors given by equation (1.24), which is obtained considering
the irreducible components under the action of O(4),

P = P
24
g ? g + 1

2
◦

Pic ? g +WP , (4.4)
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can be refined, as the space of Weyl tensors can be further decomposed into its irreducible
components under the action of SO(4),

P = P
24
g ? g + 1

2
◦

Pic ? g +W+ +W−,

(if n 6= 4, the action of SO(n) does not provide any new decomposition). For more infor-
mation, we refer to [6, Theorem 1.114].
For a Riemannian manifold, such a decomposition yields the so–called self–dual and anti–
self–dual componentsW±of the Weyl tensor and one can define the half–conformally flat
manifolds as the ones such that eitherW+ orW− vanishes. In Section 4.4, we will show
that these half–conformally flat metrics, like the Einstein metrics (or, more in general, any
metric conformal to an Einstein metric), are critical to the Weyl functional, in dimension
4. We refer to [9] for further reading.

We let (V, g) be a 4–dimensional vector space with g scalar product and recall the
notation of Section 1.3 for algebraic curvature tensor P ∈ C4(V ), namely, the use of Pic,
P,

◦
Pic and Pec to denote, respectively, the (1, 3)–trace of P , the complete trace of P , the

trace–free component of Pic and the sectional curvature of P .
We start by showing some relations for the sectional curvatures of a tensor P such that

◦
Pic = 0 (which corresponds to the condition of being an Einstein manifold).

Proposition 4.2.1. If (V, g) is like above and P an algebraic curvature tensor such that
◦

Pic = 0, lettingKij = Pec(ei, ej) be the sectional curvatures with respect to an orthonormal
basis {ei}n

i=1, thenKij = Kkl whenever i, j, k, l are all different.

Proof. Since Picii = P/4 for every i ∈ {1, 2, 3, 4}, it follows

P/4 = K12 +K13 +K14 = K12 +K23 +K24 = K13 +K23 +K34 = K14 +K24 +K34 .

Then,

(K12 +K13 +K14) − (K12 +K23 +K24) = (K13 +K23 +K34) − (K14 +K24 +K34)

hence, 2K14 = 2K23. Arguing similarly, we get K12 = K34, K13 = K24 and K14 =
K23.

We recall (Remark 1.1.8) that in dimension 4 the Hodge operator on Λ2(V ) is idempo-
tent, i.e., ?2 = 1, hence, letting υ ∈ Λ2(V ) be an eigenvector of ?, we have

υ = ?2υ = λ2υ

and the associated eigenvalue λ must satisfy λ = ±1. Moreover, for every 2–vector υ we
have the decomposition

υ = υ+ + υ− = υ + ?υ

2
+ υ − ?υ

2
(4.5)

with

?υ+ = ?
υ + ?υ

2
= υ + ?υ

2
= υ+ and ? υ− = ?

υ − ?υ

2
= −υ − ?υ

2
= −υ− ,

thus, Λ2(V ) admits the decomposition Λ2(V ) = Λ2
+(V ) ⊕ Λ2

−(V ) into the eigenspaces
Λ2

±(V ) of ? relative to ±1, respectively.
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Choosing an orthonormal basis {e1, e2, e3, e4} of V , for every υ = 1
2υ

ij ei ∧ ej with
?υ = ±υ, there holds

±1
2υ

kl ek ∧ el = ±υ = ?υ = ?
(1

2υ
ij ei ∧ ej

)
= 1

4υijε
ijkl ek ∧ el ,

thus,
vkl = ±1

2υijε
ijkl ,

where εijkl is the Levi–Civita symbol, i.e., εijkl = sgn(ijkl) if (ijkl) is a permutation of
(1234) and zero otherwise. Explicitly,

υ34 = ±υ12 , υ24 = ∓v13 , υ23 = ±υ14 .

Hence, both Λ2
±(V ) are 3–dimensional (as dim Λ2(V ) = 6), with respective eigenbases{

χ±
1 , χ

±
2 , χ

±
3
}
, where

χ±
1 = e1 ∧ e2 ± e3 ∧ e4 , χ±

2 = e1 ∧ e3 ∓ e2 ∧ e4 , χ±
3 = e1 ∧ e4 ± e2 ∧ e3 ,

which are also pairwise orthogonal, so the decomposition is orthogonal

Λ2(V ) = Λ2
+(V ) ⊕⊥ Λ2

−(V ) .

If h ∈ S2(V ∗) is a symmetric bilinear form with associated operator H , defined by

(h? g)(x, y, z, w) = 1
2g(H (x ∧ y), z ∧ w) ,

then to get the components of H (χ±
i ) with respect to the basis χ±

i , we compute for
i, j, k, l ∈ {1, 2, 3, 4} all distinct,

1
2g
(
H (ei ∧ ej), ek ∧ el

)
= (h? g)ijkl = hikgjl + hjlgik − hilgjk − hjkgil = 0 ,

1
2g
(
H (ei ∧ ej), ei ∧ ek

)
= (h? g)ijik = hjk ,

1
2g
(
H (ei ∧ ej), ei ∧ ej

)
= (h? g)ijij = hii + hjj ,

hence,
1
2g
(
H (ei ∧ ej + s1 ek ∧ el), ei ∧ ek + s2 ej ∧ el

)
= hjk − s2hil − s1hil + s1s2hjk

= (1 + s1s2)hjk − (s1 + s2)hil .

This implies that for any two different indices i, j ∈ {1, 2, 3, 4}

1
2g
(
H (χ±

i ), χ±
j

)
= 0 ,

1
2g
(
H (χ±

i

)
, χ±

i ) = h11 + h22 + h33 + h44 = trh .

As a consequence, if trh = 0, the operator H “swaps” the two eigenspaces Λ2
±(V ).

We now consider an algebraic curvature tensor P with associated operator P and com-
pute

1
2g
(
P(χ±

1 ), χ∓
2
)

= P1213 ± P1224 ± P3413 + P3424 = Pic23 ± Pic14 ,
1
2g
(
P(χ±

1 ), χ∓
3
)

= P1214 ∓ P1223 ± P3414 − P3423 = Pic24 ± Pic13 ,
1
2g
(
P(χ±

2 ), χ∓
3
)

= P1314 ∓ P1323 ∓ P2414 + P2423 = Pic34 ∓ Pic12 ,
1
2g
(
P(χ±

1 ), χ∓
1
)

= P1212 ∓ P1234 ± P3412 − P3434 = K12 −K34 ,
1
2g
(
P(χ±

2 ), χ∓
2
)

= P1313 ± P1324 ∓ P2413 − P2424 = K13 −K24 ,
1
2g
(
P(χ±

3 ), χ∓
3
)

= P1414 ∓ P1423 ± P2314 − P2323 = K14 −K23 ,
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whereKij = Pecij . Then, by Proposition 4.2.1, if
◦

Pic = 0 all previous computations gives
zero as a result, hence P preserves the eigenspaces Λ2

±(V ).
In general, by the decomposition (4.4)

P = P
12

· 1
2
g ? g + 1

2
◦

Pic ? g +WP ,

the operator associated to g?g/2 is the identity, hence it preserves the eigenspaces Λ2
±(V )

and, for the previous observations, the same holds for the one associated to WP , being
trace–free, while the one associated to

◦
Pic ? g swaps the two eigenspaces. This implies

thatWP decomposes into two operators

W+ := WP
∣∣
Λ2

+(V ) : Λ2
+(V ) → Λ2

+(V ) and W− := WP
∣∣
Λ2

−(V ) : Λ2
−(V ) → Λ2

−(V ) ,

refining the decomposition in the special case n = 4,

P = P
12

· 1
2
g ? g + 1

2
◦

Pic ? g +W+ +W−

still orthogonal. In particular,

|W |2 = |W+|2 + |W−|2 .

In matrix formwith respect to the basis {χ±
1 , χ

±
2 , χ

±
3 }, the operator P can then be written

as

P =


W + + PI3/12 C /2

C /2 W − + PI3/12


with W ± and C the operators associated to W± and

◦
Pic ? g, respectively and I3 is the

3 × 3 identity matrix.

Remark 4.2.2. By the symmetries of the Weyl tensor and the trace–free component of
Pic, each of the four blocks composing P − PI6/12 is trace–free, i.e., tr W ± = tr C = 0.

Remark 4.2.3. An easy check shows that

P(υ)kl = 1
2
υijP kl

ij ,

for every 2–vector υ = 1
2 υ

ijei ∧ ej and tensor P ∈ C4(V ). Hence, there holds

|P|2Λ2(V ) = 1
4

|P |2 .

4.3 The Hirzebruch theorem

In the same spirit of the Chern–Gauß–Bonnet theorem, the Hirzebruch theorem builds
another bridge between the geometry of a manifold and its underlying topology. Here the
topological invariant is the so–called signature of a manifold, which we are now going to
define. Most of the material in this section is taken from [6, 28], to which we refer for more
details.
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Let M be a compact oriented n–dimensional differential manifold, with n even and
consider the bilinear form

([η], [ζ]) ∈ Hn/2(M) ×Hn/2(M) 7→ 〈[η] ^ [ζ], [M ]〉 :=
ˆ

M
η ∧ ζ ∈ R . (4.6)

This form is symmetric if and only if n is a multiple of 4 and is in general nondegenerate, as
if η is such that

´
M η∧ζ = 0 for all ζ ∈ Ωn/2(M), then also 0 =

´
M η∧?η =

´
M |η|2 dVM ,

hence η = 0.

Definition 4.3.1. LetM be a compact oriented 4k–dimensional differential manifold and
β+

2k(M), β−
2k(M), respectively, the number of positive and negative eigenvalues of the

form (4.6) on H2k(M). Then, the signature ofM is defined as

τ(M) = β+
2k(M) − β−

2k(M) .

As the form is nondegenerate and being dimH2k(M) = β2k(M), we have the relation

β2k(M) = β+
2k(M) + β−

2k(M) ,

then (taking into account Poincaré duality, see Remark 1.1.20) we can rewrite the expres-
sion of the Euler–Poincaré characteristic in terms of the Betti numbers as follows

χ(M) = 2 + 2
2k−1∑
m=1

(−1)mβm(M) + β+
2k(M) + β−

2k(M)

hence,
χ(M) ± τ(M)

2
= 1 +

2k−1∑
m=1

(−1)mβm(M) ± β±
2k(M) . (4.7)

In the simplest case of a simply connected 4–dimensional manifolds, we have

χ(M) ± τ(M)
2

= 1 ± β±
2 (M) .

Remark 4.3.2. From equation (4.7) it follows that the Euler–Poincaré characteristic and
the signature have the same parity.

We collect in the next theorem some properties of the signature (see [28, Chapter 2],
for these results and the subsequent discussion).

Theorem 4.3.3. LetM ,N and L be compact oriented differential manifolds with dimension
4k, 4k and 4k + 1 respectively. Then

(i) τ(−M) = −τ(M), where −M isM with the reverse orientation;

(ii) τ(M tN) = τ(M) + τ(N), where t is the disjoint union;

(iii) τ(M#N) = τ(M) + τ(N), where # is the connected sum;

(iv) τ(M ×N) = τ(M)τ(N);

(v) τ(∂L) = 0;

(vi) τ(CP2m) = 1 for allm ∈ N.

76



4.3. THE HIRZEBRUCH THEOREM

Points (i), (ii) and (v) imply that if two manifoldsM1 andM2 are oriented cobordant
(that is, their union is the oriented boundary of another manifold), they have the same
signature. Hence, the signature is what is called a genus operator, that is, a ring homomor-
phism

τ : (Ω+,t,×) → (Z,+, ·)
from the oriented cobordism ring Ω+ = ⊕∞

m=0Ω+
4m to the integers Z, where t denotes the

disjoint union, × the Cartesian product and Ω+
4m is the set of oriented cobordism classes of

compact oriented 4m–dimensional manifolds. By its algebraic properties, as the oriented
cobordism ring is generated by {[CP2m]}∞

m=0, it is then sufficient to prove any integral
formula expressing the signature for these particular manifolds. This is what F. Hirze-
bruch [17] did in order to prove his theorem in 1954:

τ(M) =
ˆ

M
Lk(p1, . . . , pk) ,

where Lk is a particular polynomial of degree k called the L–genus and p1, . . . , pk are
invariants built from the 2–form Ω/2π, similarly to what we saw for the Chern–Gauß–
Bonnet theorem.

Definition 4.3.4. We denote by P(k) the set of all partitions of the number k ∈ N. If
I = (i1, . . . , im) is one of such partitions and {`i}∞

i=1 any sequence, we denote by `I the
number

`I =
m∏

j=1
`ij = `i1`i2 · · · `im

and by sI = sI(σ1, . . . , σk) the polynomial such that, when σi is taken to be the i–th
elementary symmetric polynomial in the k variables r1, . . . , rk, then sI has the expression

sI(σ1, . . . , σk) =
∑

τ∈ΣI

m∏
j=1

r
ij

τ(j) =
∑

τ∈ΣI

ri1
τ(1)r

i2
τ(2) · · · rim

τ(m) ,

where ΣI is any maximal subset of injective functions τ : {1, . . . ,m} → {1, . . . , k} with
the following property: if τ and η are two distinct elements in ΣI and there exists a permu-
tation ϑ of {1, . . . ,m} such that τ = η ◦ ϑ, then there exists at least one j ∈ {1, . . . ,m}
for which ij 6= iϑ(j).

Remark 4.3.5.

• For k = 1, P(1) = {1}, the only elementary symmetric polynomial in r1, . . . , rk is

σ1 = r1 ,

then s1 has to satisfies

s1(σ1) =
∑

τ∈Σ1

r1
τ(1) = r1 = σ1 .

• For k = 2, P(2) = {(1, 1), 2}, the elementary symmetric polynomials are

σ1 = r1 + r2 and σ2 = r1r2 ,

then s1,1 and s2 have to satisfy

s1,1(σ1, σ2) =
∑

τ∈Σ1,1

r1
τ(1)r

1
τ(2) = r1r2 = σ2 ,

s2(σ1, σ2) =
∑

τ∈Σ2

r2
τ(1) = r2

1 + r2
2 = (r1 + r2)2 − 2r1r2 = σ2

1 − 2σ2 .

77



4.3. THE HIRZEBRUCH THEOREM

• For k = 3, P(3) = {(1, 1, 1), (2, 1), 3}, the elementary symmetric polynomials are

σ1 = r1 + r2 + r3 , σ2 = r1r2 + r1r3 + r2r3 and σ3 = r1r2r3 ,

then s1,1,1, s2,1 and s3 have to satisfy

s1,1,1(σ1, σ2, σ3) =
∑

τ∈Σ1,1,1

r1
τ(1)r

1
τ(2)r

1
τ(3) = r1r2r3 ,

s2,1(σ1, σ2, σ3) =
∑

τ∈Σ2,1

r2
τ(1)r

1
τ(2) = r2

1r2 + r2
1r3 + r2

2r1 + r2
2r3 + r2

3r1 + r2
3r2 ,

s3(σ1, σ2, σ3) =
∑

τ∈Σ3

r3
τ(1) = r3

1 + r3
2 + r3

3 .

An easy computation then gives

s1,1,1(σ1, σ2, σ3) = σ3 ,

s2,1(σ1, σ2, σ3) = σ1σ2 − 3σ3 ,

s3(σ1, σ2, σ3) = σ3
1 − 3σ1σ2 + 3σ3 .

We observe that if every σi is taken to have degree i, then each sI , for I ∈ P(k), is a
homogenous polynomial of degree k.

Definition 4.3.6. LetBi be the i–th Bernoulli number2, that is, the number defined by the
recurrence relation

n∑
j=0

(
n+ 1
j

)
Bj = 0

with B0 = 1.

All the odd Bernoulli numbers but B1 = −1/2 are zero, while the even Bernoulli
numbers after B0 = 1 have alternate signs and the first ones are

1
6
,− 1

30
,

1
42
,− 1

30
,

5
66
,− 691

2730
,
7
6
,−3615

510
,
43867
798

, . . . .

Remark 4.3.7. We recall that for a given square matrixA ∈ Rn×n its characteristic poly-
nomial can be written as

p(t) = det(A− tIn) =
n∑

r=0
(−1)rtrσn−r(A) ,

where σr(A) is the evaluation of the r–th elementary symmetric polynomial in the eigen-
values of A, which can be computed using the following r × r matrix

σr(A) = 1
r!

det



trA r − 1 0 0 . . . 0
trA2 trA r − 2 0 . . . 0

...
... . . . . . . ...

...
... . . . . . . ...

...
... . . . 1

trAr trAr−1 . . . . . . . . . trA


. (4.8)

2After the Swiss mathematician Jacob Bernoulli (1655–1705) [77].
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Moreover, we observe that if A is skew–symmetric and r is odd, then σr(A) = 0. Indeed,
the characteristic polynomial satisfies

p(−t) = det(A+ tIn) = det
(
(A+ tIn)T ) = det(−A+ tIn) = (−1)np(t) ,

that is, it is has the same parity as the dimension. Then σr(A) is zero if r is odd, as it is the
coefficient of a term whose power is of parity opposite to the dimension.

Theorem4.3.8 (Hirzebruch [17], see also [28] for a proof). Let (M, g) be a compact oriented
4k–dimensional Riemannian manifold, then

τ(M) =
ˆ

M
Lk(p1, . . . , pk) , (4.9)

where pi is the so–called i–th Pontryagin class3, that is, the 4i–differential form appearing
in the expansion of the characteristic polynomial of Ω/2π, (see Remark 4.3.7)

det
( Ω

2π
− tI4k

)
=

2k∑
i=0

t2ip4k−2i ,

and Lk is the L–genus ofM , that is,

Lk =
∑

I∈P(k)
`IsI

with (`i)∞
i=0 the sequence of coefficients in the Taylor expansion4 of

√
x

tanh
√
x

=
∞∑

i=0

22iB2i

(2i)!
xi = 1 + 1

3
x− 1

45
x2 + 2

945
x3 + · · · .

By means of Remark 4.3.5, we obtain the following first values of Lk,

L1 = `1s1 = 1
3
σ1 ,

L2 = `1,1s1,1 + `2s2 = 1
9
σ2 − 1

45
(σ2

1 − 2σ2) ,

L3 = `1,1,1s1,1,1 + `2,1s2,1 + `3s3

= 1
27
σ3 − 1

135
(σ1σ2 − 3σ3) + 2

945
(σ3

1 − 3σ1σ2 + 3σ3)

and the Hirzebruch formula in dimension n = 4, 8, 12 in terms of the Pontryagin classes
is given by

τ(M) = 1
3

ˆ
M
p1 ,

τ(M) = − 1
45

ˆ
M

(p1 ∧ p1 − 3p2) ,

τ(M) = 1
945

ˆ
M

(2p1 ∧ p1 ∧ p1 − 13p1 ∧ p2 + 62p3) .

3After the Soviet mathematician Lev Semenovich Pontryagin (Лев Семёнович Понтрягин, 1908–
1988) [78].

4After the English mathematician Brook Taylor (1685–1731) [79].

79



4.3. THE HIRZEBRUCH THEOREM

Using expression (4.8) we can expand the Pontryagin classes p1, p2, p3 in these formulae
as follows, denoting by Ω̂ = Ω/2π and by Ωr and trr Ω the r–times wedge product of Ω
and tr Ω with themselves, respectively,

p1 = 1
2!

det
(

0 1
tr Ω̂2 0

)
= −1

2
tr Ω̂2 = − 1

8π2 tr Ω2 ,

p2 = 1
4!

det


0 3 0 0

tr Ω̂2 0 2 0
0 tr Ω̂2 0 1

tr Ω̂4 0 tr Ω̂2 0

 = 3
4!

(tr2 Ω̂2 − 2 tr Ω̂4) = 1
128π4 (tr2 Ω2 − 2 tr Ω4) ,

p3 = 1
6!

det



0 5 0 0 0 0
tr Ω̂2 0 4 0 0 0

0 tr Ω̂2 0 3 0 0
tr Ω̂4 0 tr Ω̂2 0 2 0

0 tr Ω̂4 0 tr Ω̂2 0 1
tr Ω̂6 0 tr Ω̂4 0 tr Ω̂2 0


= −15

6!
(tr3 Ω̂2 − 6 tr Ω̂2 ∧ tr Ω̂4 + 8 tr Ω̂6)

= − 1
3072π6 (tr3 Ω2 − 6 tr Ω2 ∧ tr Ω4 + 8 tr Ω6) .

Hence, we can rewrite the Hirzebruch formula (4.9) in dimension n = 4, 8 and 12 in terms
of the curvature form Ω:

• when n = 4,
τ(M) = − 1

24π2

ˆ
M

tr(Ω ∧ Ω) , (4.10)

• when n = 8,

τ(M) = 1
5760π4

ˆ
M

(
tr(Ω ∧ Ω) ∧ tr(Ω ∧ Ω) + 6 tr(Ω ∧ Ω ∧ Ω ∧ Ω)

)
,

• when n = 12,

τ(M) = − 1
2903040π6

ˆ
M

(
113 tr3(Ω2) + 411 tr(Ω2) ∧ tr(Ω4) − 496 tr(Ω6)

)
.

In dimension 4, we are going to express the integrand in terms of the Riemann tensor
getting the commonly known formula, while, up to our knowledge, no more explicit ex-
pressions are present in literature in dimension n ≥ 8.

Remark 4.3.9. We underline the analogy between the Chern–Gauß–Bonnet and Hirze-
bruch theorems, where in both cases an integral of a (polynomial) function of some so–
called characteristic classes of a manifold (which are some particular differential forms con-
structed from the curvature form Ω), gives a topological invariant. For Hirzebruch theorem
this is given by the polynomial Lk of the Pontryagin classes, while for the Chern–Gauß–
Bonnet theorem it is the Pfaffian which, in this framework, is called the Euler class of the
manifold. We also mention that these two theorems can be seen as special cases of a more
general result, namely the Atiyah-–Singer index theorem5 (see [3]), which states that for

5After the British–Lebanese mathematician Sir Michael Francis Atiyah (1929–2019) [80] and the American
mathematician Isadore Manuel Singer (1924–2021) [81].
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an elliptic differential operator on a compact manifold, the analytical index (defined as the
difference in dimension between the kernel and the cokernel of the operator) is equal to
the topological index (defined in terms of characteristic classes, see [3, 26, 28]). The ellip-
tic operator, the analytical index and the topological index for the Chern–Gauß–Bonnet
theorem and theHirzebruch theorem are respectively: d+d∗ and∆ = (d+d∗)2; the Euler–
Poincaré characteristic and the signature; the integral of the Euler class and the integral
of the L–genus, where d∗ = ?d? is the formal adjoint to the exterior differential d with
respect to the scalar product between differential forms and ∆ is the Hodge–Laplacian.

The Hirzebruch formula in dimension four. In the simplest four–dimensional case,
we have shown (equation (4.10))

τ(M) = − 1
24π2

ˆ
M

tr(Ω ∧ Ω) , (4.11)

where

− tr(Ω ∧ Ω) = − tr(Ωi
j ∧ Ωj

k) = −Ωi
j ∧ Ωj

i =
4∑

i,j=1
Ωi

j ∧ Ωi
j = 2

∑
1≤i<j≤4

Ωi
j ∧ Ωi

j .

From now on, in order to use the curvature operator R in place of Ω, we identify 2–forms
and 2–vectors, hence we can write

2
∑

1≤i<j≤4
Ωi

j ∧ Ωi
j = 2

∑
1≤i<j≤4

R(ei ∧ ej) ∧ R(ei ∧ ej) =
3∑

i±=1
R(χ±

i ) ∧ R(χ±
i ) ,

indeed, as χ±
1 = e1 ∧ e2 ± e3 ∧ e4, we have

e1 ∧ e2 = (1/2)(χ+
1 + χ−

1 ) and e3 ∧ e4 = (1/2)(χ+
1 − χ−

1 ) ,

then,

2
(
R(e1 ∧ e2) ∧ R(e1 ∧ e2) + R(e3 ∧ e4) ∧ R(e3 ∧ e4)

)
= (1/2)

(
R(χ+

1 + χ−
1 ) ∧ R(χ+

1 + χ−
1 ) + R(χ+

1 − χ−
1 ) ∧ R(χ+

1 − χ−
1 )
)

= R(χ+
1 ) ∧ R(χ+

1 ) + R(χ−
1 ) ∧ R(χ−

1 ) .

and similarly for χ±
2 and χ±

3 .
If we write any 2–vector (or 2–form) υ as υ = υ+ + υ−, like in equation (4.5), then

υ ∧ υ = υ+ ∧ υ+ + υ− ∧ υ− + 2υ+ ∧ υ−

= υ+ ∧ ?υ+ − υ− ∧ ?υ− − 2υ+ ∧ ?υ−

= (|υ+|2 − |υ−|2) dVM ,

where we used the definition (1.8) of the Hodge operator and the orthogonality between
Λ2

+(TM) and Λ2
−(TM).

We now only have to compute |R(χ±
i )±|2 for every i ∈ {1, 2, 3} and subtract the value

obtained for each sign. As |χ±
i |2 = 2 for every i ∈ {1, 2, 3}, this just amounts to subtract-

ing twice the square norm of the upper and lower part of the matrix
W + + RI3/12 C /2

C /2 W − + RI3/12


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that is,

− tr(Ω ∧ Ω) = 2
(
|W + + RI3/12|2 + |C /2|2 − |C /2|2 − |W − + RI3/12|2

)
dVM

= 2
(
|W +| − |W −|2

)
dVM ,

indeed,
3∑

i=1
(W ± + RI3/12) 2

ii =
3∑

i=1

(
(W ±

ii )2 + (R/6)W ±
ii + R2/144

)
=

3∑
i=1

(W ±
ii )2 + (R/6) tr W ± + R2/48

=
3∑

i=1
(W ±

ii )2 + R2/48 ,

being both W ± trace–free, and we obtain

|W + + RI3/12|2 − |W − + RI3/12|2 = |W +|2 − |W −|2 .

Hence, the Hirzebruch integrand in dimension 4 (taking into account Remark 4.2.3) is
given by

− 1
24π2 tr(Ω ∧ Ω) = 1

12π2
(
|W +|2 − |W −|2

)
dVM = 1

48π2
(
|W+|2 − |W−|2

)
dVM ,

leading to the Hirzebruch formula in dimension 4,

τ(M) = 1
48π2

ˆ
M

(
|W+|2 − |W−|2

)
dVM . (4.12)

Since |W |2 = |W+|2 + |W−|2, we can rewrite the Chern–Gauß–Bonnet formula (3.32) in
dimension 4 as

χ(M) = 1
32π2

ˆ
M

(
|W+|2 + |W−|2 + 16σ2(S)

)
dVM

and combining it with the Hirzebruch formula, we get

2χ(M) ± 3τ(M) = 1
8π2

ˆ
M

(
|W±|2 + 8σ2(S)

)
dVM . (4.13)

4.4 TheWeyl functional

We introduce another physically–relevant functional, namely the Weyl functional and we
discuss its critical metrics. We will show that the half–conformally flat metrics and the
Einsteinmetrics (ormore in general anymetric conformal to an Einsteinmetric) are critical
in dimension 4. We refer to [9] for further reading.
We define it, for any metric g on a compact oriented n–dimensional differential manifold
M , as

W(g) =
ˆ

M
|Weylg|n/2

g dVg .

It is easy to check that W is conformally invariant, indeed, if g̃ = ug, with u > 0, then√
det g̃ = un/2√

det g , dV (g̃) = un/2 dVg and (see Theorem 2.1.4)

|Wg̃|2
g̃

= g̃(Wg̃,Wg̃) = u2g̃(Wg,Wg) = u−2g(Wg,Wg) = u−2|Wg|2g ,
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hence,

W(g̃) =
ˆ

M
|Weylg̃|n/2

g̃
dV (g̃) =

ˆ
M
u−n/2|Weylg|n/2

g un/2 dVg = W(g) . (4.14)

It is clear that it is quadratic only in dimension 4 and in such case, the Hirzebruch for-
mula (4.12) gives

W(g) = 2
ˆ

M
|W±|2 dVM ∓ 48π2τ(M) ,

hence, the study of the Weyl functional is equivalent to the study of either

W+(g) =
ˆ

M
|W+

g |2g dVg or W−(g) =
ˆ

M
|W−

g |2g dVg .

Moreover, we have
W(g) ≥ 48π2|τ(M)| (4.15)

with equality if and only if the manifold is half–conformally flat, i.e., either W± ≡ 0
everywhere.This clearly implies that these metrics (and, a fortiori, the LCF ones)minimize
the functional, hence they are trivially critical.

Remark 4.4.1. From equation (4.15) it also follows that in order that a compact oriented
4–dimensional manifold carry an LCF metric, it must have zero signature. In particular,
from equation (4.7), any 4–manifoldwith odd Euler–Poincaré characteristic does not admit
any LCF metric. An example is (see Remark 1.1.20) CP2, as χ(CP2) = 3.

In order to see that another family of critical metrics is given by the Einstein metrics
(or any metric conformal to an Einstein metric), we have to compute the first variation of
W. Referring again to [9, Section 2.1], we have

d
dt

∣∣∣∣
t=0

Ric(g + th)ij = −1
2

(∆hij + 2Rikjlh
kl −Rikh

k
j −Rjkh

k
i

+ ∇ij trh− ∇ikh
k
j − ∇jkh

k
i )

and by means of this one and equation (4.2), we obtain

d
dt

∣∣∣∣
t=0

R2(g + th) = d
dt

∣∣∣∣
t=0

2RR(g + th) = −2R∆ trh+ 2R∇ijhij − 2RRijhij

and

d
dt

∣∣∣∣
t=0

|Ric(g + th)|2 = d
dt

∣∣∣∣
t=0

(g + th)ik(g + th)jlR(g + th)ijR(g + th)kl

= d
dt

∣∣∣∣
t=0

2(g + th)ikRijR
j
k + d

dt

∣∣∣∣
t=0

2RijR(g + th)ij

= −2hikRijR
j
k −Rij∆hij − 2RijRikjlh

kl

+RijRikh
k
j +RijRjkh

k
i −Rij∇ij trh+Rij∇ikh

k
j +Rij∇jkh

k
j

= −Rij∆hij − 2RklR
ikjlhij −Rij∇ij trh+ 2Ri

k∇kjhij .

83



4.4. THE WEYL FUNCTIONAL

Then, by the equality at the third line of the Chern–Gauß–Bonnet formula (3.32), we can
write

d
dt

∣∣∣∣
t=0

W(g + th) = d
dt

∣∣∣∣
t=0

(2
3

ˆ
M

(
3|Ric(g + th)|2 − R(g + th)2)dVg + 32π2χ(M)

)
= 2

3

ˆ
M

((
−3Rij∆hij − 6RklR

ikjlhij − 3Rij∇ij trh+ 6Ri
k∇kjhij

)
+
(
2R∆ trh− 2R∇ijhij + 2RRijhij

)
+
(
(3/2)|Ric|2 trh− (1/2)R2 trh

))
dVg

and we observe that

• the terms −6RklR
ikjlhij , 2RRijhij , (3/2)|Ric|2 trh and −(1/2)R trh are ready to

be written in the form g(T, h),

• by the divergence theorem (1.2.13), in the remaining terms,−3Rij∆hij ,−3Rij∇ij trh,
6Ri

k∇kjhij , 2R∆ trh and −2R∇ijhij , we can switch where the second covariant
derivative is applied, for instance (using Schur’s lemma (2.3))

−3Rij∆hij = −3hij∆Rij + div(other terms) ,

−3Rij∇ij trh = −3 trh∇ijR
ij + div(other terms)

= −(3/2) trh∆R + div(other terms) ,

6Ri
k∇kjhij = 6hij∇ikRj

k + div(other terms)
= 3hij∇ijR + div(other terms) ,

2R∆ trh = 2 trh∆R + div(other terms) ,

−2R∇ijhij = −2hij∇ijR + div(other terms) .

Together, they give the following variation of the Weyl functional in gradient form,

∇W(g)ij = 2
3

((
−6RklRikjl + 2RRij + (3/2)|Ric|2gij − (1/2)R2gij

)
+
(
−3∆Rij − (3/2)∆Rgij + 3∇ijR + 2∆Rgij − 2∇ijR

))
= 1

3
(
−12RklRikjl + 4RRij + 3|Ric|2gij − R2gij − 6∆Rij + ∆Rgij + 2∇ijR

)
.

We now notice that the differential terms appearing above are exactly those of the diver-
gence of the Cotton tensor in dimension 4 (see equation (2.7)),

divCij = 1
12

(6RklRikjl − 6RikR
k
j + 6∆Rij − ∆Rgij − 2∇ijR) ,

hence,

3∇W(g)ij + 12 divCij = −6RklRikjl − 6RikR
k
j + 4RRij + 3|Ric|2gij − R2gij .

Finally, using the explicit decomposition formula (1.28) in dimension 4,

6Rikjl = 6Wikjl + 3Rijgkl + 3Rklgij − 3Rilgjk − 3Rjkgil − Rgijgkl + Rgilgjk
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we can expand the term RklRikjl as follows,

6RklRijkl = 6RklWikjl + 3RRij + 3|Ric|2gij − 3Rj
lRil − 3Rk

iRjk − R2gij + RRij

= 6RklWikjl − 6RikR
k
j + 4RRij + 3|Ric|2gij − R2gij ,

to obtain
3∇W(g)ij + 12 divCij = −6RklWikjl = −12SklWikjl ,

that is,
∇W(g)ij = −4(divCij + SklWikjl) = −4Bij ,

where we call (in every dimension) Bij := divCij + SklWikjl the Bach tensor6

It is easy to verify that the Bach tensor is a trace–free, symmetric (0, 2)–tensor and that
Einstein metrics are always also Bach–flat metrics, indeed, if g is Einstein and Ric = λg,
then

Bij = SklWikjl + divCij

= 1
n− 2

RklWikjl − R
2(n− 1)(n− 2)

gklWikjl + 1
n− 2

(RikjlR
kl −RikR

k
j + ∆Rij)

− 1
2(n− 1)(n− 2)

∆Rgij − 1
n− 1

∇ijR

= λ

n− 2
gklWikjl + λ

n− 2
(Rikjlg

kl −Rikg
k
j )

= 0 .

In particular, Einstein metrics (or any metric conformal to an Einstein metric) are critical
to the Weyl functional in dimension 4.

Remark 4.4.2. In dimension 4 the Bach tensor is conformally invariant, as in this di-
mension it is proportional to the gradient of the Weyl functional and divergence–free, by
satisfying in general

divBi = (n− 4)SjkCijk ,

which follows from
div divCi = Rijkl∇lSjk

by means of the following computations:

∇kCkij = ∆Sij − 1
2(n− 1)

∇ijR −RilS
l
j +RikjlS

kl ,

6After the German physicist Rudolf Bach.
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from equation (2.7), then

∇i∇kCkij = ∇i∆Sij − 1
2(n− 1)

∇i
ijR− ∇iRilS

l
j + ∇iRikjlS

kl

= ∇ki
iSij −Rki

kl∇lS
i
j −Rki

il∇kSlj −Rkijl∇kSil

− 1
2(n− 1)

∆∇jR − 1
2∇lRSl

j −Ril∇iSl
j + Skl∇iRikjl +Rikjl∇iSkl

= ∆∇iSij + ∇k(−Rki
ilSjl −RkijlS

il)
−Ril∇lSi

j +Rkl∇kSl
j −Ril∇iSl

j +Rikjl∇kSil +Rikjl∇iSkl

− 1
2(n− 1)

∆∇jR − 1
2S

l
j∇lR + Skl∇iRikjl

= 1
2(n− 1)

∆∇jR + 1
2S

l
j∇lR +Rkl∇kSl

j +Rikjl∇kSil − Sil∇kRkijl

−Ril∇lSi
j +Rkl∇kSl

j −Ril∇iSl
j +Rikjl∇kSil +Rikjl∇iSkl

− 1
2(n− 1)

∆∇jR − 1
2S

l
j∇lR + Skl∇iRikjl

= −Rikjl∇iSkl

and

∇iBij = ∇i∇kCkij + ∇iSklWikjl

= −Rikjl∇iSkl +Wikjl∇iSkl + (n− 3)SklCjlk

= (n− 3)SklCjlk − (S ? g)ikjl∇iSkl

= (n− 3)SklCjlk − (Sijgkl + Sklgij − Silgkj − Skjgil)∇iSkl

= (n− 3)SklCjlk − 1
2(n− 1)

Sij∇iR − Skl∇jS
kl + Sil∇iSl

j + Skj∇iSk
i

= (n− 3)SklCjlk − 1
2(n− 1)

Si
j∇iR − Skl∇jSkl + Sil∇iSjl + 1

2(n− 1)
Sk

j ∇kR

= (n− 3)SklCjlk − SklCjlk

= (n− 4)SklCjlk .

4.5 Four–dimensional Einstein manifolds

As the Chern–Gauß–Bonnet theorem applies to 2k–dimensional manifolds and the Hirze-
bruch one to 4k–dimensional manifolds, 4 is the lowest dimension in which we can use
both results and actually, the only dimension where it is easy to do so. We have already
seen at the end of Section 4.3 some general consequences of their “combination”, now we
concentrate on the special case of four–dimensional Einstein manifolds.

The Chern–Gauß–Bonnet formulae (3.32) for a compact oriented 4–dimensional Ein-
stein manifold (M, g) of constant λ, that is Ric = λg, give

χ(M) = 1
32π2

ˆ
M

|Riem|2 dVM

= 1
32π2

ˆ
M

(
|W+|2 + |W−|2

)
dVM + λ2

12π2 Vol(M)

= 1
4π2

ˆ
M

(
K2

12 +K2
13 +K2

14 +R2
1234 +R2

1324 +R2
1423

)
dVM , (4.16)
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4.5. FOUR–DIMENSIONAL EINSTEIN MANIFOLDS

where the last equality is true in the frame given by Lemma 3.3.1, and equation (4.13)
becomes

2χ(M) ± 3τ(M) = 1
8π2

ˆ
M

|W±|2 dVM + λ2

6π2 Vol(M) . (4.17)

The following theorem is then immediate by the first equation for the Euler–Poincaré
characteristic.

Theorem 4.5.1. A compact oriented 4–dimensional differentiable manifold that admits an
Einstein metric must have nonnegative Euler–Poincaré characteristic. If in addition, suchmet-
ric is not flat, then the Euler–Poincaré characteristic is positive.

Another easy consequence of the equations above is the following theorem.

Theorem 4.5.2. If (M, g) is a compact oriented 4–dimensional Riemannian manifold with
Einstein constant λ, then

χ(M) ≥ λ2

12π2 Vol(M) .

with equality if and only if the manifold has constant curvature.

Proof. The inequality follows by the second line of equations (4.16). In the equality case
(or if the manifold has constant curvature) we have W = 0, and the conclusion follows
from Proposition 4.1.3.

We now see the important Hitchin–Thorpe inequality for four–dimensional Einstein
manifolds.

Theorem 4.5.3 (Hitchin–Thorpe inequality [18, 34]). A compact oriented 4–dimensional
Einstein manifold (M, g) must satisfy the inequality

χ(M) ≥ 3
2

|τ(M)| . (4.18)

In the equality case, the manifold is Ricci–flat and half–conformally flat.

Proof. The inequality clearly follows from equation (4.17). In the equality case, λ = 0 must
hold and eitherW± = 0.

Remark 4.5.4. More precisely, equality can only occur ifM is either flat or a Riemannian
quotient of a K3 surface7. These are complex surfaces diffeomorphic to quartic surfaces
in CP3. For a proof we refer to [18, Theorem 1] and for more details about K3 surfaces
to [20].

Remark 4.5.5. The nonsufficiency of the Hitchin–Thorpe inequality in order to admit
an Einstein metric was shown (independently) in 1996 by C. LeBrun [21] and A. Sam-
busetti [31], who exhibited infinitelymany nonhomeomorphic compact oriented 4–dimensional
manifoldsM (also simply connected in the case of LeBrun), that cannot carry any Einstein
metrics, but satisfy nevertheless the even stronger inequality 2χ(M) > 3|τ(M)|.

7Named by André Weil after the initials of the two German mathematicians Ernst Eduard Kummer (1810–
1893) [82], Erich Kähler (1906–2000) [54], the Japanese mathematician Kunihiko Kodaira (小平邦彦, 1915–
1997) [83] and “[…] the beautiful mountain K2 in Kashmir”.
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The Riemann tensor of an Einstein manifold in the special frame given in Lemma 3.3.1
is determined by the 6 components

K12 , K13 , K14 , R1234 , R1324 , R1423 .

This is easy to verify by direct computation. Anyway, we observe that the Einstein con-
dition Ric = λg defines, within the 21–dimensional space of the tensors satisfying the
symmetries of the Riemann tensor, except for the Bianchi identity, a subspace of dimen-
sion 12; if in addition the tensor satisfies the 6 zero–conditions we have by choosing the
orthonormal frame given by Lemma 3.3.1, then this latter reduces to a 6–dimensional sub-
space.
With these few components, we can easily compute for i < j

R(ei ∧ ej) =
∑

1≤s<t≤4
Rij

stes ∧ et = Kij ei ∧ ej +Rijkl ek ∧ el

where k < l are the remaining indices. Then, in the basis {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e3 ∧
e4, e4 ∧ e2, e2 ∧ e3}, the matrix associated to R takes the form

R =
(
A B

B A

)
,

where

A =

K12
K13

K14

 =

µ1

µ2

µ3


and

B =

R1234
R1342

R1423

 =

ν1

ν2

ν3

 .

In particular, letting µ = (µ1, µ2, µ3) and ν = (ν1, ν2, ν3), we can express as follows

• the Einstein condition,
3∑

i=1
µi = λ ,

• the Bianchi identity,
3∑

i=1
νi = 0 ,

• the Chern–Gauß–Bonnet formula,
ˆ

M

(
|µ|2 + |ν|2

)
dVM = 4π2χ(M)

• and the Hirzebruch formula,
ˆ

M
〈µ, ν〉 dVM = 3π2τ(M) .

88
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Indeed, such expression of the Chern–Gauß–Bonnet formula comes from equation (4.16),
whereas for the Hirzebruch formula, we write, for i < j and k < l all different

R(ei ∧ ej) ∧ R(ei ∧ ej) = ±2KijRijkl dVM ,

where the minus sign is in the case of (i, j) = (1, 3) or (i, j) = (2, 4), then, by equa-
tion (4.11), we compute the Hirzebruch integrand as

1
3
p1 = 1

12π2

∑
1≤i<j≤4

R(ei ∧ ej) ∧ R(ei ∧ ej)

= 1
6π2

(
K12R1234 −K13R1324 +K14R1423 +K23R2314 −K24R2413 +K34R3412

)
dVM

= 1
3π2 (µ1ν1 + µ2ν2 + µ3ν3) dVM .

In this setting, the Hitchin–Thorpe inequality (4.18) amounts to the simple observation

3π2|τ(M)| =
∣∣∣∣ˆ

M
〈µ, ν〉 dVM

∣∣∣∣ ≤
ˆ

M
|µ||ν| dVM ≤ 1

2

ˆ
M

(
|µ|2 + |ν|2

)
dVM = 2π2χ(M) ,

(4.19)
and in the equality case, it must be

R/4 =
3∑

i=1
µi = constant ·

3∑
i=1

νi = 0 ,

for µ and ν have to be proportional and Ric = Rg/4 = 0. We now improve it, in the case
of nonnegative or nonpositive curvature.

Theorem 4.5.6 (Hitchin [18]). Let (M, g) be a compact oriented 4–dimensional Einstein
manifold whose nonzero sectional curvatures all share the same sign, then there holds

χ(M) ≥
(3

2

) 3
2
|τ(M)| ,

where equality can occur if and only if (M, g) is flat.

Proof. Let {e1, e2, e3, e4} a special orthonormal frame as above and observe that the angle
ϑ between any two vectors

µ ∈ A =
{

(x1, x2, x3) ∈ R3
∣∣∣ x1, x2, x3 ≥ 0 or x1, x2, x3 ≤ 0

}
and

ν ∈ B =
{

(x1, x2, x3) ∈ R3
∣∣∣ x1 + x2 + x3 = 0

}
satisfies cosϑ ≤

√
2/3 . Indeed, for a fixed ν the angle ϑ between µ and ν clearly decreases

as µmoves towards the boundary, hence (by symmetry), we can assume that µ is any unit
vectors lying on the boundary of A. We let µ = (1, 0, 0), then by means of the Lagrange
multiplier method applied to the function

cosϑ = f(ν) = ν1

|ν|
,
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under the constraint ν1 + ν2 + ν3 = 0, we get

−ν1ν2

|ν|3
= Λ = −ν1ν3

|ν|3

and ν2 = ν3 = −ν1/2, thus

cosϑmax = ν1√
(ν1)2 + 2(ν1/2)2 =

√
2/3 .

Hence, we obtain

〈µ, ν〉 = |µ||ν| cosϑ ≤ |µ|2 + |ν|2

2

√
2/3 ,

and integrating as in formula (4.19), we conclude

3π2τ(M) ≤ 1
2

√
2
3

4π2χ(M) .

Reversing the orientation, we get the inequality for −τ(M).
Since (3/2)3/2 is irrational, in the equality case it must hold |τ(M)| = χ(M) = 0, then
(M, g) is flat, by Theorem 4.5.1.

We conclude with some examples of manifolds not admitting any Einstein metrics.
We will see that the Einstein property does not behave well under common topological
constructions. In particular, with respect to the connected sum which, for connected 4–
manifolds, satisfies (see Remark 1.1.20)

χ(M#N) = χ(M) + χ(N) − 2 . (4.20)

Example 4.5.7. Recalling Example 3.3.4, the spaces M = S1 × S3 and N = T2 × S2

cannot be endowed with Einstein metrics due to Theorem 4.5.1, as they cannot carry a flat
metric and χ(S1 × S3) = χ(T2 × S2) = 0. Then, by equation (4.20), for every positive
integersm and n one has

χ(M#m#N#n) = −2(m+ n− 1) < 0

and none of these manifolds admits an Einstein metric, by Theorem 4.5.1.

Example 4.5.8. The manifold M = T4 is flat with canonical metric, thus Einstein and
χ(M) = 0. The manifold N = RP2 × RP2 with canonical metric satisfies χ(N) = 1
(Remark 1.1.20) and is also Einstein, as it is the product of an Einstein manifolds with
itself. Nonetheless, form > 1 and n > 2,

χ(M#m#N#n) = −(2m+ n− 2) < 0 .

These manifolds, again by Theorem 4.5.1, cannot admit any Einstein metrics for every
nonnegative integers such that 2m+ n > 2.
Actually, also N#2 = (RP2 × RP2)#2 admits no Einstein metrics: χ(N#2) = 0 and it
is easy to verify using the Seifert–van Kampen theorem8 (see [16, Theorem 1.20]) that its
fundamental group has a finite subgroup isomorphic to Z/2Z, as such, it cannot carry a
flat metric (or any metric of nonpositive curvature) due to a theorem of Cartan (see [22,
Corollary 12.18]).
We remark that these results are true despiteRP2 being nonorientable, due to Remark 3.2.6.

8After the German mathematician Herbert Karl Johannes Seifert (1897–1996) [84] and the Dutch mathe-
matician Egbert Rudolf van Kampen (1908–1942) [85].

90



4.5. FOUR–DIMENSIONAL EINSTEIN MANIFOLDS

Example 4.5.9. We recall from Remark 1.1.20 that χ(CP2) = 3, and denote by

Mk,` =
(
CP2)#k#

(
−CP2)#`

.

By means of Theorem 4.3.3, we compute

χ(Mk,`) = k + `+ 2 , τ(Mk,`) = k − ` .

Consequently, for k ≥ 5(` + 1) or ` ≥ 5(k + 1), the manifold Mk,` does not admit any
Einstein metric by the Hitchin–Thorpe inequality (4.18).
Actually, if k = 5`+ 4 or ` = 5k + 4 the manifoldMk,` still does not admit any Einstein
metric, as it satisfies the equality in the Hitchin–Thorpe inequality, is simply connected
and not flat (see Remarks 4.4.1 and 4.5.4).
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