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INTRODUCTION

In mathematics, in particular in the field which is in the middle between
analysis and geometry called geometric analysis, a geometric flow is
a motion in time of some geometric object or structure, driven by a
system of partial differential equations. Such topic got recently an
extremely large interest due to its success in solving some famous open
problems, notably among them, the Poincaré conjecture by Perelman,
via the Ricci flow.
We will consider the evolution in time of smooth subsets FE; of the
Fuclidean space such that their boundaries 0F;, which are smooth
hypersurfaces, move, for ¢t € [0,7), with “outer” normal velocity V;
given by

‘/t - Ath on OEt, (SDF)

where A; and H; are respectively, the Laplacian and the mean curvature
of the surface OF;. The resulting motion is called surface diffusion flow
and it was first proposed by Mullins in [21] to study thermal grooving
in material sciences (see also [6]). We will deal with surfaces in the
three—dimensional space, which is a physically relevant case since it
describes the evolution of interfaces between solid phases of a system,
driven by surface diffusion of atoms under the action of a chemical
potential (see for instance [16] and the references therein).

Our main purpose is to prove, following [1], a long time existence

result for suitable “initial” sets Ey C R? in the “periodic" setting, that is,
assuming that all the evolving sets E; (hence, their boundary surfaces)
are 1-periodic with respect to the standard integer lattice Z3 C R3. It
is then clear that we can equivalently consider the surface diffusion flow
of sets E; in the ambient space T3 = R3/ Zg, the three-dimensional
“flat” torus of unit volume, which is the setting we are going to adopt
in all the thesis.
We mention that even if we work in dimension three, all the results and
arguments also hold in T? = IR?/Z?, considering in such case moving
curves. Moreover, when the dimension of the ambient is larger than
three several questions remain open.

The most important property of this flow, which is the basis for the
results we are going to discuss, is that it is a gradient flow of a functional
which clearly gives a natural “energy”, decreasing in time during the
evolution (in other words the velocity V; is minus the gradient, that is,
the Fuler equation, of a functional). Precisely, in any dimension n € IN,
the surface diffusion flow can be regarded as the H~'-gradient flow of
the following Area functional, defined for any smooth set F as

A(OFE) = Area(0F) = du
OF
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giving the area of its (n — 1)-dimensional smooth boundary, under the
constraint that the volume Vol(E) = £"(E) is fixed, choosing a suitable
norm on H~1(AF). Obviously, p is the “canonical” measure associated
to the Riemannian metric on dF induced by the scalar product of
IR™, which coincides with the n—dimensional Hausdorff measure H". It
clearly follows that the volume of the evolving sets Vol(E}) is constant
in time, while we remark that the convexity of E; is not necessarily
preserved along the flow (see [17]). This is a great difference between
our flow and the more famous mean curvature flow, which is also a
gradient flow of the Area functional (without the constraint on the
volume), but with respect to the L?-norm (see [19]).

Parametrizing the smooth surfaces OF; by some maps (embeddings)
Yy M — T" such that ¢(M) = OE; (here M is a fixed smooth
differentiable surface) and letting 14 to be the outer unit normal vector
to OF}, the evolution law (SDF') can be expressed as

0
&”lbt - (Ath)Vt

and due to the parabolic nature of this system of PDEs, it is known that
for every smooth initial set Fy C T", the surface diffusion flow E; with
such initial data exists unique and smooth in some positive time interval
[0,7"). Such short time existence and uniqueness result was proved by
Escher, Mayer and Simonett in [6] for the surface diffusion flow in any
dimension of a smooth compact hypersurface in the Euclidean space.

Our aim is to present an (expected) “stability” result by Acerbi,
Fusco, Julin and Morini in [1], where they prove that if the initial set
is sufficiently “close” to a strictly stable critical set F C T3 for the
(volume—constrained) Area functional, then the flow E; actually exists
for all times and asymptotically converges in some sense to a “translate”
of F'. That is, for such special class of initial data we have the existence
of a global solution of the evolution problem (SDF). This is clearly
related to the fact that the flow is the (volume—constrained) gradient
flow of the Area functional in the sense above. For this reason, the
analysis of its first and second order behavior (in Chapter 1) is one of
the key steps in the proof of such result.

We say that a smooth subset F' C T" is critical if for any smooth
one—parameter family of diffeomorphisms ®; : T" — T, such that
Vol(®,(F')) = Vol(F) and ®g| = Id, there holds

d
—A(0D(F)) =0
dt
t=0
that is, the first variation of the Area functional A under the constant
volume constraint is zero for F. It follows that F' is critical for A if and

only if it satisfies
H=XeR on OF

that is, OF is a smooth surface with constant mean curvature.
The study of the second variation and of the related behavior of the
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Area functional around a critical set F, leading to the central notion
of stability, is more involved. Differently by the original papers, we
will compute it with the tools and methods of Riemannian geometry,
coherently with the “geometric spirit” of the whole thesis. In particular,
we will see that at a critical set F', the second variation of A only depends
on the normal component ¢ on JF of the vector field which is the
infinitesimal generator of the family of diffeomorphisms &, : T — T",
deforming F' keeping its volume constant. This volume constraint on
the “admissible” deformations of F' implies that the functions ¢ must
have zero integral on OF, hence it is natural to define a quadratic form
I1r on such space of functions which is related to the second variation
of A by the following equality

d2

p(p) = 3 AODu(F))

t=0

where ®@; : T™ — T" is a one—parameter family of diffeomorphisms
satisfying Vol(®y(F)) = Vol(F),

0P,

Oy, = Id a
ol F an ot

= @vr on OF,
t=0

where vg is the outer unit normal vector of OF.

Since the functional A is clearly translation invariant, by choosing for
every vector 11 € R" the family of diffeomorphisms @, of the n—torus
which simply translate any point by ¢, it is easy to see that the form I1p
vanishes on the finite dimensional vector space given by the functions
¥ = (n,vp). We then say that a smooth critical set F' C T™ is strictly
stable if

[Ip(p) >0

for all non—zero functions ¢ : OF — R, with zero integral and L%~
orthogonal to every function ) = (n,vp).

We underline that the presence of such “natural” degenerate space of
the quadratic form I1g (or, equivalently, the translation invariance of
A) is the main reason of several technical difficulties in the thesis.

In order to analyze the local behavior of A around a smooth set
F C T", we say that the set E is “W?P—close” to F, if for some § > 0
“small enough” we have Vol(EAF) < 4, its boundary OF is contained
in a suitable tubular neighborhood of OF and can be described as

OF = {y+¢(y)vr(y) : y € OF}

for some smooth function ¢ : OF — R with |[¢[|y2r9r) < 0. That is,
the boundary of F is represented as the “normal graph” on F of the
function v, which is clearly a very useful way to transform the problem
on sets into a problem on functions.

Our first goal, in the last section of Chapter 1, will be to show the
result in [2] that any smooth strictly stable critical set F' C T" is a
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local minimizer of the volume-constrained Area functional (“isolated"
up to translations), among all smooth W?P—close sets E C T", if
p > max{2,n —1}.

Then, it is possible to consider the “dynamic” stability, having heuris-
tically in mind the example of a system whose state is in a “potential
well”, that is, a region surrounding a local minimum of its potential
energy. We will show the following nonlinear stability result, proved
in [1] with a line of proof that was new in the literature, based on energy
estimates and geometric interpolation inequalities.

Theorem. Let F C T3 be a strictly stable critical set and let N, be a
tubular neighborhood of OF, as in formula (1.36). For every a € (0,1/2)
there exists M > 0 such that, if Fo is a smooth set satisfying

Vol(Ey) = Vol(F),

Vol(EyAF) < M,

the boundary of Ey is contained in N, and can be represented as

OEo = {y + ¢, (y)vr(y) : y € OF},

for some function Vg, : OF — R such that |[Vg, | c1.epr) < M,

. / IVHo|? dpo < M,
OEq

then there exists a unique smooth solution Ey of the surface diffusion flow
starting from Eg, which is defined for all t > 0. Moreover, Ey — F +n
exponentially fast in W32 as t — +oo, for some n € R3, with the
meaning that the functions v, : OF +1n — R representing OE; as
“normal graphs” on OF +n, that is,

OE; = {y + ¥y t(y)vrin(y) : y € OF +n},

satisfy
< Ce Pt
||¢7],t||w3v2(813+7]) >~ e s

for every t € [0, +00), for some positive constants C' and [3.

The classification of the smooth stable critical sets in T2 is complete:
they are lamellae, balls, 2—tori or gyroids (see [26]). The surfaces in the
first three classes are actually strictly stable, while the strict stability of
gyroids has been established only in some cases (see [14,15,27]). Due
to the above theorem, such sets are thus “dynamically exponentially
stable” for the surface diffusion flow.

The thesis is organized as follows: in Chapter 1 we compute in general
the first and second variation of the Area functional and we show the
W2Plocal minimality of the smooth strictly stable critical sets. In
Chapter 2 we introduce the surface diffusion flow and in Chapter 3
we prove the nonlinear stability theorem above. Finally, in Chapter 4

4
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we discuss some results related to our work. In particular, we briefly
describe the surface diffusion flow with elasticity, introduced recently to
study the morphological evolution of strained elastic solids driven by
stress and surface mass transport (see [10]) and the modified Mullins—
Sekerka flow. Then, we give a classification of the “stable” critical set
and we conclude with an overview of possible lines of research.
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THE AREA FUNCTIONAL

As we said in the introduction, the surface diffusion flow may be regarded
as a suitable gradient flow of the Area functional. In this chapter
we introduce such functional and we analyze its basic properties. In
particular, we compute its first and second variation formulas and we
prove a sufficient condition for a set to be local minimizer.

1.1 NOTATION AND CEOMETRIC PRELIMINARIES

We start by recalling that our setting is the n—dimensional (unit) flat
torus T™ (as in [2]), that is the quotient of R™ with respect to the
equivalence relation x ~ y <= x —y € Z", where Z" is the standard
integer lattice of R™. The functional spaces W*?(T"), k € N, p > 1,
can be identified with the vector subspaces of W;Zf(IR”) of functions
that are one—periodic with respect to all coordinate directions. Similarly,
Ok (T"), for a € (0,1) may be identified with the space of one-periodic
functions in C**(RR™).

A set E C T" will be called smooth (or of class C*, WHP) if its
one-periodic extension to R™ is smooth (or of class C**, W*P) with
the meaning that its boundary is a smooth hypersurface (or it can be
locally described as a graph of a function C*<, W*P_ around any of its
points).

We now introduce some basic notations and facts about smooth
hypersurfaces that we need to compute the first and second variation of
the Area functional by “geometric” methods.

We advise the reader that in all our work the convention of summing
over the repeated indices will be adopted. Moreover, when it is clear
by the contest, we will write div for both the (Riemannian) divergence
operator on a hypersurface (defined by formula (1.1) below) and the
(standard) divergence in T™ (which is locally R™), but this latter will
be instead denoted with divt  when it will be computed at a point of
a hypersurface, in order to avoid any possibility of misunderstanding.
Finally, in all the estimates of the thesis, the constants C' may vary
from a line to another.

We will consider (n — 1)-dimensional, compact, smooth hypersurfaces
OF immersed in T" where E is a smooth set, that is, pairs (OF, )
where ¢ : OF — T" is a smooth immersion (the rank of the differential
di is equal to n — 1 everywhere on OF).

Taking local coordinates around any = € dF, we have local bases
of the tangent space T,OF and of its dual T;OF, respectively given by
vectors {%} and 1-forms {dz;}. So we denote the vectors on OF by
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X=X iﬁ%i and the 1-forms by w = w;dz; , where the indices refer to
the local basis.

The manifold OF gets in a natural way a metric tensor g turning it
into a Riemannian manifold (9F, g), where

- <3¢ W>
9ij = a%"axj

that is the pull-back of the scalar product of IR™ via the immersion
map . Then the “canonical” measure induced on OF by the metric g

is given in a coordinate chart by pu = y/det(g;;) £" 1 where "1 is
the standard Lebesgue measure on R"~!,

The induced covariant derivative on (OF, g) of a vector field X and
of a 1-form w are respectively given by
VX' = 67% + 15, X7, Vjwi = 87% — Ik,
where the Christoffel symbols F;-k are expressed by the formula

o= (L L L)
ik — 29 arj gkl 8xkg]l 3xlgjk .
Moreover, the gradient Vf of a function, its Laplacian Af and the
divergence divX of a tangent vector field at a point © € JF are defined
respectively by

g(Vf(x),v) =dfe(v) VYveTE,  Af=trV2f,
and

(2

divX = trVX = V, X' = aixi +Ti Xk (1.1)
€T

We recall that by the divergence theorem for compact manifolds (without
boundary), there holds

/ divXdu=0 (1.2)
OFE
for every tangent vector field X to 0F, which in particular implies
/ Afdu=0
(2

for every smooth function f: 0F — R.

Since the hypersurface JF is the boundary of a smooth set, we can
consider the globally—defined outer unit normal vector vy at each point
of OF, then we can define a symmetric 2-form B = h;; called second
fundamental form as follows,

hij = —<82¢ v >
v 81’i81‘j7 E

whose trace is the mean curvature H = g h;j of OF.
The symmetry properties of the covariant derivative of B are given by
the following Codazzi equations,

Vz'hjk = thik = thz'j . (1.3)
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Remark 1.1. Let the hypersurface OF C IR™ be locally the graph of a
function f: R"~! — R, that is, (z) = (z, f(z)), then we have

g":54-+ﬁ87f v :_M
() 1] a:L‘Z axj ] E 1 + ’va
Hess;; f

VR
Af Hessf(Vf, Vf) div( v )

H= _ — - YJs
VIHIVE (VIHIVP)? VI+|VIP

where Hessf is the Hessian of the function f.

In the sequel, the following Gauss—Weingarten relations will be fun-

damental
%1 x O ovg 15 O
g 7_}7‘1 s 7:]1 87. 1.4
8.%827]‘ K 8xk Ve 8a:j g 81’5 ( )
Notice that by these relations it follows
g 0% ) g
Ay = ¢ IV2a) = ¢ _r’?.) = —gYhj:vg = —Hug .
(0 g vz]w g (axzﬁx] maxk g jVE Vg
(1.5)
Morevover, we have the formula
Avg = VH — |B|*vg, (1.6)

indeed, computing in normal coordinates at a point x € JF, by the
above Gauss—Weingarten relations, we have

i a2VE BVE
Avg = g¥ —Tk
VE g (81:18% K 8xk>

0 0
— i s
g (199 5z,

g D) g
=9" Vz'hﬂQZS% +97hjug"
S

1] S w
S

=VH - |B)*vg,

2

0x;0x,

— 47 hjg" hisvE

since all Ffj and %gjk are zero at r € OF and we used Codazzi

equations (1.3).

Finally, we recall that by straightforward computations the Riemann
tensor, the Ricci tensor and the scalar curvature can be expressed by
means of the second fundamental form as follows,

Riju = g<v32i8(9:c;€ — V?j(;;k, ;;) = hihj — hiyhjg
Ric;; =g"Ruxji = Hhij — hag®hyj
R = ginicij = gijgklRikjl = H2 — ’B‘Q . (1.7)
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Hence, the formulas for the interchange of covariant derivatives, which
involve the Riemann tensor, become

ViViX* = V;V:X* =Rijug™ X' = (hiphji — hahji) ¢ X',
VNjwk — Vjviwk = Rz’jklglsws = (hikhjl - hilhjk) glsws . (1'8)

1.2 FIRST AND SECOND VARIATION OF THE AREA FUNC-
TIONAL

We define the Area functional

A(OE) = / du
(o))
on the boundary of any smooth set £ C T™. Obviously, u is the
canonical measure aforementioned, which coincides with the (n —1)-
dimensional Hausdorff measure #"~! on OF.
We are interested in computing the first and second variation of the
Area functional with respect to volume—preserving variations, that is,
the flows @ as in the following definition.

Definition 1.2. Let £ C T™ be a smooth set.
We say that a vector field X € C°(T",R") is admissible for E if the
associated flow @ : I x T™ — T"™, defined by

{eg(t,x) = X(P(t,z)) (1.9)
P(0,2) ==z
satisfies

Vol(®(t, E)) = Vol(E)

forallt eI and x € T™.

To do this, we first compute such first and second variations for
“general” (not necessarily volume—preserving) variations ®, generated
by (not necessarily admissible) vector fields X € C°°(T",IR"™), then we
restrict to X as in this definition. In order to simplify the notation, in
the following, we will write often @®; in place of ®(¢,-) and F; in place
of &(F) = ®(t, E).

As a preliminary computation, we discuss the behavior of the metric
tensor g and of the canonical measure p of OF under the effect of
the “deformation” of OF given by a smooth one parameter family of
immersions ¢, : OF — T", with t € I and g = ¢ = Id. Defining the
field X = % —o along OF (the infinitesimal generator of the variation
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) and setting X, = X — (X, vg)vp, to denote the “tangential part”
of X, letting vg the outer normal unit vector of OF, we compute

0 0 <5¢t 3¢t>

agl] t=0 :& 8@'2 ’ 87% t=0

() (3 2)
- 8xi’8xj 81'3"8.731‘
D DL Oy O ylx D0
_al‘i<X, ij>+0mj <X’ 6951 2 X’ 8%‘183}]

0 Y 0 aw> ) < I, >
= Xr — —( X =27 Xy ——
8azz< n aCCj> + 8.Tj< n 81:1- FU n 8xk

+ thj <X, Z/E> ,

where we used the Gauss—Weingarten relations (1.4) in the last step.
Letting w be the 1-form defined by w(Y') = ¢g(X,,Y), this formula can
be rewritten as

—Gii = 2% 2h;i (X,
2% = o, + oz, + 2T 5wk + 2hij (X, vE)
= Viw; + Vw; + 2h;; (X, UE> , (1.10)

being v : OF — T™ the inclusion (identity) map of OF.
We remind that

dt

for any n x n squared matrix A(t) dependent on ¢, then we get

gtq/detgij

L et A(t) = det [Al(t)th(t)] , (1.11)

_ 0 et
t=0 N 2,/detg;; ot Jij

t=0
_ \/mgij%gij
A /detgijg” (Vz-wj + iji + thj <)(7 VE>
N 2
= \/detgy; (divX, +H(X,vp)) (1.12)
which can be expressed as
0 .
gl o = (dleT + H(X, VE>),u, (1.13)

where p; is the canonical Riemannian measure of the smooth hyper-
surface dF;. We are now ready to compute the first variation of the
functional A.

Theorem 1.3 (First variation of the Area functional). Let E € T" a
smooth set and X € C*(T",IR™) the infinitesimal generator of the flow
D: I xT" = T". Then,

d
ZA(B)

OF

where vy and H are respectively, the outer normal and the mean curva-

ture of OF (here Ey = ®(E)).

t=0

10
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Proof. We let 1, : OEF — T" be given by

¢t(9€) = q)(t,:(}) )

for z € OF and t € I, then ¢(OF) = OF; and 9y |19 = X at every
point of OF.

Denoting with g;; = g;;(¢) the induced metrics (via ;) on the smooth
hypersurfaces OF; and setting ¢y = ¢ = Id, by the above computation,
we have

d d
—A(OF = — du
dt ( )t:O dt Jom, ' lizo
d
= — detg;; dx
dt Jog R P
0
= —/detg;; d
/8E ot VI =0 v

(1.14)

= / \/detgi; (divX, +H(X,vg)) dx
oF

= / (divX, + H(X,vg)) du
OFE

= / H(X,vg)du
OF

where the last equality follows from the divergence theorem (1.2). [

It follows that every smooth set F with zero first variation of the
Area functional under a volume constraint (for instance, a minimum)
must satisfy the condition

/ H(X, vg) dj = 0 (1.15)
OF

for all admissible X € C*°(T™, R").
We now note that if X € C°°(T",R") is an admissible vector field
and @ is the associated flow, then Vol(E;) = Vol(E) for all t € I,
thus, by the divergence theorem, denoting with J&; the Jacobian of
®; : T" — T", we have
0= %Vol(Et)
d

=2 [ 4
dt Jp,

t=0

t=

-0
d
== /E JP(t,z)dz
9]

= — JDy(z dz
g Ot (2) t=0

_ [E divX (z) da

— / (X, vg) dji.
oOF

t=0

11
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that is, the normal component ¢ = (X, vg) of X has zero integral on
OF.
We remark that we used the fact that

;Jcpt T divx, (1.16)
indeed, as J®;(z) = det[d®D;(z)], by means of formula (1.11), we obtain
gtﬂbt(z) — J®y(2)) tr [dy(2) ) 0 dX (P (2)) 0 ddy(2))],

since, by definition of ®, we have

()] = a( 5u(2) ) = d[X(@1(2))] = X (@1()) 0 dbi(2),
then, being the trace of a matrix invariant by conjugation, we conclude

%Jd)t(z) Ty (2) tr [dX (Dy(2))] = JDi(2))divX (Di(2))  (1.17)
and considering ¢ = 0, we obtain equality (1.16). More in general, we
have

0= Vol(B)
= : gtJCIDt(z) dz

_ / divX (D(t, 2)) JD(t, ) d=
=/ divX (z) dz
Ey

= / (X,vg,) du (1.18)
OF:

where vg, is the outer unit normal vector of the smooth hypersurface
8Et.

Conversely, we have the following lemma whose proof is postponed
after Lemma 1.16, since the arguments are very similar.

Lemma 1.4. Let ¢ : OF — R a C* function with zero integral.
Then, there exists an admissible vector field X € C°°(T",IR™) such that

o= (X,vpg).

Hence, from equality (1.15) and this lemma, it follows

/ Hodu =10
oF

for all ¢ € C*°(JF) with zero integral, which is equivalent to say that
there exists a constant A € R such that

H=2\ on OF,

That is, OF is a smooth hypersurface with constant mean curvature.
This motivates the following definition.

12
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Definition 1.5 (Critical sets). We say that a smooth subset F' C T"
is critical for the Area functional A (under volume constraint), if there
exists a constant A € R such that

H=X\ on OF.

Remark 1.6. Clearly, the critical sets for the unconstrained Area func-
tional must satisfy

/ H(X,vp)dp =0
oF
for every X € C°°(T™,R™), which easily implies the minimal surface
equation H =0 on OF.
Now we turn our attention to the second variation of A.
Theorem 1.7 (Second variation of the Area functional). Let E and X
be as in Theorem 1.3, then
d2

ﬁA(aEt)‘t:O = /aE (|V<X7 VE>‘2 _ <X, VE>2’B|2) d,u

+/ H(H(X, vg)? + (Z,vi) — 20X, V(X,vp)) + B(X, X,)) dp,
oE

where B is the second fundamental form on OE and |B|? is its norm,
which coincides with the sum of squares of the principal curvatures of
OE, moreover we set X; = X — (X, vg)vg as the tangential part of X
on OF and

0? 0

Proof. We let 1y = ®(t,-)|sr as in Theorem 1.3 where we showed that

Z X(9(0,-)) = dX(X).

d d
—A(OE,) = / detg;; dx :/ H(X,vg,)du .
dt dt Jog, OE,

Consequently, we have

d2
5 AOE)

4 H(X,vE,)y/detg;; dx
=0 dt Jop,

t=0

In order to semplify notations we set v = vg and ¢ = (X, vg,), moreover
we drop the subscript ¢ in i, that is, we write simply . We need to
compute the following derivatives

0
and a detgij

OH

oH o
ot

o (1.19)

t=0 t=0

By formula (1.12), there holds

gtwdetgij

= (diVXT + Hap) \/detg;;

t=0

13
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hence, the contribution of the third term above to the second variation
is given by

/6E (goHdiVXT + SOQHZ) du .

We now compute

Op 0 0X ovg
— X =(— X . 1.2
at — 6t< VEt> t:() < at 7V> t_0+< b 8t >t_0 ( O)
and, using the fact that @ is tangent to OF, we have
ago 8I/E
— =(Z X, —=* .
ot t=0 < ,V> + < ot > t=0
We remember that in coordinates X, = X? gj’ , then
[, 28] ) g 20 0omy|
ot t=0 8:1:p ot t=0
From (§%,v) =0, f — 1}, it f
rom awp,u> =0, for every p € {1,...,n— 1}, it follows that
0= 51
(2 (2, 2
O:Up dz,” 0 =0
aw 81/E
- (n 2 (2.2
) < Oxy, Oz, 0Ot /li—o
dp ov oY Ovg >
= 22 xS (2
Oz < 8$p> + <8:cp ot /li—o
:&’0_X<8¢ (9l/>+<8w,6yEt> )
Ox,, Oxy Oz Oz, Ot /[li—
Now we use the second equality (1.4) to obtain
Op oY v oY OVEt>
“r _x 7Y
oz, T<a amp>+<axp’ at /)iso
&p oY 1 Ov > < oY Ovg >
= T _ X9/ 7 i t
oz, T<axq’hplg 02/ " \oz, "0t /)iy

890 g oY Ovg, >
that is,
oY Jvg > ago
A0 Xh
<axq’ ot /iy~ 0x, TR
Therefore equality (1.20) becomes
Iy oY Ovp >
T2 = (Z,v)+ X1 :
ot t=0 < > + <8xq’ ot t=0

ou
g <Z, I/> — Xgail‘p + Xnghpq

= <Z7’/>_<X77V<X7V>>+B(X77XT)7

14



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

hence, the contribution of the second term in (1.19) to the second
variation formula is

/8EH(<Z, v) — (X, V(X,v)) +B(XT,XT)) dy.

Finally, we compute %—If ‘t—o’ recalling that

0% |
H=—(_———, v)g"
<8.7}za$1 ’ V>g ’

_< 82’$ 6VE,5>
t=0 8;@-6:@’ ot

g7 (1.21)
t=0

hence we can write

OH . < 0% V> g
ot t=0 N a.ﬁial‘j’ ot
~ <8321/) ,,>
8t 81‘161’] ’
Since we know from formula (1.10) that

S22 v
t=0 N ot 6:131', 8:1,‘j

ij
t=0

agij
ot

= Viwj + iji + thj <X, I/> ,
t=0

where w(Y) = g(X,,Y), and for all indices 4,k there holds g;;¢’* = 0,
we get

g7k

995 ik
0=t T

ot t=0 t=0
ik dg’*
= g] (Viw]' —|— ijl- —|— QhZ] <X, l/>) —|— gijw

t=0

Hence,

dgPk

ot = —gg"* (Viw; + Vjwi + 2hij (X, v))

t=0
= —VPXF _VEXP _opPry. (1.22)

Furthermore, by the computations above,

< 821/] al/E't> ij _ <1_,ka’(p al/Et> ij
O0x;0x; Tot t:()g Yoz, Ot t=0

» oY Ovg
= 9Tk { = t
g r”<8xk’ ot >
Oy

iyTk

t=0

We now compute the last term in formula (1.21)

<a 0% > i < ?X > i
ar yV g’ = Vv )g
ot 6931833] t=0 8;13@8:@

_ GQ(SW) ij X, ij
- <axla$3 ’ V>g + <ax18$3 ’ V>g '

15



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

We split this computation, first we consider

<<92(W)
axiax]"

Then, we compute

< ?X, >
aa:iax]

u>gij =
Po /0 O ’
— 17 . lpi 1]
G:Biaxjg * <8xi (h]lg 8xp> ’ 1/>g 4
- al'lax]

- 83}1(%] g

- 87:1:1 (thpj)gij

e . /0 i O y
8$iaxjg +<8.€C1 <hdg al’p)’y>g 4

20 . -~
2 g1 + ohjigPhipg"

20
24+ | B2 (1.24)

X, >] <aX 81/>Z--
8:1:] 9x;  0x; /7

i
p Y g ax] 7a$i g

J
ox an 81,‘]‘ ’ 8.75%
0X, Ov\ ..
ij _ T ij
i (X v )9 < oxj’ 0x1>g
0 g
XP ij
8301-( Thp] < oz; ( T@a:p> 8xl>g
0 ov\ ..
XPh g7 — K
ﬁxi( pj <8:Uj8xp 8xz>
(9X£< oY Ov > ij
. a9
Ox; \ Oz, Ox;
0 oY ov\ ..
_ P . pTk ij
Ox; <X7hm) ~ XL <3$k 31‘1>g

_6X£<8w 8v> .

oz, \ oz, 921 /°

0 -
— X2T% hig''grqeg”

py oxk y
o (Xphm) —Xﬁrﬁphikgf—%hikgﬂ

(1.25)

16



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

where we used formulas (1.4) again.
Using equalities (1.22), (1.23), (1.24) and (1.25) we obtain

a— =hi;(=V'X] - VIX] —2hY )
ot |i—o
y dp %o .
urk (== — X%n )— 4 4+ o|BJ?
+g l](axk Tliqk 8.7:'28117]9 +§0‘ ‘
o o i
+ %(thpj)g I+ hyy VXS
iy 2 ijrk Dy q
= —2h;V'X] —2¢|B|*+g Fij 87—XThqk
k

Py o y o
— i B>+ —(XPh,:)¢" + h;; V' X
8xi8xjg + 90‘ | + C{’SUZ ( T pj)g + ]V T

y T
— Bl — hy ViXI — Ag g [893 (cx2hy ) - r;.;.xgzhpk}
= —¢|BI* = hijViX] — Dp + g7V (thpj)

= — ¢|B|* — Ap + XPdivB,

— —¢|BI? = Ap + (X,, VH)

(1.26)

where in the last equality we used the following consequence of taking
the trace in the Codazzi formula (1.3),

diVBi = gjkvj'h]m‘ = le .

Hence the contribution of the first term (1.19) is given by

| e(—elBi = Ag+ (X, V1)

and we have the following second variation of the area functional,

d2
@A((‘?Et)

+H((Z,v) = (X, Vi) + B(X:, X)) | dp.

Now, integrating by parts

| el V)=~ [ (HOX, 99) + pHdivX, ) du
OF OF

and

/—@Asoduz/ Vol dp,
OF oOF

we obtain the formula in the statement of the theorem

d2
5 AOB)

— [ [IVeP - 1P +
oF

+H((Z,v) = 2X,, V) + B(X,, X-) ) | dp.

t=0

= / {_ PAp — <,02|B\2 + (X, VH) + oHdivX, + ©*H
t=0 OF

17



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

It follows that if we have a critical set E for the unconstrained Area
functional, hence H = 0 on OF (see Remark 1.6), the second variation
of A is simply given by

A((‘?Et)

= V(X,vp)]* - (X,vp)*|B]*) d
GAOE)| = [ (19Cwe)l - (X BP)

which only depends on the normal component of X on dF, that is, on
<Xa VE> :

We want to see now that the same holds for a critical set of the Area
functional under volume constraint. We claim that

H(X, )2 4+ (Z,v) — 2(X,, V(X)) + B(X,, X;)
= (X, v)divl X — div((X, ) X, ), (1.27)

where, as in the previous proof, we set v = vg.
We notice that, being every derivative of v a tangent vector field,

<X‘r7 V<X7 V>> - <V’dX(X‘r)> + <X7 <XT, Vy>>

= (v, dX (X)) + (X;, (X, Vv))
— (v, dX (X)) + B(X,, X,).

Therefore, recalling that Z = dX (X)), we have
H(X,v)* +(Z,v) — 2(X,, V(X, 1)) + B(X:, X;)
= H(X,v)” + (v, dX (X )> (X7, V(X, 1)) = (v, dX(X7))

= H(X,v)? + (v, dX ((X,v)v)) — (XT,( V)
)+

= H(X, )2+ (X,v){v, dX(I/ + X,V>d1VX —div((X,v) X;).

Now we notice that, choosing an orthonormal basis e1,...,e, 1,6, =V
of R™ at a point z € OF and letting X = X'e;, we have

(ei, VXY = (e;, VX! — (VX' v)v) = divl "X — (v,dX (v))

where the symbol " denotes the projection on the tangent space to OF.

Moreover, if we choose a local parametrizazion of 0F such that ¢ = e,
forie {1,...,n—1}, at x € E we have eg = g%j =g = §;; and

<ei7 VTX1> = <6i7 VTX;> + <€i7 VT(<X7 V>Vi)>
= (e , VXL) + (X, v)(e] , VI

3”¢ ls 31/11
ox; hiig 0xs

= (e , VXI) + (X, 1) >—
=V, X1+ (X, v)hy
=divX; + (X, v)H

where we used the Gauss—Weingarten relations (1.4) and the fact that
the covariant derivative of a vector field along a hypersurface of R™

18



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

can be obtained by differentiating in Euclidean coordinates (a local
extension of) the vector field and projecting the result on the tangent
space to the hypersurface (see [11], for instance). Hence, we get

(,dX (v)) = divl"X — (e;, V'X?) = divl "X — divX, — (X,v)H
and it follows
H<X7V>2 + <Z7V> _2<XT)V<X’V>> +B(XT)XT)
= (X, v)divl"X — div((X,v)X;)

which is equation (1.27).
Then, we can rewrite the second variation of the Area functional as
d2

A

= (9 )= ()18 di
+/ H(X, vg)divh "X du
OF
—/ Hdiv((X,vg)X;)du. (1.28)
OFE

Theorem 1.8. Let FF C T" be a critical set for the Area functional,
under volume constraint, that is, H is constant on OF, then for every
admissible X € C°(T",R"™) there holds

d2

:/ (19X, ) —(X.v)?BP) du. (1.29)
t=0 OF

In particular, the second variation at F only depends on the normal
component of X on OF, that is, on (X,vp).

Proof. As the vector field X is admissible, by formula (1.17), we have

2
VOl(Ft)

0=—
dt? t=0

:/a[divX(q)t(x))Jq)t($)]

d
- ol *

t=0

_ / [<VdivX,X> + (divx)ﬂ dx
F

- / div[(divX)X] dz
F

_ / (X, vp)divT"X dy,
oF

hence, being H constant, the first term in the second line of equa-
tion (1.28) is zero. The second term is also zero, by the divergence
theorem (1.2) and again since H is constant, thus we are done. O

By this theorem, the second variation of the Area functional A at a
critical smooth set F' is a quadratic form depending only on the normal
component of X € C°°(T",IR™) on OF, that is, on ¢ = (X, vp). This

19



1.2 FIRST AND SECOND VARIATION OF THE AREA FUNCTIONAL

and the fact that the admissible vector fields X € C*°(T™,R") are in a
way “characterized” by having zero integral of such normal component
(see the discussion after Theorem 1.3 and Lemma 1.4), suggest the
following definitions of the Sobolev space (see [4])

A\(9F) = {(p c H'(9F) : /

pdp = 0} , (1.30)
oF

and of the quadratic form I1p : H'(OF) — R, given by

e(e) = [ (Veldn= | GIBPdu. (1.31)
oF OF

Then, if F is critical, by formula (1.29), we have

2
L aom)

dt2 = HF(<X7VF>)7 (132)

t=0

for every smooth vector field X which is admissible for F'.

We observe that, by the translation invariance of A, the constant
vector field X = n € R" is clearly admissible, as the associated flow is
given by ®;(x) = z + tn, then A(0F;) = A(IF) and

d2

= HF(<777 VF>) )
=0

that is, the form Iy is zero on the vector subspace
T(0F) = {{n,vr) : n € R"} C H'(OF).
of dimension less or equal than n. We can then split
HY(OF) = T(OF) ® T+(9F),

where T-(0F) C H'(JF) is the vector subspace L?-orthogonal to
T(OF) (with respect to the measure p on JF), that is,

TH(OF) = {gp e BY(OF) : /8F

:{goeHl(BF) : /8Fg0d,u:0 and /é)ngypdu:()}

wvpdy = 0}

and define the following “stability” conditions.

Definition 1.9 (Stability). We say that a critical set F' C T" is stable
if
[r(p) >0  forall o € H'(OF)

and strictly stable if

Ig() >0  forall o € TH(OF)\ {0}.
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1.3 W2P_LOCAL MINIMALITY

Remark 1.10. We observe that there exists an orthonormal frame
{e1,...,en} of R™ such that the functions (vp,e;) are orthogonal in
L?(OF), that is

| weewr.edn =0, (1:33)
OF

for all ¢ # j. Indeed, considering the symmetric n x n-matrix A = (a;;)
with components a;; = [, Vivi dp, where v}, = (vp, ;) for some basis
{€1,...,en} of R" we have

/aF(OVF)i(OVF)j dp = (0AO0™)y,

for every O € SO(n). Choosing O such that OAO~! is diagonal and
setting e; = O~ 1g;, relations (1.33) are clearly satisfied.

Hence, the functions (vg,e;) which are not identically zero are an
orthogonal basis of T(9F). We set

Ir = {2 e{l,...,n} : (vr,e;) is not identically zero}

and
Op = Span{e; : i € Ip}, (1.34)

then, given any ¢ € H'(F), its projection on T (9F) is

Jop ©(vr, e) dp
Tp) =Y — VF,€;). 1.35
) =27 2 o, e By gy (1:39)

1.3 W?2%P-LOCAL MINIMALITY

We will make a large use of Sobolev spaces on smooth hypersurfaces.

Most of their properties hold as in R"™, standard references are [3], in
the Euclidean space and the book [}] when the ambient is a manifold.

Given a smooth set F* C T", for € > 0 small enough we let (d is the
“Fuclidean” distance on T")

N.={zeT" : d(z,0F) <&} (1.36)

to be a tubular neighborhood of OF such that the orthogonal projection
map 7 : No — OF giving the (unique) closest point on F and the
signed distance function dgp : N, — R from OF

(1.37)

i () = d(z,0F) ifx ¢ F,
P —d(z,0F) ifxeF

are well defined and smooth in N.. Moreover, for every x € N., the
projection map is given explicitely by

mp(x) =2 — Vda(2)/2 = x — dp(x)Vdp(z) (1.38)
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1.3 W2P_LOCAL MINIMALITY

and the unit vector Vdp(x) is orthogonal to OF at the point 7p(z) €
OF, indeed actually Vdp(z) = Vdp(np(z)) = vp(rp(z)), which
means that the integral curves of the vector field Vdpr are straight
segments orthogonal to OF.

This clearly implies that the map

OF x (—¢,e) 3 (y,t) = L(y,t) =y +tVdr(y) =y + tvr(y) € N:
(1.39)

is a smooth diffeomorphism with inverse
N.o 2z L7 Nz) = (np(z),dr(z)) € OF x (—¢,¢),

moreover, denoting with JL its (partial and “relative” to the hypersur-
face OF) Jacobian, there holds

0<(C; < JL(y,t) < Oy

on JF x (—e,¢), for a couple of constants Cy, C, depending on F' and
e (for a proof of the existence of such tubular neighborhood and of these
properties, see [20] for instance).

By means of such tubular neighborhood of a smooth set F' C T" and
the map L, we can speak of “W*P—closedness” (or “C*“closedness”
to F' of another smooth set £ C T", asking that for some ¢ > 0 “small
enough”, we have Vol(FAE) < ¢ and that JF is contained in a tubular
neighborhood N. of F', as above, described by

OE ={y+¢(y)vr(y) : y € OF},

for a smooth function ¢ : 9F — R with [[¢[[yrrp) < & (resp.
[¥llere(ory < 6). That is, we are asking that the two sets £ and
F differ by a set of small measure and that their boundaries are “close”
in WkP (or C*).

Notice that clearly

Y(y) = mgo L1 (GFO {y+ A vp(y) : A e IR}) ,

where 79 : OF x (—&,e) — R is the projection on the second factor.
Moreover, given a sequence of smooth sets E; C T", we will write E; —
F in WkP (resp. C%?) if for every § > 0, there holds Vol(E;AF) < 6,
the smooth boundary dF; is contained in V. and it is described by

OE; = {y +i(y)vr(y) : y € OF},

for a smooth function v; : OF — R with [[¢i[lyrr@r) < 6 (resp.
[%ill oro(op) < 6), for every i € IN large enough.

From now on, in all the rest of the thesis, we will refer to the volume—
constrained Area functional A, sometimes without underlining the pres-
ence of such constraint, by simplicity. Morever, with N we will always
denote a suitable tubular neighborhood of a smooth set, with the above
properties.

22



1.3 W2P_LOCAL MINIMALITY

Definition 1.11. We say that a smooth set F' C T" is a local minimizer
for the Area functional if there exists & > 0 such that

A(OE) > A(OF)

for all E C T™ with Vol(E) = Vol(F) and Vol(FAFE) < 4.
We say that a smooth set F' C T" is a WP -local minimizer if there
exists > 0 such that

A(OE) > A(OF)

for all E C T™ with Vol(E) = Vol(F), Vol(FAE) < §, moreover 0F
is contained in a tubular neighborhood N. of F, as above and it is
described by

OE = {y +¢(y)vr(y) : y € OF},
for a smooth function ¢ : OF — R with [[¢|ly2.09r) < 9.

We immediately see a necessary condition for local minimizers. Notice
that a local minimizer is clearly also a W?P-local minimizer.

Proposition 1.12. Let a smooth set F C T"™ be a W2P—local minimizer
of A, then F is a critical set and

Ip(p) >0 for all p € H'(9F),
in particular F' is stable.

Proof. If F' is a local minimizer of A, for any admissible vector field
X € C°(T",R™) with associated flow smooth ®, we have Vol(F}) =
Vol(®;(F)) = Vol(F) and for every § > 0, there clearly exists £ > 0
such that for ¢ € (—2,) we have Vol(FAF}) < ¢ and

OF, = {y+(y)vr(y) : y € OF} C N

for a smooth function ¢ : 9F — R with [|¢)lyy209r) < J. Hence, the
W2P-Jocal minimality of F implies

A(OF) < A(OF)),

for every t € (—%,%). Thus,

d
0= A(OF;)

= / H(X,VF> d,LL7
t=0 JOF

by Theorem 1.3, which implies that F is a critical set, by the subsequent
discussion and
d2

0< —5AOR)

< = r((X,vr),

t=0

by Theorem 1.7 and equation (1.32).

Since by Lemma 1.4, for every smooth function ¢ : 0F — R with
zero integral there exists an admissible vector field X € C*°(T", R"™)
such that ¢ = (X,vp), we conclude that T1g(¢) > 0 for every ¢ €
C™(OF) N H'(AF), then the thesis follows by the density of this space
in H'(OF) (see [4]). O
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1.3 W2P_LOCAL MINIMALITY

The rest of this section will be devoted to strictly stable sets (see
Definition 1.9), in particolar, we will show that the strict stability is
a sufficient condition for the W?P-local minimality. Precisely, we will
prove the following main theorem of this chapter.

Theorem 1.13. Let p > max{2,n—1} and FF C T" be a smooth
strictly stable critical set for the Area functional A (under a volume
constraint) as in Definition 1.9, and let N¢ be a tubular neighborhood of
OF as in formula (1.36). Then, there exist constants 6,C > 0 such that

A(OE) > A(OF) + C[a(F, E))?

for all smooth sets E C T™ such that Vol(E) = Vol(F'), Vol(EAF) < 6,
OF C N; and
OE ={y+(y)vr(y) : y € OF}

for a smooth o with ||¢||y2popy < 6, where the “distance” o(F, E) is
defined as
a(F,E) = min VOl(FA(E +17)).
neR”

As a consequence, F is a WP -local minimizer of A. Moreover, if E
is WP—close enough to F' and A(OE) = A(OF), then E is a translate
of F, that is, F is locally the unique W?P-local minimizer, up to
translations.

Remark 1.14. We could have introduced the definitions of strict local
minimizer or strict W?P-local minimizer for the Area functional, by
asking that the inequalities A(OF) < A(OF) in Definition 1.11 are
equalities if and only if E is a translate of F'. With such notion, the
conclusion of this theorem is that F is actually a strict W?P-local
minimizer.

Remark 1.15. With some extra effort, it can be proved that in the same
hypotheses of Theorem 1.13, the set F' is actually a local minimizer
(see [2]). Since in the analysis of the surface diffusion flow in the next
chapter we do not need such stronger result, we omitted its proof.

We postpone the proof of this result after showing some technical
lemmas. We underline that most of the difficulties are due to the
presence of the degeneracy subspace T(OF) of the form ITp (that is,
where it is zero), related to the translation invariance of the Area
functional (recall the discussion before Definition 1.9 of stability).

In the next key lemma we are going to show how to construct ad-
missible smooth vector fields for a smooth set F', “related” to smooth
sets which are W?P—close to it. By the same technique we then also
prove Lemma 1.4 immediately after, whose proof was postponed from
Section 1.2.

Lemma 1.16. Let ' C T" be a smooth set and N: a tubular neigh-
borhood of OF as above, in formula (1.36). For all p > n — 1, there
exist constants §,C > 0 with the following property: if 1 € C*(OF)
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1.3 W2P_LOCAL MINIMALITY

and |[Yllw2r@or) < 0, then there exists a field X € C°°(T",R") with
divX =0 in N. and with the associated flow ® satisfying

P(1,y) =y+ v (y)vr(y), for all y € OF. (1.40)

Moreover, for every t € [0,1], there holds

[@(t,-) = Idllw2ror) < CliYllwzeor) - (1.41)

Finally, if Vol(Fy) = Vol(F), then Vol(F;) = Vol(F) for allt € [—1,1],
that is, the vector field X is admissible.

Proof. We start considering the vector field X € C°°(N.,R™) defined
as N
X(z) = &(x)Vdp(z) Vz € N (1.42)

where dr : N. — R is the signed distance and £ is the function defined
as follows: for all y € OF we let

fy : (60,60) — R

to be the unique solution of the ODE

fy(o) =1

and we set

£(e) = &ly+ () = 1,0) = exp | Dy + r(0)) )

recalling that the map (y,t) — = y + tvp(y) is a smooth diffeomor-
phism between OF x (—¢,e) and N.. Notice that the function f is
always positive, thus the same holds for £ and ¢ = 1, Vdr = v, hence
X = vp on OF. Our aim is to prove that the smooth vector field X
defined by

b(rp(2) ds 5
x@ =" e <@ (143)

for every x € N. and extended smoothly to all T", satisfies all the

properties of the statement of the lemma.
Step 1. We saw that X\ap = vp, now we show that divX = 0 and

analogously divX = 0 in N..
Given any = y + tvp(y) € Ne, with y € OF, we have
divX (z) = div[¢(z)Vdp(z)]
= (V¢(2), Vdp(z)) + £(z)Adp(2)
= D fely -+ o ()] + €+ e (9) M (3 + 0 (0)

= fg;(t) + fy(t)Adr(y + tvr(y))
—0,
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1.3 W2P_LOCAL MINIMALITY

where we used the fact that f,(t) = (V&(y +tvr(y)), vr(y)) and that
we have Vdr(y +tvr(y)) = vr(y).
Since the function

blrr (@) is
o [ s ) =@

is constant along the segments ¢ — = + tVdp(z), for every = € N, it
follows that

0= gt[e(x + tVdr(a))

= (V6(a), V().

hence, B
divX = (V0,Vdp)¢ 4+ 0divX = 0.

Step 2. Recalling that ¢ € C*°(dF) and p > n — 1, we have

¥l Lo or) < 1Yllcror) < CrllYlwzear),

by Sobolev embeddings (see [4]). Then, we can choose § < £/Cp such
that for all z € OF we have that z £ ¢(z)vp(z) € N..
To check that equation (1.40) holds, we observe that the integral

blrr (@) is .,
L ammrermmmy =@

represents the time needed to go from 7p () to 7p(z) + ¢ (7 (2))ve(7r(z))

along the trajectory of the vector field X, which is the segment con-

necting mp(z) and 7 (z) + ¢ (7p(z))vp(rr(z)), of length ¢ (rp(x)),
parametrized as

s p(x) + sY(np(z))ve(np(x)),

for s € [0, 1] and which is traveled with velocity &(p(z) + svp(mr(x))) =
frp(z)(8). Therefore, by the above definition of X = 6.X and the fact
that the function 6 is constant along such segments, we conclude that

O(1,y) —(0,y) = »(y)vr(y)

and, equivalently,
P(Ly) =y+v(y)ve(y)
for all y € OF.
Step 3. To establish inequality (1.41), we first show that

[ X lw2r vy < CllYllwerar) (1.44)

for a constant C' > 0 depending only on F' and €. This estimate will
follow from the definition of X in equation (1.43) and the definition of
W?2P-norm, that is,

X lwae vy = 1 X e + IVX ey + IV X Lo, -
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As |[Vdp| = 1 everywhere and the positive function &, by its definition
at the beginning of the proof, satisfies 0 < Cy < £ < (5 in N, for a
pair of constants C and (s, we have

X0y = [
Ne

< L
<8l |

cr )
< [ W as
- g%/aF | llmr(y + vp@))PT Ly 1) di du(y)

cf v [*
= | e [ In.o dduw)

<c / o) P dp(y)
— I, o

p
dx

P(rr(z)) ds o
/0 E(rp(x) + svp(np(z))) §(x)Vdp(z)

V(e () ds
E(mr () + svp(mr(2)))

P
dzx

hS]

where L : OF x (—¢,e) — N the smooth diffeomorphism defined in
formula (1.39) and JL its Jacobian. Notice that the constant C' depends
only on F and e.

Now we estimate the LP-norm of VX. We compute

Vi (rr(x))drp ()
( ) +(mp(z))ve(rr(2)))
l ) Veé(rp(x) + svp(np(z)))
§2(mr(z) + svp(mp(z)))

VX = &(z)Vdp(x)

-&(x)Vdp(x)

P(rp () <
" /0 &(mp(x) —|—i1/F(7rF(:c))) (vé(x)VdF@) + f(x)VQdF(J:))

and we deal with the integrals in the three terms as before, changing
variable by means of the function L. That is, since all the functions
dnp, dvp, Viup, € 1/€, VE are bounded by some constants depending
only on F and ¢, we easily get (the constant C' could vary from line to
line)

IV X W,y <C [ IVotme@@)Pdo+C [ l(rr(@)l da

€

:C/@F/_]Vdf(ﬂF(y+tuF(y)))’pJL(y’t) dt du(y)

s (e (y + o (y))) [P TL (. 1) di dps(y)

drp(z)(1d + sdvp(mp(x))) ds] :
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—c [ (1wl +[9o)P) [ IL00)dednto)

< Clel oo + CIVY s or)

< CllIRy1m o)

A very analogous estimate works for |[V2X H’zp (N.) and we obtain also
2
192X 200y < ClE N2 o

hence, inequality (1.44) follows with C' = C(F,¢).
Applying now Lagrange theorem to every component of ®(-,y) for
every y € OF and t € [0, 1], we have

D;(t,y) —yi = Pi(t,y) — i (0,y) = tX'(D(s,9)),

for every i € {1,...,n}, where s = s(y,t) is a suitable value in (0, 1).
Then, it clearly follows

[D(t,-) —1d|| L~ (or) < CllX |z (v.) < ClIX lw2rn.) < Clibllwzror)
(1.45)

by estimate (1.44), with C = C(F,e) (notice that we used Sobolev

embeddings, being p > n — 1, the dimension of OF).

Differentiating the equations relating @ to X in system (1.9), we have

(recall that we use the convention of summing over the repeated indices)

{aatvicbj (t,y) = VEXI(@(t,y)) V' Pr(t, y)

, (1.46)
qu)j (O,y) = (51'3'

for every i,j5 € {1,...,n}. It follows,

9. . 2 , , .
57| V'@ (ty) =8| < 2/(Vi;(t,y) - 8i) VX (@(1, ) ViDL (1, y)‘

. 2
< QHVXHL“’(NE) ‘VZCD]' (t, y) - 6@']‘

+ 2|V X oo () | V'R (1, y) —

hence, for almost every t € [0, 1] where the following derivative exists,

0 |oi
50| V@i () ~ b

<CIVX g () (| V' (2, 9) —

+1).
Integrating this differential inequality, we get

‘Viq’j(t, y) — 5Z~j\é eIV Xy — 1 < ¥ lw2rve) 1

)

as t € [0,1] and where we used Sobolev embeddings again. Then, by
inequality (1.44), we estimate

i C p
> VDt ) = Gl (or) < C (e Iw2r0r) —1) < Cllgllwan(or),

1<i,j<n

(1.47)
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as [[¥llw2ror) < 0, for any ¢ € [0,1] and y € OF, with C = C(F,¢,9).
Differentiating equations (1.46), we obtain
VIV, (t,y) = VSVEXI(D(t,y)) VD (t,y) VD4 (1, y)
+ VEXT(D(t,y))VIVidDL(t,y)
VIVi®(0,y) =0
(where we sum over s and k), for every ¢t € [0,1], y € OF and 4,7,/ €

{1,...,n}.
This is a linear non—homogeneous system of ODEs such that, if we control
CllY[lw2»(ar), the smooth coefficients in the right side multiplying the

solutions V*V'®,(-,y) are uniformly bounded (as in estimate (1.47),
Sobolev embeddings imply that VX is bounded in L by C|¢ |2 o))

Then, arguing as before, for almost every t € [0, 1] where the following
derivative exists, there holds

0
52| V' 2(1.9)| < CIVX 1,

v?q»(t,y)\wyv?X (@(t,y))]
< Co|V2(t, ) [+C| VX (D (L, )],

by inequality (1.44) (notice that inequality (1.47) gives an L>*~bound
on V®, not only in LP, which is crucial). Thus, by means of Gronwall’s

lemma (see [25], for instance), we obtain the estimate

t t
V2ot y)|< 0/ V2 X (®(s,)) [ ds < o/ VX (D(s, )| ds,
0 0

hence,

900 o <€ [ ([ 197000105 dutw
<c / /8 VX (@ (s ) duy)is

=C | |V?X(2)]PJL Y (z)dz
Ne

<CIVX I,y
< CIX By
< Clolyanom) (148)

by estimate (1.44), for every ¢ € [0, 1], with C = C(F,¢,9).
Clearly, putting together inequalities (1.45), (1.47) and (1.48), we get
the estimate (1.41) in the statement of the lemma.

Step 4. Finally, we remind that
2

d—Vol(Ft) = / <X, VEt>diVTnX d,ut,

dt? OF,
hence, since by Step 1 we know that divX = 0, we conclude C‘lj—;Vol(Ft) =
0 for all ¢ € [—1,1], that is, the function ¢ — Vol(F}) is linear. If
Vol(Fy) = Vol(F) = Vol(Fyp), it follows that Vol(F;) = Vol(F), for all

e[-1,1]. O
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With an argument similar to the one of Step 4 in this proof, we now
prove Lemma 1.4.

Proof of Lemma 1.4. Let ¢ : OF — R a C'*° function with zero integral,
then we define the following smooth vector field in V.,

X(z) = o(rp(z)) X (2),

where X is the smooth vector field defined by formula (1.42) and we
extend it to a smooth vector field X € C*°(T",R") on the whole T".
Clearly, by the properties of X seen above,

(X (y),ve(y)) = ey (X (v),ve(y)) = ¢(y)

for every y € OF.

As the function x — ¢(mg(z)) is constant along the segments ¢ +—
z +tVdg(z), for every x € N, it follows, as in Step 1 of the previous
proof, that divX = 0in N.. Then, arguing as in Step 4, the function ¢ —
Vol(E}) is linear, for ¢ in some interval (—d,4). Since, by equation (1.18),
there holds

d
£V01(Et)

:/ <X7VE>d,U:/ pdp =0,
t=0 OF OF

such function ¢ — Vol(E;) must actually be constant.
Hence, Vol(E;) = Vol(E), for all t € (—4§,6) and X is admissible. O

The next lemma gives a technical estimate needed in the proof of
Theorem 1.13.

Lemma 1.17. Let p > max{2,n — 1} and F C T" a smooth strictly
stable critical set for the (volume—constrained) functional A. Then,
in the hypotheses and notation of Lemma 1.106, there exist constants
§,C > 0 such that if [|{|lw2r@r) < 6, then | X| < CUX,vR,)| on OF;
and

IVX|r20m) < CIX, ve) 1 0om), (1.49)
hence,

1 X 51 0m) < CIX, vE a1 (97,

(here V is the covariant derivative along Fy), for all t € [0, 1], where
X € C°(T™,R"™) is the smooth vector field defined in formula (1.43).

Proof. Fixed € > 0, from inequality (1.41) it follows that there exists
6 > 0 such that if ||[¢[[yy2p(9F) < 6 there holds

vr (i) —vr(y)| <2

for every y € OF, hence, as Vdr = vr on OF, we have

(Vdp(®; () —ve, ()| = lvr(®; ' (y) —vr(y)| <2
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for every y € OF;. Then, if [[¢)|ly20(9F) is small enough, @, ! is close
to the identity, thus

Vdr(®; ! (y)) — Vdr(y)| <=
on 0F; and we conclude

IVdp —vE, || L= or,) < 22.

We estimate X, = X — (X, vp,)vE, (recall that X = (X, Vdp)Vdr),
[ X | = [ X = (X, vr)vp,|
= ’<X, VdF>VdF - <X, VFt>VFt|
= ’<X, VdF>VdF — <X, l/Ft>VdF + (X, VFt>VdF — <X, VFt)”Ft’
< [{X, (VdF - Z/Ft)>VdF| + |<X7VFt>(VdF - VFt)|
< 2|X||Vdp — vE|
< /X,
then
|X7't| < 4€|X‘Ft + <X’VFt>VFt| < 4€‘Xﬁ‘ + |<X7 VFt>| )

hence,
| Xr| < CUX,vR,)l. (1.50)

We now estimate its covariant derivative V along F}, that is,
‘VXTt‘ = |VX_V(<X VFt>Z/Ft)|
=|V{(X,Vdp)Vdr) = VX, vR)vR)|
=|V((X,Vdp)Vdr) — V((X,vg,)VdF)
+ V((X, VFt>VdF) - V(<X, VFt>VFt)‘
<|IVIX, (Vdp —vi))Vde)| + V(X vp) (Vdr —vg,))|
< C2||VX| + [V{X, )| + CIX[|9(Vde)| + [Vvr
<Ce||VUX, vr v + Xn)| + V(X vR)|
+C (X, vr)| +|Xx]) [IV2dp + Vvl
hence, using inequality (1.50) and arguing as above, there holds
VXr| < CIV(X, v + CUX, vr)|[[V2dp| + Vvl
Then, we get
||VXTt||%2(8Ft) SCHV<X7VFt>||%2(8Ft)

2[1o2 2
+C | X, vm)P[|Vidr| + Vv du
OF%

<CIX,ve) 3 (om)

2
+ONX R 2, HNQdFi FIVvEl] L om,

<C ||<X,VFt>||H1(aFt)
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where in the last inequality we used as usual Sobolev embeddings, as
p > max{2,n —1}.

Considering now the covariant derivative of X = X, + (X,vg,)vp,
putting together this inequality, the trivial one

V(X vr )l 22 0m) < KX vE) 1 (08,
and inequality (1.50), we obtain estimate (1.49). O

We now prove that any smooth set E sufficiently W?P—close to
another smooth set F', can be “translated” by a vector n € R™ such
that OF —n = {y + ¢(y)vr(y) : y € OF}, for a function ¢ € C*(9F)
having a suitable small “projection” on T'(OF) (see the definitions and
the discussion at the end of the previous section).

Lemma 1.18. Letp >n—1 and FF CT" a smooth set with a tubular
neighborhood N¢ as above, in formula (1.36). For any T > 0 there exist
constants §,C > 0 such that if another smooth set EE C T™ satisfies
Vol(EAF) < § and OF = {y +¢(y)vr(y) : y € OF} C N, for a
function ¢ € C(R) with |[Y|lw2r@r) < 9, then there evist n € R™
and ¢ € C™(0F) with the following properties:

OF —n={y+¢(y)vr(y) : y € OF},

Inl < CllYllwzror), lellw2pory < CllYllweror
and

‘/ 293 dﬂ' < 7llellr2or) -
oF

Proof. We let dr to be the signed distance function from 0F. We
underline that, throughout all the proof, the various constants will be
all independent of ¢ : OF — R.

We recall that in Remark 1.10 we saw that there exists an orthonormal
basis {e1,...,en} of R™ such that the functions (vr,e;) are orthogonal
in L?(OF), that is,

/ (vr,ei)(vr,ej)du =0, (1.51)
oF

for all ¢ # j and we let Ip to be the set of the indices i € {1,...,n}
such that ||[(vF, €;)||2(9r) > 0. Given a smooth function ¢ : 9F — R,
we set n = > 1" | n;e;, where

wren s,

. {1F) Jop (@) (vr(x), €:) dp if i € 1p, 152)

ni =0 otherwise.

Note that, from Hoélder inequality, it follows

nl < Cill¥llrzor) - (1.53)
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Step 1. Let Ty : 0F — OF be the map

Ty(y) = mr(y + o (y)ve(y) —n).

It is easily checked that there exists g > 0 such that if

[llw2eor) + Inl < €0 <1, (1.54)

then Ty, is a smooth diffeomorphism, moreover,

[JTy = Ul or) < CllYllcr o) (1.55)

and

1Ty = 1dllw2rom) + 1T, " = 1dllw2eor) < CU1GlIweror + l)-
(1.56)
Therefore, setting £ = F —n, we have

OFE = {2+ p(2)vp(2) : z € OF}

for some function ¢, which is linked to ¢) by the following relation: for
all y € OF we let z = z(y) € OF such that

y+v@vr(y) —n=z+p()ve(z),

then

Ty(y) = mr(y+¥(W)vely) —n) = 7r(z+ 0(2)ve(2) = 2,
that is, y = del(z) and
p(z) = o(Ty(y))
=dp(z+ ¢(2)vr(z))
)

( )
=dr(y+¥(y)vr(y) —n)
=dp(T, " (2) + (T, (2)vr(Ty(y)) —n) -

Thus, using inequality (1.56), we have

lellwnor) < Ca(lllwascor) + nl) (1.57)

for some constant Cy > 1. We now estimate

/ w(Z)VF(z)du(Z)Z/ (T (y))vr(Ty(y)) I Ty (y) du(y)
OF of (1.58)

=/ (T (y))vr(Ty(y)) duly) + R,
oF

where

|Ry| = |/aF P(Tu)rr(Te@) VnaVTel) =) ) o)

< Gsll¥llerom el L2 or) »

33



1.3 W2P_LOCAL MINIMALITY 34

by inequality (1.55).
On the other hand,

| @) (Taw) duty)

:/BF[ijw —n—Ty(y)| du(y)
:/6F[y+w —n—mr(y+ V(y)ve(y) —m)| duly)
_ /aF{y) n+[m< ) =7 (y + e (y)vr(y) = )|} du(y)

Q

(1.60)
where
/ ) =7y + Y )vr(y) —n)] duly)
- [ duty / Ve (y + 1) (y) — ) (& (y)vr(y) —n) di
/ Vrp(y (y) —n) du(y) + Rs.
(1.61)
In turn, recalling inequality (1.53), we get
| R S/aqu(y)/O Ve (y +t((y)ve(y) —n))
(1.62)

= Ve )| 1Y (y)vr(y) —nldt
< Cull¥l1Z2(or) -

Since in N¢, by equation (1.38), we have np(z) = x — dp(x)Vdpr(x), it
follows

awF ddp , | Odp &*dp
=0 — ——— —_— — d R

thus, for all y € OF

87‘1’% . 6dF 8dF
83:]- (3/) = 5u 371(9)373@)

From this identity and equalities (1.58), (1.60) and (1.61), we conclude

/ p(2)vm(2) dp(z) = / (¥ (@)ve () = (n,ve (2))ve ()| duz)
OF oF
+ Ri1+ R3.
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As the integral at the right-hand side vanishes by relations (1.51)
and (1.52), estimates (1.59) and (1.62) imply

[ oot dut)| <Callvles om Iellzor + Call e or

<Clelicror) (1ol 2 or) + ¥l c2or))
<Cs 1012 o 11720 (el 2(or)

+ 1¢llz2(0r)) » (1.63)

where in the last passage we used a well-known interpolation inequality,
with 9 € (0,1) depending only on p > n —1 (see [4, Theorem 3.70]).

Step 2. The previous estimate does not allow to conclude directly, but
we have to rely on the following iteration procedure. Fix any number
K > 1 and assume that ¢ € (0,1) is such that (possibly considering a
smaller 7)

T8 <eo/2,  C0(1+201) <7, 2056°K <46.  (1.64)

Given Y, we set g = 1 and we denote by n' the vector defined as
in (1.52). We set £y = E —n' and denote by o1 the function such that
8E1 ={z+ p1(z)vp(x) : x € OF}. As before, ¢; satsfies

v+ eo(y)vr(y) —n' =2+ 1(2)vr(2).

Since [[¢|lw2r o) < 6 and [n] < C1l[9]|2(aF), by inequalities (1.53), (1.57)
and (1.64) we have

lo1llw2rory < C20(1+C1) < 7. (1.65)

Using again that [|¢[|y2sor) < 0 < 1, by estimate (1.63) we obtain

| ety dutw)| < Calleollaon (Iealaor + ool o)

where we have [|¢ol[z2(9r) < 6.

We now distinguish two cases.

If [[eoll2(ar) < Klle1llz2(ar), from the previous inequality and (1.64),
we get

‘/M e1(y)vr(y) d#(y)‘ < 05519(H901||L2(8F) + ||90o||L2(aF))
< 2C50" K1l 2 o)
< el or) »

thus, the conclusion follows with 7 = n.
In the other case,

lvollr2(ar d
le1llz2or) < % S K

IN

5. (1.66)
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We then repeat the whole procedure: we denote by 7? the vector defined
as in formula (1.52) with v replaced by 1, we set By = By —n? =
E —n' —n? and we consider the corresponding ¢ which satisfies

w+ g2 (w)vp(w) = 2+ p1(2)vr(z) —n* =y +@oW)vr(y) —n' —n*.
Since
lollw2e@r) + It + 707 <6+ Ci16+ Cillgll2or)
1
< 5+C15<1+ K) <0%%(142C) <t

the map T, (y) = 7r(y + o(y)vr(y) — (n' +7?)) is a diffeomorphism
thanks to formula (1.54) (having chosen 7 and § small enough).

Thus, by applying inequalities (1.57) (with n = n* +n?), (1.53), (1.64)
and (1.66), we get

C
lp2llw2ror) < CQ(“‘PO“WQvP(aF) +n' +772!) < 025(1 +C1+ K}) <7,

as K > 1, analogously to conclusion (1.65). On the other hand, by
estimates (1.53), (1.65) and (1.66),

)
le1llw2e@r + 17 < Cab6(14C1) + C 1 S G0l +201) <7
(x) —n?) is a diffeomor-

Therefore, arguing as

hence, also the map T, (z) = mp(z + 1(z)vp
phism satisfying inequalities (1.54) and (1.55).

before, we obtain

/8F e2(y)vr(y) du(y)| < C5Hs01||?2(aF>(HcszLz(aF) + H‘PIHLQ(QF)) :

Since [|¢1]|z2(9r) < 6 by inequality (1.66), if @1l 22(0r) < Klle2llz2(or)
the conclusion follows with 7 = n' + 2. Otherwise, we iterate the
procedure observing that

le1ll 2o leoll L2(ar 1)
lp2ll2(ar) < K( L < KQ( ) < ek

This construction leads to three (possibly finite) sequences 1", E,, and
n such that

E,=E—n'— =", " <&

lenllw2sor) < Ca(lolwasior) + In' + - +17"|) < Cad(1+2C1)

lenllz2or) < 2=
OE, = {z + ¢n(z)vp(z) : x € OF}

If for some n € N we have ||on—1/29r) < Kll¢nll12(ar), the construc-
tion stops, since, arguing as before,

\ /a _eawr(s) du(v)| < dlleullaon
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and conclusion follows with n = n' +--- + 1™ and ¢ = ¢,,. Otherwise,
the iteration continues indefinitely and we reach the conclusion with

oo
n=>yn" =0,
n=1

(notice that the series is converging) which actually means that £ =
1+ F', hence the thesis is obvious. O

We are now ready to prove the main theorem of this chapter.

Proof of Theorem 1.13.
Step 1. We first want to show that

mo = inf{TTx(¢) : ¢ € THOF), |l or) =1} > 0.

We consider a minimizing sequence ; for such infimum and we assume
that ¢; — ¢ weakly in H'(OF), then ¢o € T+(OF) (since it is a closed
subspace of H(OF)) and if g # 0, there holds

mo = lim ITp(pi) > Tle(po) > 0
due to the the strict stability of F' and the lower semicontinuity of I1p
(recall formula (1.31) and the fact that the weak convergence in H'(9F)
implies strong convergence in L?(OF) by Sobolev embeddings). On
the other hand, if instead ¢y = 0, again by the strong convergence of
@i — o in L?(OF), by looking at formula (1.31), we have

1— 00 1— 00

mo = lim Ip(p;) = lim | |V dp = lim [|gill o) = 1
OF 1—00

since HQOZ'HL2(8F) — 0.

Step 2. Now we prove that there exists a constant §; > 0 such that if
E is like in the statement and 0F = {y + ¢ (y)vp(y) : y € OF}, with
[ llw2r@r) < 01, and Vol(E) = Vol(F'), then

/ goyEdu‘ < 51} > o
oF 2

We argue by contradiction assuming that there exists a sequence
of smooth sets F; with 0FE; = {y+ ¢i(y)vr(y) : y € OF} with
[%illw2rry — 0 and Vol(E;) = Vol(F), and a sequence of smooth

inf{nE«o) L p € HY(OE), ¢l om) = 1,

functions ¢; € ﬁl(ﬁEl-) with [[¢i|| g1(9E,) = 1 and faEi wivg, di; — 0,
such that

™m,
HE1<901) < 70

We then define the following sequence of smooth functions

5ily) = iy + di(y)vr(y)) - ]gF iy + iy)vr(y)) du(y)  (L67)
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which clearly belong to H'(OF). Setting 0;(y) = y + ¢i(y)vr(y), as
p > max{2,n — 1}, by the Sobolev embeddings, §; — Id in C1® and
vg, 08; — vp in C%“(9F), hence, the sequence @; is bounded in H!(9F)
and if {ey} is the special orthonormal basis found in Remark 1.10, we
have (vg, 00;,ex) — (v, ex) uniformly for all k € {1,...,n}. Thus,

/ Qi(vr, ex) dpu — 0,
oF

as 1 — 00, indeed,
/ Pi(Vr, ex) dp —/ Pi{vE; 00 ex) du — 0
OF oF

and

/ i(vE, 0 b;,er) dp Z/ ©ilve,, ex) JO; Ydu; — 0,
oF OF;

as the Jacobians (notice that J6; are Jacobians “relative” to the hyper-
surface OF) JO; ' — 1 uniformly and we assumed

/ pivE,; di; — 0.
OF;

Hence, using expression (1.35) for the projection map 7 on T+ (OF), it
follows ||7(%:) — @il g (or) — 0, as i — oo and

lim (|7(i)ll g1 o) = Hm @il g1 o) = Hm @il g1 o) = 1, (1.68)
71— 00 71— 00 71— 00

since [|Yillw2por) — 0, thus [[¢icra@p) — 0, by looking at the
definition of the functions ¢; in formula (1.67).

Note now that the W?2P-convergence of E; to F' (computing similarly
to Remark 1.1, the second fundamental form Byg, of OF; is “morally”
the Hessian of ;) implies

BaEi o 92 — BBF in Lp<8F> s

as i — 0o0. Moreover, by the Sobolev embeddings again (in particular
HY(OF) — Li(0F) for any q € [1,2*), with 2* = 2(n—1)/(n —3)
which is larger than 2) and the W?2P—convergence of E; to F, we get

/ | Bog, |7 dpi —/ |Bor|* @} dp — 0.
oE; OF
Finally, recalling formula (1.31), we conclude

g, (pi) —Tp(@i) =0,

since we have
leill 20 — il L2aF) — 0,
which easily follows again by looking at the definition of the functions

@i in formula (1.67) and taking into account that [|¢;l|c1.a@r)y — 0,
hence limits (1.68) imply

IVoille2om) — IV@illL2(ar) — 0.
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By the previous conclusion ||7($i) — @ill g1(9r) — 0 and Sobolev em-
beddings, it this then straightforward, arguing as above, to get also

p(pi) —p(n (@) — 0,

hence,
g, (¢i) = Hp(x(:) — 0.
Since we assumed that g, (p;) < mg/2, we conclude that for i € IN,
large enough there holds
N m
Hp(m(%i) < 70 <mg,

which is a contradiction to Step 1, as 7(@;) € T+(9F).
Step 3. Let us fix F such that Vol(E) = Vol(F'), Vol(EAF) < ¢ and

OE ={y+¢(y)vr(y) : y€ OF} C N,

with [|¢|y2p9p) < 6, where 6 > 0 is smaller than & given by Step 2.
Taking a possibly smaller 6 > 0, we consider the smooth vector field X
given by Lemma 1.16 and the associated flow ®. Hence, divX = 0 in
N: and ®(1,y) = y+ ¢ (y)vr(y), for all y € OF, that is, ®(1,0F) =
OF C N, which implies F; = ®(1,F) = E. Then X is an admissible
smooth vector field, as Vol(F}) = Vol(E) = Vol(F), by the last part of
such lemma.

By Lemma 1.18, choosing an even smaller § > 0 if necessary, possibly
replacing the set F¥ with a translate F — n, for some small n € R™, we
can assume that

01
[ e da| < Flsaor (1.69)
oF
Letting F; = ®¢(F'), we now claim that

< al{X,ve ) l20m,) (1.70)

/ <X7VFt>VFt d,ut
oF;

for every ¢ € [0,1]. To this aim, we write

/ (X, vp,)ve, dp = / (X 0@y, vp, 0 D) (vE, o Dy) JO du
oF; oOF

= / (X o®y,vp)vpdu+ Ry
oF
= / (X, vp)vpdu+ Ry + Ry
oF
:/ Yvpdu+ Ry + Ro+ R3.
oF
By the definition of the vector field X in formula (1.43) (in the proof of

Lemma 1.16), the bounds 0 < C; < ¢ < Cy and ||J(7rpoq)t)_1||Loo(3F) <
Cs (by inequality (1.41) and Sobolev embeddings, as p > max{2,n — 1},
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we have [|®(t,-) = Id|[cra@r) < ClYllweror) < CJ), the following
inequality holds

/BF | X (D(y))] dpu(y)

Vrr(@W)) (Dy(y)) Vdrp (P(y))
§(P@i(y) + svp(mp(Pi(y)

<c/ (@) di(y)

= [¥(2)] J(mp 0 @)~ (2) du(z)
BF

< Cll¥ll 2 o) (1.71)

0 ds |dp(y)

for every ¢ € [0,1].
We want now to prove that for every € > 0, choosing a suitably small
6 > 0 we have the estimate

|Ra| =+ [Ra| + [Ra| < El[¢ll2(0r) - (1.72)

First,
Ry = / (X 0@y, vp, 0 Py)vp, o Py [JP, — 1] dp
oF
+/ <X qut, VF, Oq)t>VFt Oq)t d,Uz _/ <X Oq)t,I/F>VF du
OF OF
=/ (X 0@y, vp, 0o Op)vp, 0 Dy [JP, — 1] dp
oF
+/ (X o®y,vp, 0Dy —vp)vpdu
oF
+/8 <X oy, VR, © q)t>(VFt od, — VF) du
F
< / [ X 0 Dy [Py — 1| Lo (ar) dpt
oF
4 [P o @l = v, o @l o i,
F

then, since by inequality (1.41) it follows that for every t € [0, 1] the
two terms

lve —vE, o @il peary  and  [[JPr — 1L (op)

can be made (uniformly in ¢ € [0,1]) small as we want, if ¢ > 0 is small
enough, by using inequality (1.71), we obtain

|Ra| < E|¥ll 20 /3-
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Then we estimate, by means of inequality (1.41) and where s = s(t,y) €
[t,1],

Ral < [ (I¥(@l0)) = X(@1(0))]+1X(@1(0)) = X(0)]) du)
< | IX(@i(0) = X (@1(0) i) + 19X gz 16
:/ (1—1)|VX(® ‘

OF

< /aF IVX(Ps ()| X (Ps ()| dua(y) + VX ([ 2wy 1]l 220

< ClIVX| g (v l¥l 2oy + IV X L2(n) 191 225 F) 5

] )+ IV X v 1 22 om)

where in the last inequality we used estimate (1.71). Hence, by in-
equality (1.44) and Sobolev embeddings, as p > max{2,n — 1}, we
get

|Ro| < CllYllwe2e @)Lz o)

then, since [[¢|lyy2.0(9r) < J, We obtain
|Ro| <EllYll2(0r) /3

if 8 > 0 is small enough.

Arguing similarly, recalling the definition of X given by formula (1.43),
we also obtain |Rs| < g|¢[|12(sr), hence estimate (1.72) follows. We
can then conclude that, for 6 > 0 small enough, we have

/ —
oF

< (2 +2) Wl s2om

+2[[Yl 22(ar)

/ (X, vp,)vE, dut| <
OF,

for any t € [0, 1], where in the last inequality we used the assump-
tion (1.69), thus choosing € = d; /4 we get

301
< = [Wllzzor)

/ <X VFt>VFz dlu’t
OF;

Along the same line, it is then easy to prove that

KX, v L2 0m) = (L =) ¥l L2 (0p) 5

for any t € [0, 1], hence claim (1.70) follows.

As a consequence, since (X, vp,) € H(OF;), being X admissible for F,
(recalling computation 1.2) and dF; can be described as a graph over
OF using a function with small norm in W2?(9F) (by estimate (1.41)
of Lemma 1.16 and arguing as in Remark 1.1), we can apply Step 2
with £/ = F} to the function (X, vr,)/ (X, vE)| 1 (oF,), concluding

m
p (X, vR)) 2 516 vR) i (o) - (1.73)
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1.3 W2P_LOCAL MINIMALITY 49

By means of Lemma 1.17, for § > 0 small enough, we now show
the following inequality on OF; (here div is the divergence operator
and X;, = X — (X, vg,)vp, is a tangent vector field on 0F}), for any

€ [0,1],

[[div(Xr, (X, ’/F,s>)\|”,—1 = [[div e (X, v ) + (Ko, VA v 22y
<CHVXnHL2 or) X i)l 2, 2 o)
+ Ol Xx| L2 om, Hv<XaVFt>HL2(8Ft)
< ClXlm o) IX1] 22, 2 o)
<Ol X308,
<OIX,veEnom) » (1.74)

2
where we used the Sobolev embedding H'(0F;) — LP%?(ﬁFt), as
p > max{2,n —1}.
Then, we compute (here H; is the mean curvature of 0F})

A(OE) — A(OF) = A(OF,) — A(OF)
/1(1 —t) dzA(aFt) dt
o dt
~ [ a0 (M(Xvm))
0

—/ H; div(X, (X, vg,)) dﬂt) dt,
OFy

by equation (1.28), the definition of I1f, in formula (1.31) and taking
into account that divX = 0 in V..

Hence, by estimate (1.73), we have (recall that H=Hp = A, as F is a
critical set, hence the mean curvature H of OF is constant)

1
m
A(9F) ~ A0F) > "0 /O (1= X, v 2 o
1
/ (lt)/ H, div(X ., (X, vE,)) du dt
0 oF;
m 1
=2 [ (=0 ve) 3 o dt
2 Jo
1
- / (1—t) / [H; — AJdiv(Xo, (X, vi)) dpg dt
0 oF;

mo ! 2
=700 [ = O ) By oy
0

1
— [ = O = Ao I XD

mo ! 2
> | (=X ve) 5 om,) dt
0

1
e /0 (1= )1y = Ml o oy 1 7 s o
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by estimate (1.74). If § > 0 is sufficiently small, as F is W2P—close to
F' (recall again Remark 1.1), we have |[Ht — Al|zp(or,) < mo/4C, hence

1
m
AE) = A@F) = " [ (1= 01X, v o -

Then, we can conclude the proof of the theorem with the following series
of inequalities, holding for a suitably small § > 0 as in the statement,

1
A(OE) > A(OF) + /0 (1—t)H<X,l/Ft>H%2(aFt)dt
> A(OF) + C’H X VF>||L2 OF)
> A(OF) + C’WHL? oF)
> A(OF) + C[Vol(FAE))?
> A(OF) + Cla(F, E))?,

where the first inequality is due to the W?P—closedness of F} to F, the
second one by the expression (1.43) of the vector field X on OF,

/M)ds < Clo()|
o ECy+svr(y) |~ v

the third follows by a straighforward computation (involving the map L

(X (), vr(y))] =

defined by formula (1.39) and its Jacobian), as F is a “normal graph”
over OF with ¢ as “height function”, finally the last one simply by the
definition of the “distance” «, recalling that we possibly translated the
“original” set E by a vector nn € R", at the beginning of this step. [

We conclude the chapter by showing two results that deal with strictly
stable critical sets, which will be used later. The following lemma
says that when a smooth set is sufficiently W?P-close to a strictly
stable critical set of the Area functional, then the quadratic form (1.31)
remains uniformly positive definite (on the orthogonal complement of
its degeneracy subspace, see the discussion at the end of the previous
section).

Lemma 1.19. Let p > max{2,n— 1} and F CT" be a smooth strictly
stable critical set with N. a tubular neighborhood of OF as in for-
mula (1.36). Then, for every 6 € (0,1] there exist o9,0 > 0 such that if
a smooth set E C T™ is W?P—close to F, that is, Vol(EAF) < § and
O0F C N, with

OF = {y+v(y)vr(y) : y € OF},
for a smooth v with [|¢|ly2p@or) < 9, there holds

g(e) > oollellin om
for all o € HY(OE) satisfying
;gg;”sﬂ —(mve)lrzom) = 0lelzoE)

where Op is defined by formula (1.34).
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Proof.
Step 1. We first claim that the strict stability of F' implies

[Ir(p) >0  forall p € H(OF)\T(dF). (1.75)
By means of formula (1.6)
Avp = VH — |B|?vp,

since F' (being critical) satisfies H = A for some constant A € R, we have

Avp = —|B|?vp on OF. This equation can be written as L(v;) = 0, for
every i € {1,...,n}, where L is the self-adjoint, linear operator defined
as

L(p) = —Dyp — |BPg,
then, if we “decompose” a smooth function ¢ € H(OF)\ T(dF) as
© = ¢+ (n,vr), for some n € R® and ¢ € T+(9F) \ {0}, we have
(recalling formula (1.31))

Ip(p) = /8F<L(s0),s0> dp

= /E)F(<L<w>a ¥) + 2L((m,ve)), ) + (L, vr)), (1, vr)) ) dp

=T1Ip ().

By approximation with smooth functions, we conclude that this equality

holds for every function in H(F) \ T(OF), hence I1p(¢) = ITg(1)) > 0

for every ¢ € H(8F)\ T(dF), by the strict stability assumption on F.
We now show that for every 6 € (0,1] there holds

me = inf{ [r(p) : o€ H(OF), lellmer =1 and
min |lo = 1,ve) | 2or) 2 0eli2(or) | >0 (176)

Indeed, let ¢; be a minimizing sequence for this infimum and assume
that p; — @o € H'(OF) weakly in H'(OF).

If pg # 0, as the weak convergence in H!(9F) implies strong conver-
gence in L?(OF) by Sobolev embeddings, for every n € Op we have

o — (nsve)llL2(or) = m [loi — (n,ve) |l 22(ar)
71— 00
> lim Olpillr2or)
71— 00
ZGHSOOHLQ(QF%

hence,
nfgg}? lpo — (n, vF) 2 0r) = OlleollL2(ar) > 0,

thus, we conclude ¢g € H'(OF)\ T(9F) and

mg = lim T1g(p;) > IEe(pe) >0,
1— 00
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where the last inequality follows from estimate (1.75).
If oo = 0, then again by the strong convergence of @; — ¢q in L?(9F),
by looking at formula (1.31), we have

L N 29 % 112 —
me—igrgOHF(soz)—igrgo/aFWsozl dp = lim [loillz gr) =1
since HQDZ'HLQ(BF) — 0.

Step 2. In order to conclude the proof it is enough to show the existence
of some § > 0 such that if Vol(EAF) < § and OF = {y + ¢¥(y)vr(y) :
y € OF} with [|¢y2p(9p) < 6, then

inf{ Ig(p) : ¢ € H(IF), ol o) =1 and

Jnin lo =, vE)llL20B) 2 9||90HL2(6E)} > 09 = %miﬂ{me/m 1},
(1.77)
where my /5 is defined by formula (1.76), with 6/2 in place of 6.
Assume by contradiction that there exist a sequence of smooth sets
E; CT", with 0E; = {y+¢i(y)vr(y) : y € OF} and [[vs]lw2rar) — 0,
and a sequence ¢; € H'(0F;), with il 1 (oE,) = 1 and

Jnin i — (n,vE )220, = OllillL2(0m:) »

such that

g, (pi) <09 <mgsa/2. (1.78)
Let us suppose first that lim; oo [¢illz2(9,) = 0 and observe that by
Sobolev embeddings |¢il|e(aE,) — O for some g > 2, thus, since the

functions 1); are uniformly bounded in W2?(9F) for p > max{2,n — 1},
recalling formula (1.31), it is easy to see that

1—00

lim T (00 = Jim [ (9 = Jim il o, = 1,

which is a contradiction with assumption (1.78).
Hence, we may assume that

lim {loillL2(o8,) > 0. (1.79)

The idea now is to write every ; as a function on 0F. We define the
functions @;(0F) — R, given by

2i0) = eulu+ e ) = £ el + hvr(s) duty).

for every y € OF.
As 1; — 0 in W2P(JF), we have in particular that

1Gill L2(aF)

g€ H'(OF),  |@illmer —1  and :
||90z\|L2(aEi)
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Moreover, note also that vg, (- + ¥;(-)vr(-)) — v in W'P(OF) and
thus in C%*(9F) for some a € (0,1) (depending on p) by Sobolev
embeddings. Using this fact and taking into account the third limit
above and inequality (1.79), one can easily show that

i mingeop |9i — (M, vF)l L2 (o) “ lim mingeoy || — (0, VE,) 22 (08:)

i—00 1@ill L2(ar) i—o0 leill L2(aE:)

which is larger or equal than 6.
Hence, for ¢ € IN large enough, we have

~ . 0, -
@il zrroFy = 3/4 and Jnin 19 = (. ve)llc2or) 2 511Gl L2(0r)
then, in turn, by Step 1, we infer

_ 9
Moreover, the W?2P-convergence of F; to E imply (see the proof of The-
orem 1.13 for more details) the convergence of the second fundamental
forms

Bog, (- +%i()vr()) = Bor in LP(OF),

for i — oo and, since p > 2, the Sobolev embeddings and the W?2P—
convergence of E; to F' imply

| 1BosPetdu= | |BarP@du-o.
OF; OF
Combining all these convergences, we conclude that all the terms of
Iz, (p;) are asymptotically close to the corresponding terms of ITp(@;),
thus

g, (¢i) = g(@i) — 0.

which is a contradiction, by inequalities (1.78) and (1.80). This estab-
lishes inequality (1.77) and concludes the proof. O

The next proposition states the fact that in the neighborhood of
a strictly stable critical set there are no other critical sets, up to
translations.

Proposition 1.20. Let p > max{2,n— 1} and F C T" be a smooth
strictly stable critical set with N a tubular neighborhood of OF as in
formula (1.36). Then, there exists & > 0 such that if F' C T™ is
a smooth critical set such that Vol(F') = Vol(F), Vol(FAF') < 6,
OF' C N and

OF = {y+(y)vr(y) : y € OF},

for a smooth ¥ with ||[¢[lw2p@r) < 6, then F' is a traslate of F.
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Proof. We have seen in Step 3 of the proof of Theorem 1.13 that in
these hypotheses of F' and F”, if 6 > 0 is small enough, we may find
a small vector n € R™ and an admissible smooth vector field X for F',
with the associated flow ® satisfying ®o(F) = F, ®1(F) = F' —n and
d2 ! 2
CHA@@,(F)) > OVOI(FA(F — )
for all ¢ € [0,1], where C' is a positive constant independent of F”.
Assume that F’ is a smooth critical set as in the statement, which is
not a translate of F', then

d
$A(aq>t(p))\ =0,

but from the above formula it follows
4 0w (F)| >0
dt t ‘tzl ’

which implies that F’/ — 7 cannot be critical, hence neither F’, which
is a contradiction. Indeed, —X is an admissible vector field for F’ —n
with an associate flow ¥ satisfying ¥s(F' —n) = ®1_(F), for every
s € [0, 1], hence

%A(@TS(F/_U)) = iA(acbl—s(F))

d
=& = —ZAOD(F))| <0,

s=0 t=1

showing that F’ — 7 is not critical. O



THE SURFACE DIFFUSION FLOW

In this chapter we introduce the surface diffusion flow, we discuss its
basic properties and we prove some technical lemmas in order to show
a global existence result in the three—dimensional case, in the next
chapter.

2.1 DEFINITION AND BASIC PROPERTIES

Definition 2.1 (Smooth flow of sets). Let E; C T for ¢t € [0,T) be a
one—parameter family of sets, we say that it is a smooth flow if there
exists a smooth reference set FF C T"™ and a map ¥ € C*([0,7T) x
T™, T") such that ¥, = ¥(¢,-) is a smooth diffecomorphism from T" to
T™ and Ey = ¥4(F), for all t € [0,T).

The velocity of the motion of any point x = ¥¢(y) of the set Ey, with
y € F, is then given by

Xilw) = 7 w).

hence, -
aitt(y) = Xi(Ye(y))

for every y € F'. Notice that, in general, the smooth vector field X; is
not independent of ¢, so it is not the infinitesimal generator of the flow
Y, but we will see that in the computations in the sequel, it will behave
similarly.

When x € OF;, we define the outer normal velocity of the flow of the
boundaries, which are smooth hypersurface of T",

V%(l’) = <Xt(x)7VEt(x)>7 (2'1)

for every t € [0,T"), where vg, is the outer unit normal vector to Ej.

Definition 2.2 (Surface diffusion flow). Let £ C T™ be a smooth set.

We say that a smooth flow F; for ¢t € [0,T), with Ey = FE, is a surface
diffusion flow starting from E if the outer normal velocity V; of the
moving boundaries OF; is given by

V, =MNHy  forallte[0,7T), (2.2)

where A; and H; are respectively the Laplacian and the mean curvature
of 6Et
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Parametrizing the smooth hypersurfaces M; = dF; of T™ by some
smooth embeddings ¢; : M — T™ such that ¢;(M) = OF; (here M is a
fixed smooth differentiable (n — 1)-dimensional manifold and the map
(t,p) — ¥(t,p) = Y¢(p) is smooth), the geometric evolution law (2.2)
can be expressed equivalently as

<881/:’ Vt> = AHy, (2.3)

where we denoted with 14 the outer unit normal to M; = OFE};.
Moreover, as the moving hypersurfaces M; = 0F; are compact, it is
always possible to smoothly reparametrize them with maps (that we
still call) v, such that

My

ot
describing such surface diffusion flow. This follows by the invariance
by tangential perturbations of the velocity, shared by the flow due to its

= (Ath)I/t s (24)

geometric nature and can be proved following the line in Section 1.3
of [19], where the analogous property is shown in full detail for the
(more famous) mean curvature flow. Roughly speaking, the tangential
component of the velocity of the points of the moving hypersurfaces,
does not affect the global “shape” during the motion.

Formula (2.4) is actually the more standard way to define the surface
diffusion flow, in the more general situation of smooth and possibly
immersed—only hypersurfaces (usually in R™), without being the bound-
ary of any set.

By means of equation (1.5), this system can be rewritten as

o0

ot
and it can be seen that it is a fourth order, quasilinear and degenerate,
parabolic system of PDEs. Indeed, it is quasilinear, as the coefficients
(as second order partial differential operator) of the Laplacian associated

= —A:Avpy + lower order terms (2.5)

to the induced metrics g; on the evolving hypersurfaces, that is,

Acr(p) = By pyte(0) = g7 () VI PVI Py (p)

depend on the first order derivatives of v, as g; (and the coefficient
of A¢A; on the third order derivatives). Moreover, the operator at the
right hand side of system (2.4) is degenerate, as its symbol (the symbol
of the linearized operator) admits zero eigenvalues due to the invariance
of the Laplacian by diffeomorphisms.

Like the Area functional, the flow is obviously invariant by rotations
and translations, or more generally under any isometry of T" (or R™).
Moreover, if ¢ : [0,T) x M — T™ is a surface diffusion flow and & :
[0,T) x M — M is a time-dependent family of smooth diffeomorphisms
of M, then it is easy to check that the reparametrization ¢ : [0,T) x
M — T™ defined as J(t,p) = (t,®(t,p)) is still a surface diffusion
flow (in the sense of equation (2.3)). This property can be reread as “the
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flow is invariant under reparametrization”, suggesting that the really
relevant objects of the flow are actually the subsets M; = 1, (M) of T™.
We now state a short time existence and uniqueness result (and also
of dependence on the initial data) of the surface diffusion flow starting
from a smooth hypersurface, proved by Escher, Mayer and Simonett
in [6], which is expected due to the parabolic nature of the system (2.4),
made evident by formula (2.5). It deals with the evolution in the whole
space IR"™ of a generic hypersurface, only immersed, hence possibly
with self-intersections. It is then straightforward to adapt the same
arguments to our case, when the ambient is the flat torus T™ and we
are looking for the surface diffusion flow of the boundaries of the sets
E, as in Definition 2.2, getting a (unique) surface diffusion flow in a
positive time interval [0,T"), for every initial smooth set Ey C T".

Theorem 2.3 (Short time existence and uniqueness). Let ¢y : M — R"
be a smooth and compact, immersed hypersurface. Then, there exists
a unique smooth surface diffusion flow v : [0,T) x M — R", starting
from My = (M) and solving system (2.4), for some mazimal time of
existence T > 0.

Moreover, the mazimal time of existence depend continuosly on the C*
norm of the inital hypersurface.

As an easy consequence, we have the following proposition, better
suited for our situation.

Proposition 2.4. Let FF C T"™ be a smooth set and N. a tubular
neighborhood of OF, as in formula (1.36), Then, for every a € (0,1)
and M € (0,/2) small enough, there exists T =T (F,M,a) > 0 such
that if Ey € Q?\f(F) there exists a unique smooth surface diffusion flow,
starting from Ey, in the time interval [0,T).

It is well-known that the surface diffusion flow of boundaries of sets is
volume—preserving, that is, the volume of the moving sets E; is constant,
while neither convexity (see [17]) is maintained (nor the embeddedness,
in the “stand—alone” formulation of motion of hypersurfaces, as in
formula (2.4), see [13]), nor there holds the so—called “comparison
property” asserting that if two initial sets are one contained in the
other, they stay so during the two respective flows, due to the lack of
mazimum principle for parabolic equations or systems of order larger
than two (these two properties holds instead for the mean curvature
flow, see [19, Chapter 2] for instance).

The volume—preserving property follows immediately arguing as in
computation (1.18), indeed, if E; = ¥¢(F) is a surface diffusion flow,
described by ¥ € C*°([0,T) x T™, T™), with associated smooth vector
field X; satisfying

oY,

W(?/) = Xi(Ye(v))
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as we said above, we have

d
Ozﬁ\/ol(Et)
:/F;J‘Pt(y) dy
= /F divX,(Y(t,y))J¥(t,y) dy

:/ divX;(z) dx
Ey

- / (X, v, dps
OF:

= / Vi dpg
OF:

= / AyHy dypg
OFE:

=0,

where p; is in the canonical measure induced on dF; by the flat metric
of T™ and in the last equality we applied the divergence theorem (1.2).

Moreover, the surface diffusion flow can be regarded as the H -
gradient flow of the volume—constrained Area functional, in the fol-
lowing sense (see [12], for instance). For a smooth set E C T", we
let the space H~'(OFE) C L*(dE) to be the dual of H'(JE) with the
norm ||u||ﬁ1(aE) = [op |IVul?du (the functions in H'(JE) with zero
integral) and the pairing between H'(OF) and H~'(OF) simply being
the integral of the product of the functions on JF.

Then, it follows easily that the norm of a smooth function v € H1(9E)
is given by

01— o =/8Ev(—A)1vdu:/6E<V(—A)1U,V(—A)1v>du

and, by polarization, we have the H ~1(OF)-scalar product between a
pair of smooth functions u,v : 9E — R with zero integral,

(s oy = [ (VS0 =8) o) de = [ (=) v

integrating by parts.
This scalar product, extended to the whole space H '(9F), make it
a Hilbert space, hence, by Riesz representation theorem, there exists

a function Vi, A € H Y(OE) such that, for every smooth function
v € H Y(OE), there holds

/ vHdp = §Agp(v) = (v, V5 A g1 o) = / v(=A)"'VHy Ady,
OF OF
by Theorem 1.3.

Then, by the fundamental lemma of calculus of variations, we conclude

(—A)_lvgb:{%l =H+c,
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2.2 ENERGY IDENTITIES AND TECHNICAL LEMMAS

for a constant ¢ € IR, that is,
VH A= —AH.

It clearly follows that the outer normal velocity of the moving boundaries
of a surface diffusion flow V; = A;H; is minus the H ~'—gradient of the
volume—constrained functional A.

Remark 2.5. Arguing analogously, we can see easily that the mean
curvature flow, where V; = —H; is the L?>—gradient flow of the Area
functional (without constraints).

2.2 ENERGCY IDENTITIES AND TECHNICAL LEMMAS

In this section we prove some auxiliary results that we need in the
sequel. From now on we drop the t—subscript on Hy, By, A4, uy and we
simply write H, B, A, p for the mean curvature, second fundamental
form, Laplacian and canonical measure, respectively, when it is clear
that they refer to the set F; and its boundary.

Lemma 2.6 (Energy identities). Let Ey C T™ be a surface diffusion
flow. Then, the following identities hold:

d
—A(OE;) = —/ |VH|? du (2.6)
dt 95,
and
d1 )
—= | |VH*dp = —TIg,(AH) — B(VH, VH)AH dp.
dt2 Jog, OF,
1
+/ H|VH|*AH dp, (2.7)
2 Jog,

where g, is the quadratic form defined in formula (1.31).

Proof. Let 14 the smooth family of maps describing the flow as in for-
mula (2.4). By formula (1.13), where X is the smooth (velocity) vector
field X; = % = (AH)vp, along OF;, hence X, = X; — (X;,vg,)vg, =0
(as usual vg, is the outer normal unit vector of dFE}), following compu-
tation (1.14), we have

d d
2 AOE) = =
th(a t) dt /8Et du

:/ (divX, +H(X,vg,)) du
OE;

:/ HAH du
OE,

—— [ v,
2o

where the last equality follows integrating by parts. This establishes
relation (2.6).
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2.2 ENERGY IDENTITIES AND TECHNICAL LEMMAS

In order to get relation (2.7) we also need the time derivatives of
the evolving metric and of the mean curvature of OF;, that we already
computed in formulas (1.10), (1.22) and (1.26) (where the function ¢
in this case is equal to AH and X, = 0), that is,

3%. agij -
= 2h;;AH = —2hYAH,
T hij and 5 h
H
on _ —|B’AH — AAH
ot

Then, we compute

d1

1 g
/ ]VH|2du:/ H|VH]2AHdu—/ RV HV ;H AH dp
dt2 Jog, 2 Jom, OE:

—/ gijViHVjOB]QAH—i—AAH) du
OFE;

1
:/ H|VH]2AHdu/ B(VH,VH) AHdu
2 Jom, OF,
+/ ]B|2(AH)2du+/ AHAAH dp
8Et 8Et
1
:/ H|VH]2AHdu—/ B(VH, VH) AH du
2 Jor, OF:

+ / |BP*(AH)? dy — / VAH? dy,
8Et 8Et

which is formula (2.7), recalling the definition of I1g, in formula (1.31).
0

Given a smooth set ¥ C T" and a tubular neighborhood N; of OF,
as in formula (1.36), for any M € (0,£/2) (recall the discussion at the
beginning of Section 1.3 about our notion of “closedness” of sets), we
denote by @},(F), the class of all smooth sets E C F'U N, such that
Vol(EAF) < M and

OF ={z+¢Yg(x)vp(x): © € OF}, (2.8)

for some g € C*°(9F), with |[¢g|c1(ap) < M (hence, OE C N). For

every k € N and « € (0,1), we also denote by €%*(F) the collection
of sets E € €}, (F) such that [[¢g||cra@ry < M.

From now on, we restrict ourselves to the three—dimensional case,
that is, we will consider smooth subsets of T3 with boundaries which
then are smooth embedded (2—dimensional) surfaces.

In the estimates in the following series of lemmas, we will be interested
in having uniform constants for the families (’:}\’f(F ), given a smooth set
F CT" and a tubular neighborhood N, of OF as in formula (1.36), for
any M € (0,e/2) and o € (0,1). This is guaranteed if the constants in
the Sobolev, Gagliardo—Nirenberg interpolation and Calderén—Zygmund
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2.2 ENERGY IDENTITIES AND TECHNICAL LEMMAS

inequalities, relative to all the smooth hypersurfaces OE boundaries of
the sets E € €y (F), are uniform, as it is proved in detail in [5].

We remind that in oll the inequalities, the constants C' may vary from
one line to another.

The following lemma is an easy consequence of Theorem 3.70 in [4],
with j =0, m =1, n = 2 and r = ¢ = 2, taking into account the
previous discussion.

Lemma 2.7 (Interpolation on boundaries). Let F C T3 be a smooth
set. In the previous notations, for every p € [2,+00) there exists a
constant C = C(F, M, a,p) > 0 such that for every set E € Q:}\}[a(F)
and g € HY(OF), we have

gl zr(am) < C(HVQHL? 9E) ||9||L2 o) T l9ll208)) »

with § =1 —2/p.
Moreover, the following Poincaré inequality holds

|9 = 3llrom) < ClIVYll2(98) -
where g(x) = fgdu, if v belongs to a connected component T of OF.
Then, we have the following mixed “analytic-geometric” estimate.

Lemma 2.8 (H%-estimates on boundaries). Let ' C T3 be a smooth
set. Then there exists a constant C = C(F,M,«a,p) > 0 such that if
E € ¢}7(F) and f € HY(OE) with Af € L*(OE), then f € H?*(OE)
and

V22 0m) < ClAS N 20m) (1 + [HI7405)) -

Proof. We first claim that the following inequality holds,

| wsans [ sfPauec [ BESRd (29)
OF oOF OF

Indeed, if we integrate by parts the left—hand side, we obtain (the
Hessian of a function is symmetric)

/ g gV VR dp = —/ 9 gLV ViV dp.
OF OF

Hence, using relations (1.7) and (1.8), interchanging the covariant
derivatives and integrating by parts, we get

—/ kg ViV VI f dp = —/ ki NV VL f dp
oF oF

JGM%WWWMM
oOF
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= —/ G'NAFVLf dp
oF

- / Rie(V 1, Vf) dy
oOF

~ [ |85 du
OF
+ [ [\BRIVIE - 1B,V 5)] d

s/ Af|2du+0/ BRIV dy,
oFE oFE

thus, inequality (2.9) holds (in the last passage we applied Cauchy—
Schwarz inequality and the well known relation |H| < v/2|B|, then
C=1+2).

We now estimate the last term in formula (2.9) by means of Lemma 2.7
(which is easily extended to vector valued functions ¢g : 0F — R™) with
g=Vfandp=4:

/8 VBRI AR dp < 1810 IV o

2
< OB aom (IV2F11 125 IV £ 1525 + 19 Fl2(0))
< ClIBIE s o) IV 20m) IV Fl 20m) + IV 12208 -

Hence, expanding the product on the last line, using Peter—Paul (Young)
inequality on the first term of such expansion and “adsorbing” in the left
hand side of inequality (2.9) the small fraction of the term || V2 f ||%2( 9E)
that then appears, we obtain

IV £ 22 0m) < CUIBF I 20m) + IV 220 (1Bl 240y + 1Bl 1aom)))
< CIAfI2(0m) + IV FIZ2(0m) (L + 1Bl agop)) - (2:10)

By the fact that Af has zero average on each connected component of
OF, there holds

IVZ20m) = — | [Afdu
OF

- —/ (f — F)AS dp
oF

< I = Fllzz@m) 1Al 22 (o)
< ClIVflli2om) IAf 2(0E) -

where we used Lemma 2.7 again, hence,

IVfllz2or) < ClIAfl 208 - (2.11)

Thus, from inequality (2.10), we deduce

IV £ 122 0m) < CIBSNZ2(0m) (L + 1Bl 21 (0m)) - (2.12)

95
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Now, by means of Calderon—Zygmund estimates, it is possible to show
(see [5]) that there exists a constant C' > 0 depending only on F', M, «
and ¢ > 1 such that for every E € ¢} (F), there holds

1Bl aory < C(L+ [|H|| Laom)) - (2.13)

Then, since it is easy to check that also all the other constant in the
previous inequalities (and the ones coming from Lemma 2.7 also) depend
only on F, M, o and p, if E € Q}\}IO‘(F), substituting this estimate, with
q = 4, in formula (2.12), the thesis of the lemma follows. O

The following lemma provides a crucial “geometric interpolation” that
will be needed in the proof of the main theorem.

Lemma 2.9 (Geometric interpolation). Let F C T3 be a smooth set.
Then there exists a constant C = C(F, M, «) > 0 such that the following
estimates holds

/aE!BHVHIQAHI du < C|VAH| 72 o) IVHI 2(0m) (1 + [HZ608))

for every E € €yf(F).

Proof. First, by a standard application of Hélder inequality, we have

3 2/3
| VBIVHEIAR dn < |88 son (| (BETEP )
OF oF

Then, using the Poincaré inequality stated in Lemma 2.7 and the fact
that AH has zero average on each connected component of F, we get

|AH| L3 or) < CIIVAH] 12(5p)-

Now, we use Holder inequality again

3 2/3 1/2 1/6
(/ !BP\VH!?’du) s(/ \VH!4du) (/ er) ,
oF oFE oF

and we apply Lemma 2.7 with p = 4,

1/2
([ VB[ dR) " < OOV Hls2(0m) | VBl 2 + IVH (o)
Combining all these inequalities, we conclude

/8E|B||VH2|AH\ dp < C||VAH| r20m) [|Bllzs (or) IVHI 22 (o8)-
~(IV*H] 20 + I VH| 12(08) ) -

By Lemma 2.8 and estimate (2.11), with H in place of f, the right-hand
side of the previous inequality can be bounded from above by

ClIVAH| r2a5) | BllLs(om) IAH L2(a5) | VHI 208y (1 + HHH%‘l(aE))'
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Hence, using again Poincaré inequality and estimate (2.13) with ¢ = 6,
we have

[AH| 2 (0m) < CIVAH| 1295

and
1Bllzsom) < C(L+ [Hlzsam)) -

Finally, using this relations and Holder inequality, we obtain the thesis
/aE!BHVHIQAHI du < O|VAH| T2 o) IVHI 2(0) (1 + [H 76 (op)) -

O]

We now remind that since OF can be disconnected (as in the case
of lamellae), the Poincaré inequality could fail for OE. However, if E
is sufficiently close to a stable critical set then it is true for the mean
curvature of OF.

Lemma 2.10 (Geometric Poincaré inequality). Fized p > 2 and a
smooth strictly stable critical set F C T3, let 6 > 0 be the constant
provided by Lemma 1.19, with @ = 1. Then, for M small enough, there
exists a constant C = C(F, M, «a,p) > 0 such that

/ H—-H*dy < C/ |VH|? du (2.14)
oFE OE

for every set & € Q}\’JQ(F) such that OE C N, with

OE ={y+¢y)vr(y) : y € OF},
for a smooth function 1 with ||¢|lyw2ror) < 9.
Proof. Since
/ (H—H)vg du =0,
OF
there holds
[ = H ) du = |- Hapy + [ () du
oF oF
> |H - H[72(gp)

for all n € R™. Choosing M < §, we may then apply Lemma 1.19 with
6 =1 and ¢ = H — H, obtaining

01/ H—H\Qdm/ VHM—/ !BI2\H—H\2du§/ VH? dy.
oFE oFE oFE oFE

O]

The following lemma is straightforward.
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Lemma 2.11. Let E C T3 be a smooth set. If f € H'(OE) and
g € WH4(OFE), then

IV(fD)z20m) < CIVFlli2@m)llglliLe@or) + ClflILs@p IVl Ls o) »
for a constant C' independent of E.

Proof. We estimate with Cauchy—Schwarz inequality,

IV (£ 220m) <20V FlZ2(0m) 1917 (0m) + Q/aE [FPIVgl? du
<2V f1122(0m) 1917 o) + 20 21 (0m) IV 9174 0m)
hence the thesis follows. O
As a corollary, we prove the following result.

Lemma 2.12. Let F C T3 be a smooth set and E € €y (F). Then,
for M small enough, there holds

[VEllws2@r) < CF, M, a)(1+ ||| og) ,

where H is the mean curvature of OE (the function Vg is defined by
formula (2.8)).

Proof. By a standard localization/partition of unity/straightening ar-
gument, we may reduce ourselves to the case where the function ¢¥g
is defined in a disk D C R? and |YEllcrepy < M. Fixed a smooth
cut—off function ¢ with compact support in D and equal to one on a
smaller disk D’ C D, we have (see Remark 1.1)

2

where the remainder term R(x, g, Vig) is a smooth Lipschitz function.
Then, using Lemma 2.11 and recalling that ||¢Ygllcrepy < M, we
estimate

IVA(eE)llz2(p) < C(F, M, a) (M V3(pv5) | 2()
+ IVH|| z2(58) (1 + IVYE Lo (D))
+ H 22 0m) (1 + [VEw24(D))
+1+ WEHW?A(D)) :

We now use the fact that, by a simple integration by part argument, if
u is a smooth function with compact support in R?, there holds

IV Aull 2 g2y = [IV2ull 2 (re)

hence,
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IV?(evp) 2 py = IVA(eYE)|lr2(p)
< C(F, M, o) (M|V3(em) | 12(p)
+ IVH|| 22(58) (1 + IVYE| Lo (D))
+ 1 Hl aop) (1 + Vel w2 (D))
+ 1+ [Yelwaam) )

then, if M is small enough, we have

IV (evE)l2(p) < C(F, M,a)(1+ [H| g1 (o5)) (1 + [Hess vl 14(p)) ,
(2 15)

asS
]| 22op) < C(F, M, a)[[H| g1 (a8 » (2.16)

by Theorem 3.70 in [4].
By the Calderén—Zygmund estimates (holding uniformly for every hy-
persurface OF, with E € € (F), see [5]),

[Hess Y&l La(p) < CllAYElLap) + CllvElLamn (2.17)

and the expression of the mean curvature (Remark (1.1))

_ AYp _ Hess¢p(VYpViE)
VI+IVeEP  (VI+[VeeP)?

we obtain

1A gl Lap) < 2M |H| 1495) + M?|[Hess | 14 (p)
< 2M|[H]|ra(op) + CM*(|[¢el 14(p) + 1A%El (D))

hence, possibly choosing a smaller M, we conclude

[AYE| Lapy < C(F, M, )(1+ |H| tasr)) < C(F, M, a)(1+ [H|| g1 5)) »

again by inequality (2.16).
Thus, by estimate (2.17), we get

[Hess il (o) < CCF, M, ) (1 + [H] i1 o) (2.18)
and using this inequality in estimate (2.15),
IV (evp)l2(py < C(F, M, )(1+ [H| g1 (95))*
hence,
Vel 20y < C(F, M, ) (14 |[H|g1(55))* < C(F, M, a)(1+ [H|[ 711 (5p)) -

The inequality in the statement of the lemma then easily follows by
this inequality, estimate (2.18) and [[¢g||cra(p) < M, with a standard
covering argument. O
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Lemma 2.13 (Compactness). Let F' C T3 be a smooth set and E,, C
¢ (F) a sequence of smooth sets such that

sup / |VH,|? du, < +o0.
neN JOE,

Then, if a € (0,1/2) and M is small enough, there exists a smooth set
F' € &}, (F) such that, up to a (non relabeled) subsequence, E, — F'
in WP for all 1 < p < +oco (recall the definition of convergence of sets
at the beginning of Section 1.3).

Moreover, if inequality (2.14) holds for every set E, with a constant C
independent of n and

| 19H d 0,
OF,

then F' is critical for the volume—constrained Area functional A and
the convergence E,, — F' is in W32,

Proof. We first claim that

sup [[Hull g1 (om,) < +00. (2.19)
nelN

We set H,, = fa B, H,, du,, then, by the “geometric” Poincaré inequality
of Lemma 2.10, which holds with a “uniform” constant C' = C(F, M, a),
for all the sets F € 6}\’40‘(17) (see [5]), if M is small enough, we have

|IH,, —ﬁnH?{l(aEn) < sup / \VH, | dp,, < C < 400
neN JOE,

with a constant C independent of n € IN.

Then, we note that by the uniform C'*bounds on E,, we may find
a solid cylinder of the form C = D x (=L, L), with D C R? a ball
centered at the origin and functions f,,, with

sup [ fnllcrem) < +00, (2.20)
nelN

such that 0E, NC = {(«/,x,) € D x (=L,L) : x, = fp(2')} with
respect to a suitable coordinate frame (depending on n € IN).

/ (H, — H,,) d2’ + H,Area(D) = / div(wnz) da’
D D V 1+ ‘vx’fn|

/ Vo fn !
oD \/1+|vz/fn‘ |.T‘
where o is the canonical (standard) measure on the circle 9D.
Hence, recalling the uniform bound (2.20) and the fact that [|H, —
Hp|lg1(oE,) are equibounded, we get that Hy, are also equibounded

(by a standard “localization” argument, “uniformly” applied to all the
hypersurfaces OF,,). Therefore, the claim (2.19) follows.
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By applying the Sobolev embedding theorem on each connected compo-
nent of F, we have that

HHnHLp(aEn) < CHHnHHl(aEn) <C< +x for all p € [1, +00).

for a constant C' independent of n € IN.
Now, by means of inequality (2.13), we obtain

|Bllrory < C(1+ [H] 1o om)) -
for every E € €y (F) with a uniform constant C. Then, if we write

O, = {y +¢n(y)vr(y) : y € OF},

we have sup,,en [|¥n|lw2r9r) < +00, for all p € [1, 4+00) (taking into
account Remark 1.1).
Thus, by the Sobolev compact embedding W2P(9F) — CL*(dF), up
to a subsequence (not relabeled), there exists a set F’ € ¢} (F) such
that

Yn — g in CLYY(OF),

for all « € (0,1/2) and g8 € (0,1).
From estimate (2.19) and Lemma 2.12 (possibly choosing a smaller
M), we have then that the functions v, are bounded in W?32(9F).
Hence, possibly passing to another subsequence (again not relabeled),
we conclude that E, — F’ in W2? for every p € [1,+0c0), by the
Sobolev compact embeddings.

For the second part of the lemma, we first observe that if

/ |VH,|? dp, — 0,

OFE,

then there exists A € R and a subsequence E,, (not relabeled) such that
H (- +0n()vr()) = A = H( - +¥p (Jve())

in H'(OF), where H is the mean curvature of F’. Hence F’ is critical.
To conclude the proof we only need to show that v, converge to ¥ = ¥z
in W32(9F).

Fixed § > 0, arguing as in the proof of Lemma 2.12, we reduce ourselves
to the case where the functions 1, are defined on a disk D C RR?,
are bounded in W3?2(D), converge in W2P?(D) for all p € [1,+c0)
to ¢ € W32(D) and ||[V¢)||p(p) < 8. Then, fixed a smooth cut—off
function ¢ with compact support in D and equal to one on a smaller
disk D’ C D, we have

Alpn)  Alypy)
VIHIV2 1+ [V
Vi Vb, ViV >

2
v (W”((l +VYa2)32 (14 [Vy[2)32
+ SO(Hn - H) + R(wv wm an) - R(x7 ¢, V”tﬂ) 5

ViV
ENERE

= (V2(ptbn) — V2 (p0))

61



2.2 ENERGY IDENTITIES AND TECHNICAL LEMMAS

where R is a smooth Lipschitz function.
Then, using Lemma 2.11, an argument similar to the one of the proof
of Lemma 2.12 shows that

Hv< Apvn)  Apy) )
VIFIVEL VIFIVOP/ | 1)
< (M) (%V*(p¥n) — V2 (00) | 2(m)
+ IV2(eon) = V(@) 240y IV £y
+ 1IV3(evn) 220y [ Vebn — Vb oo ()
+ 172 () 20y (19l 4 + V2l ()
+ IV Hy = VH|| 2(p) + [1tn = ¥llw2a(p) ) -

Using Lemma 2.11 again and arguing again as in the proof of Lemma 2.12,
we finally get

IV3(etn) = V2(00)ll2(p) < C(M) (llen = $llweco)

+ [|Vipn — v7/}||L°°(D)
+ | VH, = VH| 25 )

hence,

1V = V¥l 12y < COM) (ln = ¥llw2a(p)
+ [V — Vbl 1= ()
+[|VH, = VHI| p2(p) )

from which the conclusion follows, by the first part of the lemma and a

standard covering argument.
O
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STABILITY

We finally prove the main result of this thesis, following the line in [1].
By means of the lemmas in the previous chapter, we will show that if
the initial set Fy is “sufficiently close” to a strictly stable critical set
F C T3, then the surface diffusion flow starting from Ej exists for all
time and converges asymptotically to a translate of F'.

Theorem 3.1. Let F C T3 be a strictly stable critical set and let
N. be a tubular neighborhood of OF, as in formula (1.36). For every
a € (0,1/2) there exists M > 0 such that, if Ey is a smooth set in
Cy(F) satisfying Vol(Ey) = Vol(F) and

/ IV Ho[ djug < M,
OFE

then the unique smooth solution E; of the surface diffusion flow starting
from Ey, given by Proposition 2./, is defined for all t > 0. Moreover,
Ey — F +n exponentially fast in W32 ast — +oo (recall the definition
of convergence of sets at the beginning of Section 1.3), for some n € R3,
with the meaning that the functions 1y : OF +n — R representing OE;
as “normal graphs” on OF +n, that is,

OEy = {y + ¥ns(y)vrsy(y) : y € OF + 1},

satisfy
W < Ce Pt
H¢777t|| 3.2(F+n) > L€ >

for every t € [0, +00), for some positive constants C and [3.

Remark 3.2. We already said that the property of a set Ey to belong
to le\’f(F) is a “closedness” in L' of Ey and F, and in C1* of their
boundaries. The extra condition in the theorem on the L?-smallness of
the gradient of Hy (see the second part of Lemma 2.13 and its proof)
implies that the mean curvature of OEy (that from now on we renamed
as Hp) is “close” to be constant, as it is for the set F' (or actually for
any critical set). Notice that this is a second order condition for the
boundary of Ey, in addition to the first order one Ey € € (F).

Proof of Theorem 3.1. Throughout the whole proof C will denote a
constant depending only on F', M and «, whose value may vary from
line to line.

Assume that the surface diffusion flow E; is defined for ¢ in the
maximal time interval [0,T(Ep)), where T'(Ep) € (0, +oo] and let the
moving boundaries JF; be represented as “normal graphs” on OF as

OE; = {y +i(y)vr(y) : y € OF},
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for some smooth functions 1y : 0F — R. As before we set vy = vp,.
We recall that, by Proposition 2.4, for every E € Q?\}Ia(F), the flow is
defined in the time interval [0,T), with T'= T(F, M, «) > 0.
We show the theorem for the smooth sets Ey C T? satisfying

Vol(EoAF) < My, |[¢ollcreor < Mz and [VHo|? duo < M3,

OEy
(3.1)
for some positive constants My, Moy, M3, then we get the thesis by setting
M = min{M;, Ms, M3}.
For any set E € C}\’f(F ) we introduce the following quantity

D(E) :/EAFd(m,aF) dx:/EdFdx—/dedx, (3.2)

where dp is the signed distance function defined in formula (1.37). We
observe that

Vol(EAF) < CllvEllor) < Clvell L2 or)

for a constant C depending only on F and, as £ C Ng,
D(FE) < / edzr < eVol(EAF).
EAF

Moreover,

, [Ye(y)l
oliaor =2 [ [T tdtdu)
oF JO

o)
=2 [ [ .00 dtaut)
_9 /E d(@.0F) JL7 (@) da

< CD(E).

where L : OF x (—¢,e) — N, the smooth diffeomorphism defined in
formula (1.39) and JL its Jacobian. As we already said, the constant
C depends only on F' and e. This clearly implies

Vol(EAF) < CllYEll L or) < CllYEl 2o < CyD(E).  (3.3)

Hence, by this discussion, the initial smooth set Ej € QI}\’f(F ) satisfies
D(Ey) < M < M; (having chosen € < 1).

By rereading the proof of Lemma 2.13, it follows that for My, Ms
small enough, if [|¢g[|cre@r) < M2 and

/ I\VH|? dp < M3,
OF

then
[YEllw2sor) < w(max{Ms, Ms}), (3.4)
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where s — w(s) is a positive nondecreasing function (defined on R) such
that w(s) — 0 as s — 0. This clearly implies (recalling Remark 1.1)

lvEllwisop) < o' (max{Ms, M3}),

for a function w’ with the same properties of w. Both w and w’ only de-
pend on F and «, for M small enough. Moreover, thanks to Lemma 2.10,
there exists C' > 0 such that, choosing Ms, M3 small enough, in order
that w(max{Ma, M3}) is small enough, we have

/ H-HAPdu<C / VH dj, (3.5)
oF oFE

where, as usual, H is the average of H over 0F.

We split the proof of the theorem into steps.
Step 1. (Stopping—time) Let T < T(Ej) be the maximal time such
that

VOI(EtAF) S 2M1, ”¢t||01,a(3p) S 2M2 and / |VHt\2d,ut S 2M3,
OE;

(3.6)
for all ¢ € [0,T). Hence,

[l w26ar) < w(2max{Ma, M3}) (3.7)

for all t € [0,T"), as in formula (3.4). Note that such a maximal time is
clearly positive, by the hypotheses on Ej.
We claim that by taking Mj, My, M3 small enough, we have T = T'(Ej).

Step 2. (Estimate of the translational component of the flow) We want
to show that there exists a small constant # > 0 such that

min [[AH; — (0, vi)[| 2 08,) = OIlAH 1258, for all t € [0,T),
F

neO
(3.8)
where Op is defined by formula (1.34).
If M is small enough, clearly there exists a constant Co = Co(F, M, o) >
0 such that, for every i € I, we have ||(e;, 14)||z2(sE,) > Co > 0, holding
[€i, vr) |l 2(aF) > 0. It is then easy to show that the vector n: € Op
realizing such minimum is unique and satisfies

AH; = (i, ) + g, (3.9)

where g € L?(0F;) is a function L*-orthogonal (with respect to the
measure p; on 0F;) to the vector subspace of L2(6Et) spanned by
(ei, ), with i € I, where {eq,...,e3} is the orthonormal basis of R?
given by Remark 1.10). Moreover, the inequality

[ne] < C|AH| 208, (3.10)

holds, with a constant C depending only on F', M and «.
We now argue by contradiction, assuming [|gl|z2(sz,) < OlAHt 12 (08,)-
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First we recall that AH; has zero average. Then, setting H = fa 5, Hdu,,
and recalling relation (3.5), we get

|[He _HtH%?(E)Et) = C/ |VHt’2d/~Lt
OE;

= —C HtAHt d/,Lt
OE:

=-C AHt(Ht - ﬁt) dﬂt
OE:
< C[[He — Hell 2208, I8H [ 2255,y (3:11)
Hence, we conclude

IHe = Hell 22 (08, < ClAH|L2(08,) - (3.12)

Since, there holds

/ Hy vy dpg :/ vdur =0,
8Et 8Et

by multiplying relation (3.9) by H; — H;, integrating over O E;, and using
inequality (3.12), we get

‘/ (Ht - ﬁt)AHt Cl/.Lt
oL

= '/BEt(Ht — Hy)g dp

< O H; — Hel 2 0m,) 1AH 1258,
< CO||AH |72 o, -

Recalling now estimate (3.10), as g is orthogonal to (n, 1), computing
as in the first three lines of formula (3.11), we have

4} oy = | M) d
)0
- / (VH,, V(0 12))
oE;
< mlIVvell 2 0m) IVHe 2208,

/ (Ht — ﬁt)AHt dﬂt
OF:

< CVO||Vull 208, | AH 2 05,
< OV AH172 o5, -

1/2

< OVl 2 om) 1A | 220,

where in the last inequality we estimated || V|| p2(9p,) With Cl[vt|lw2s(a8,)
(keeping into account Remark 1.1) and we used inequality (3.7).

If then 6 > 0 is chosen so small that Cv/6 + 62 < 1 in the last inequality,
then we have a contradiction with equality (3.9) and the fact that
9l z2(am,) < OllAH||12(08,), as they imply (by L?-orthogonality) that

16 v 22 0,y > (1= 0%) | AHe |72 (5, -
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All this argument shows that for such a choice of § condition (3.8) holds.
By Propositions 1.19 and 1.20, there exist positive constants oy and
§ with the following properties: for any set £ € €)*(F) such that
lVEllw2s@r) < 6, there holds

e(e) > nollelFnom
for all ¢ € H'(9E) such that
nrgg; o = (n,vE)L2(0E) = Oll@llL2(0E)
and if " is critical, Vol(F") = Vol(F') with ||t [lyy26 (o) < 0, then
Fl'=F4y (3.13)

for a suitable vector n € R3. We then assume that M, M3 are small
enough such that

w(2max{Mas, M3}) < /2 (3.14)
where w is the function introduced in formula (3.4).
Step 3. (The stopping time T is equal to the mazimal time T(Ep))
We show now that, by taking My, Ms, M3 smaller if needed, we have
T = T(Ey).
By the previous point and the suitable choice of Ms, M3 made in its
final part, formula (3.8) holds, hence we have

[, (AH;) > 09| AH[71 o) for all t € [0,T).

In turn, by Lemma 2.6 and 2.9 we may estimate

d1l
o [ IV e <= ool SR+ [ BV di
dt 2 OE, OE:

< — 04| AHt | 31 9,

+ CHV(AHt)\\%2(aEt)HVHtHH(aEt)(l + HHtH%G(aEt))

< — ol AH[l3 o,
+CVM;||V (AH) 1729, (1 + [Hel 76 (9,))
—09||AHtH12L11(aEt)

+ CV/M;||AH, |71 5, (1 + Cowo(max{ Mo, Ms}))
(3.15)
for every ¢t < T, where in the last step we used relations (3.6) and (3.7)
(and kept into account Remark 1.1).
Noticing that from formulas (3.11) and (3.12) it follows

IN

IVH| 22(5E,) < CllAH|L2(08,) < CIlAH |51 (08,) -

kepping fixed M a choosing a suitably small M3, we conclude

d 2 g9 2 2
7 aEt\VHH dpe < = [AHel 1 op,) < —col VHelT2 o) -
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This argument clearly says that the quantity | o8, |VH,|? dyy is non-
increasing in time, hence, if My, M3 are small enough, the inequality
f Py |VH|? dpy < ]\fg is preserved during the flow. If we assume by
contradiction that T < T'(Ejy), then it must happen that

Vol(EzAF) = 2M,;

or
Y7l craar) = 2Ma.

Before showing that this is not possible, we prove that actually the quan-
tity |, o8, |VH¢|? dpy decreases (non increases) exponentially. Indeed, in-
tegrating the differential inequality above and recalling proprierties (3.1),
we obtain

/ \VH|? duy < e ! / |VHpg, |* duo < Mze " < Mz (3.16)
OE: 0Ey

for every t < T.

Then, we assume that Vol(E=AF) = 2M; or ||¢T||Cl,a(aE7) = 2M,.
Recalling formula (3.2) and denoting by X; the velocity field of the flow
(see Definition 2.1 and the subsequent discussion), we compute

d d
*D(Et) = / dF dr = / le(dFXt) der = / dE<Xt,l/t> d,ut
dt dt E; o OE;

= / dF AHt d,ut - / <Vdp, VHt> dﬂt
BEt 8Et

< C|VH|| p2(om,) < CV/Mse /2
for all t < T, where the last inequality clearly follows from inequal-
ity (3.16).
By integrating this differential inequality over [0,T) and recalling esti-
mate (3.3), we get

Vol(EFAF) < Cllvgl 1208, < C\/ D(EF)
< C\/D(By) + CVMs < CYM5,  (3.17)

as D(Fy) < My, provided that My, M3 are chosen suitably small. This
shows that Vol(EFAF) = 2M; cannot happen if we chose C'v/Ms < M.
By arguing as in Lemma 2.13 (keeping into account inequality (3.6)

and formula (3.4)), we can see that the L?-estimate (3.17) implies a
W25 bound on Y7 with a constant going to zero, keeping fixed Mo, as
faEt |VHz|? dpy — 0, hence, by estimate (3.16), as Mz — 0. Then, by
Sobolev embeddings, the same holds for [[¢7(|c1.a (o k), hence, if M3 is
small enough, we have a contradiction with ||¢T||C1,a(3E?) = 2M,.

Thus, T = T(Ep) and
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for every t € [0,T(Ey)), by choosing My, Ms, M3 small enough.
Step 4. (Long time existence) We now show that, by taking My, My, M3
smaller if needed, we have T'(Ey) = 400, that is, the flow exists for all
times.
We assume by contradiction that T'(Ey) < 4+oc and we notice that, by
computation (3.15) and the fact that T = T(Ej), we have

d [VHe|? dpsg + ogl| AH |} <0

it o, i (@9m) <
for all t € [0,T(FEy)). Integrating this differential inequality over the in-
terval [T(Ey) —T/2,T(Ey) — T /4], where T is given by Proposition 2.4,
as we said at the beginning of the proof, we obtain

T(Eo)—T/4 ) 9
09/ I8H: 3 o) dtg/ IVHI" dup(gy) -z
T(Eo)-T/2 8ET(E0)—%
-/ IVHP dyty )1
6ET(E )_%
< M37

where the last inequality follows from estimate (3.18). Thus, by the
mean value theorem there exists ¢ € (T'(Ey) —1/2,T(Eyp) —T/4) such

that AM.
3
1Az 71 o, < Top

Thus, by Lemma 2.8

HV2H{H%2(3EZ) < CHAHfH%Q(aE;)(l + HHEH%A‘(aE{))
< CM3(1 + w*(2max{ My, M3}))

where in the last inequality we also used the curvature bounds provided
by formula (3.7). In turn, for p € R large enough, we get

[Hil oo (or,) < ClIVHIL 05, < CIIVHl T op,) < CMs(Ma, Ms)

where [']CO,Q(@E?) stands for the a~Hoélder seminorm on 9F; and in the
last inequality we used the previous estimate.

By means of Schauder estimates (as Calderén—Zygmund inequality
implied estimate (2.13)), it is possible to show (see [5]) that there exists
a constant C' > 0 depending only on F, M, o and p > 1 such that for
every F € (’:}\f(F ), choosing even smaller My, Ms, M3, there holds

[Bllcoaae) < C(1+ [[Hllcow@aEg)) -

Thus, if we choose M3 sufficiently small, by the above discussion (and
Remark 1.1, as before), we can conclude that By € €3 (F). Therefore,
the maximal time of existence of the classical solution starting from FE;
is at least T, which means that the flow F; can be continued beyond
T(Ep), which is a contradiction.
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Step 5. (Convergence, up to subsequences, to a translate of F') Let
t, — 400, then, by estimates (3.18), the sets Fy, satisfy the hypotheses
of Lemma 2.13, hence, up to a (not relabeled) subsequence we have
that there exists a critical set F' € €y (F) such that E;, — F' in W32,
Due to formulas (3.4) and (3.14) we also have [[¢p|[yy26(9p) < § and
F' = F + 1 for some (small) n € R? (equality (3.13)).

Step 6.(Ezponential convergence of the full sequence) Consider now
D, (E) = / dist (x, OF +n) dz
EA(F+n)
The very same calculations performed in Step 3 show that

d
‘D’V](Et) < CHVHt”LQ(GEt) < C\/Eefcot/Z

dt

for all ¢ > 0, moreover, by means of the previous step, it follows

lim¢ 400 Dyy(E¢) = 0. In turn, by integrating this differential inequality
and writing

OE;r = {y + Unt(y)vrin(y) 1y € OF +n},

we get

—+o00

|nell72(0p 1y < CDy(Er) < t CV/Mze™ %2 ds < C/Mge™0'/2

Since by the previous steps [[¢y |26 (9F4r) is bounded, we infer from
this inequality, Sobolev embeddings and standard interpolation esti-
mates that also [|{y ¢l|c1.6(9F,) decays exponentially for 5 € (0,2/3).
Denoting the average of H; on OF; by H;, as by estimates (3.11)
and (3.16), we have that

[He (- 4+ e (vrin () = Hell g opy)
< C|[H: = Hell g (o) [¥n.tllcr (9r1n)
< C[|VH¢| r2(08,)
< C\/ﬁgefcotn.

It follows that

I[H (- + e (vrsn () — He] = [Horsy — Horsylll i opan — 0
(3.19)

exponentially fast, as ¢t — 400, where ﬁap+n stands for the average of
Hopyyn on OF + 1.

Since By — F +n (up to a subsequence) in W32, it is easy to check that
H: — Hop | < Cllyellor(r+ry) which decays exponentially, therefore,
thanks to limit (3.19), we have

[He (- + ¥ne(Dvrin () — Horsyll 1 opan) — 0

exponentially fast.
The conclusion then follows arguing as at the end of Step 4. 0
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SOME CONNECTED TOPICS AND RESEARCH
LINES

This last chapter deals with some problems related to our work. In
particular, we briefly discuss a perturbed version of the surface diffusion
flow and the modified Mullins—Sekerka flow, which is studied in [1]
using the same arguments and techniques proposed before. Then, we
give some information about the classification of the stable critical sets.
Finally, we describe some possible lines of research.

4.1 THE SURFACE DIFFUSION FLOW WITH ELASTICITY

We introduce the surface diffusion flow with elasticity and we give an
asymptotic stability result in the three-dimensional Euclidean space, for
more details, see [10] and the references therein. About the fractional
Sobolev spaces, we refer to [23] for definitions and basic facts.

We define a “nonlocal” energy functional, where the nonlocality is
given by an “elasticity” term. Let Q) C IR? be a bounded open set with
a smooth boundary and F C () a smooth set such that its closure F is
a compact subset of (). With vr we will denote the outer unit normal
vector to OF.

In all this section we will always consider sets ' C ) with this
property saying that F is “compactly contained” in Q).

Let up € HY(Q\ F,IR?) be the unique solution of the following PDE
system
divCE(up) =0 inQ\F
CE(up)vp =0 on OF UIQO\ dpQ
Up = W on IpQ)

where C is the elasticity tensor acting on 3 X 3—matrices,

_ Dup + Du}

E(ur) 5

is the elastic stress associated to the “displacement function” ug, wq is
1

a fixed function in H2(9Q)) and dpQ) is a relatively open subset of Q)

(Du}. is the transpose matrix of Dup).

We then define the following modification of the Area functional
1
J(F)=A(0F) + = CE(up) - E(up)dx, (4.1)
2 Jovr

under a constraint of fixed volume, where the dot denotes the scalar
product between matrices, that is A- B = tr AB.
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We can compute the first and second variations of 7, along the lines
of Chapter 1.

Proposition 4.1. Let F' be a smooth set compactly contained in (),
X € CP(O,R3) and ®; for t € (—¢,e) the associated flow, as in
formula (1.9). Then,

d
aj(q)t(F))

=0 - /aF(H_ %CE(“F> 'E(UF))QOd,u

where ¢ = (X, vp) on OF. If in addition divX = 0 in a neighborhood
of OF we have

d2 2 2 2 o W) - U T
T @] = [ e 1B [ eB,) Bur)a
~5 | (V(CE(ur) - Blur)e).vr) du

1
- / (H= 5 CE(ur) - B(up))div(pX-) dp,
oF 2
where the function u, € HY(Q\ F,R3?) is the unique solution of

CE(uy) B(W)ds =~ | (div(oCE(ur)),v) du

O\F oF

with u, = 0 on pQY, for all p € HY(Q\ F,R®) such that ¢ =0 on
opQ.

We fix a smooth set G C () and a tubular neighborhood N. of G, as

in formula (1.36), with 7 : N — 0G the associated smooth orthogonal
projection. As before, we denote by Qﬁﬁ/’[a(G) the class of smooth sets F’
with Vol(FAG) < M and whose boundary is a normal graph over G
with a function whose C*®-norm is smaller that M.
Let Gy, . .., Gy be the connected components of GG, with smooth bound-
aries T 1 = 0G1,...,Tgm = 0Gp,. For M small, every F € Qf}\’f‘(G) is
C'-diffeomorphic to G, thus, OF has the same number m of connected
components I'r 1, ..., I'r ,, which can be numbered in such a way that,
for every i € {1,...,m}, we have

Tri={y+hri(wvely) : yeTlai},

for suitable functions hp, € C1*(0G;) and the respectively enclosed
sets F; are diffeomorpic to G;.

Also in this case, we are interested in volume—preserving variations,
in the following sense.

Definition 4.2. Let F' be a smooth set compactly contained in ). We
say that a vector field X € C°(Q),R3) is admissible for F, if there
exists g9 € (0,1) such that

Vol(®,(F;)) = Vol(F;) fort € (—ep,e0) andi=1,...,m,

where @ is the flow associated to X.
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We then give the definition of critical and stable sets.

Definition 4.3. We say that a smooth set F© C (), with connected
components Fi, ..., F,,, is critical for the functional 7 if there exist
constants Aq,..., A, such that

1
H—§CE(UF)E<UF) :)\i on FF,Z-

for every i =1,...,m.

Note that if F' is a smooth (local) minimizer of J under a volume
constraint, then there exists a constant A such that

H—%CE(uF)E(uF) =\ ondF,

which is a stronger condition than the criticality one above.
When F' is critical, the formula for the second variation in Proposi-
tion (4.1) reduces to

~ d?
() = 75T (@u(F)) -
= / IV|? — |Bl*¢* du —/ CE(uy) - E(up) dx
oF O\F

_ % /8F<V(CE(uF)  E(up)g?),vr) dp,

where ¢ = (X, vp) on OF.

Definition 4.4. Let F' C () be a smooth critical set. We say that F' is
stable if
Ip(y) >0  forally € H(OF)

and it is strictly stable if
[p(y) >0  forally € H(OF)\ {0},
where H'(OF) is defined as in formula (1.30).

Definition 4.5 (Surface diffusion flow with elasticity ). Let F' C Q)
be a smooth set. We say that a smooth flow F; for ¢t € [0,7"), with
Fy = F, is a surface diffusion flow with elasticity starting from F, if
the outer normal velocity V; of the moving boundaries 0F;, defined as
in formula (2.1), is given by

Vi = A(H - %CE(uFt) ‘E(ug)) forallte0,T). (4.2)

By the work in [10], it is possible to prove a short time existence and
uniqueness of a solution starting from any smooth set. The strategy
proposed by Fusco, Julin e Morini is based on the idea of thinking the
elastic contribution as a “forcing term” and using a fixed point argument
in a suitably chosen function space.

To conclude, we analyze the behavior of the flow when the initial set
is close to a smooth strictly stable critical set G.
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Theorem 4.6 ([10, Theorem 5.1]). Let G C Q) be a smooth strictly
stable critical set, in the sense of Definition 4./. There exists M > 0
such that if Fy € €3,(G), then the unique solution Fy of the flow (4.2)
starting from Fy is defined for all times t > 0.

Moreover Fy — Fy exponentially fast, where Foo is the unique smooth
critical set “close” to G such that Vol(Fu ;) = Vol(Fy,;) fori=1,...,m.
In particular, if Vol(Fy;) = Vol(G;) for i = 1,...,m, then F; —
G exponentially fast (G, Fy i, Fso i denote the connected components
respectively of G, Fo, Fx).

In order to show this asymptotic exponential stability result, it is
enough to adapt to this situation the methods used for the surface
diffusion flow. The rough idea is to look at the asymptotic behavior of
the quantity

/8F ‘V(H — %CE(uFt) -E(’U,Ft)>’2 dyg ,

and to show that it is decreasing and vanishes exponentially fast, as
t — +o00. A crucial role in this analysis is played by energy identities
(similar to the identities proven in Lemma 2.6) and by the estimates of
the k—order derivatives of the solution, depending only on the initial
set.

4.2 THE MODIFIED MULLINS—SEKERKA FLOW

Another interesting problem related to our work is the study of the
modified Mullins—Sekerka flow in the three-dimensional flat torus, also
carried out in [1].

We introduce the following nonlocal Area functional J, also known as
sharp—interface Ohta—Kawasaki energy, which was first proposed in [24]
to describe phase separation in diblock copolymer melts.

Let £ C T" be a smooth set, we consider the associated potential

vp(z) = - G(z,y)ur(y)dy, (4.3)

where G is the Green function (of the Laplacian) of the torus T™ and

Ugp = XE - XT"\E'
Given v > 0, we define the (volume-constrained) functional

n

I(E) = AQE) +7 [ [Vop(@) da, (4.4)
which has the Euler-Lagrange equation
H+4yvp = A on OF

for a constant A € R.
We observe that for this energy functional there hold the same definitions
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and results that we proved in Chapter 1 for the surface diffusion flow.
In particular, we can show, following [2], that any smooth critical set for
J with positive second variation (that is, strictly stable in an analogous
sense to Definition (1.9)) is a W?P-local minimizer, for all p > 2.

Then, to any smooth set £ C T"™ we associate the function wg which
is the unique solution in H'(T") of the problem

Awg =0 in T"\ OF
wp =H4+4yvp on OF

where vg is the potential introduced in formula (4.3) and we denote by
wg and wy, the restrictions wg|tm\ g and wg|g, and we set

[0 pwE] = aVEw]EL —Oypwp = _(a”]FE\EwE + Oupwg)
that is, [0, wg]| is the jump of the normal derivative of wg on OF.

Definition 4.7 (Modified Mullins—Sekerka flow). Let £ C T™ be a
smooth set. We say that a smooth flow E;, with Ey = FE, is a modified
Mullins—Sekerka flow (with parameter v > 0) on the interval [0,7")
with initial datum F, if the outer normal velocity V; of the moving
boundaries 0F; is given by

Vi = [Oup,wE,] on OE; forallt €[0,T).

Notice that the adjective “modified” is due to the parameter -y, when
it is positive. Indeed, if v = 0 the potential vg becomes irrelevant, the
functional J becomes the Area functional and we recover the “classical”
Mullins—Sekerka flow, which was studied in [22] (it can be shown that
this latter can be regarded as the H~'/2-gradient flow of the Area
functional under the constraint that the volume is fixed, see [18]).

Also for this situation, analogously to the surface diffusion flow, a
short time and uniqueness result was established by Escher and Nishiura
in [7] and, in the three-dimensional case, following [1], it is possible
to show that if the initial set £ C T? is sufficiently close to a smooth
strictly stable critical set F', then the modified Mullins—Sekerka flow,
starting from F, exists for all time and converge exponentially fast to a
translate of F'.

4.3 THE CLASSIFICATION OF THE STABLE CRITICAL SETS

We discuss now a while the class of initial sets to which Theorem 3.1
can be applied, hence, “dynamically exponentially stable” for the sur-
face diffusion flow. In the three-dimensional case, the smooth stable
“periodic” critical sets are classified, a first description was given by Ros
in [26], where it is shown that in a three-dimensional flat torus T3, for
the volume—constrained Area functional, they are balls, 2—tori, gyroids
or lamellae.
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Figure 1: From left to right: balls, cylinders, gyroids and lamellae.

Notice that the lamellae are a finite collection of parallel planar 2—tori,
where 2—tori are simply a quotient of a circular cylinders. The surfaces
in the first three classes are actually strictly stable, hence, it is possible
to apply the aforementioned theorem. While in [14,15,27] the authors
establish the strict stability of gyroids only in some cases. To give an
example, we refer to [15] where Grosse—Brauckmann and Wohlgemuth
showed the strictly stability of the gyroids that are fixed with respect to
translations. We remind that the gyroids, that were discovered by the
crystallographer Schoen in the 1970 (see [28]), are the unique non—trivial
embedded members of the family of the Schwarz P surfaces and then
conjugate to the D surfaces, that are the simplest and most well-known
triply—periodic minimal surfaces (see [27]).

It is worth mentioning, without going into detail, that instead, for the
functional (4.4) a complete classification of the stable periodic structures
is still missing.

4.4 POSSIBLE FUTURE RESEARCH DIRECTIONS

A natural continuation of the research presented in the thesis is trying
to generalize the results to dimension n > 3, which is at the moment an
open, absolutely not easy problem. Another challenging research line
(actually, relevant for physics) is modeling the evolution of epitaxially
strained elastic films, that is, the growth of a thin layer on the surface
of a crystal so that the layer has the same structure as the underlying
crystal. The proposed physical models are driven by laws similar to the
surface diffusion flow with elasticity, seen above, with extra (regularizing)
curvature terms (as in [9]). In order to give an example, we define the
following energy functional,

1
JAF) = AOF)++ [ CB(ur) E(up)dz+ < / PP du
2 Jar P Jor

where ¢ is a positive parameter and p > 2, which is a “singular per-
turbation” of the energy defined in formula (4.1) and we consider the
associated (gradient) evolution law

Vi = i (H- %CE(uFt) B(ur,))~eded([HP2H) + LOT

giving the motion of the boundary dF; (LOT stands for “lower order
terms”).
This problem was studied in dimensions two and three by Fonseca, Fusco,
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Leoni and Morini in [8] and [9], respectively. We aim to study such flows
in higher dimensions, possibly with different singular perturbations, for
instance, of higher order as

JF) = A@F)++ [ CE(up)- E(up) da + 5/ VB dy
2 Jar oF
and also to investigate what happens when the perturbation “goes
to zero”, trying to show that the associated perturbed gradient flows
“converge” in some sense to the original one (surface diffusion flow with
elasticity), as the perturbation term gets smaller and smaller.
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