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INTRODUCTION

In mathematics, in particular in the field which is in the middle between
analysis and geometry called geometric analysis, a geometric flow is
a motion in time of some geometric object or structure, driven by a
system of partial differential equations. Such topic got recently an
extremely large interest due to its success in solving some famous open
problems, notably among them, the Poincaré conjecture by Perelman,
via the Ricci flow.
We will consider the evolution in time of smooth subsets Et of the
Euclidean space such that their boundaries ∂Et, which are smooth
hypersurfaces, move, for t ∈ [0,T ), with “outer” normal velocity Vt
given by

Vt = ∆tHt on ∂Et, (SDF)

where ∆t and Ht are respectively, the Laplacian and the mean curvature
of the surface ∂Et. The resulting motion is called surface diffusion flow
and it was first proposed by Mullins in [21] to study thermal grooving
in material sciences (see also [6]). We will deal with surfaces in the
three–dimensional space, which is a physically relevant case since it
describes the evolution of interfaces between solid phases of a system,
driven by surface diffusion of atoms under the action of a chemical
potential (see for instance [16] and the references therein).
Our main purpose is to prove, following [1], a long time existence

result for suitable “initial” sets E0 ⊆ R3 in the “periodic" setting, that is,
assuming that all the evolving sets Et (hence, their boundary surfaces)
are 1–periodic with respect to the standard integer lattice Z3 ⊆ R3. It
is then clear that we can equivalently consider the surface diffusion flow
of sets Et in the ambient space T3 = R3/Z3, the three–dimensional
“flat” torus of unit volume, which is the setting we are going to adopt
in all the thesis.
We mention that even if we work in dimension three, all the results and
arguments also hold in T2 = R2/Z2, considering in such case moving
curves. Moreover, when the dimension of the ambient is larger than
three several questions remain open.

The most important property of this flow, which is the basis for the
results we are going to discuss, is that it is a gradient flow of a functional
which clearly gives a natural “energy”, decreasing in time during the
evolution (in other words the velocity Vt is minus the gradient, that is,
the Euler equation, of a functional). Precisely, in any dimension n ∈N,
the surface diffusion flow can be regarded as the H−1–gradient flow of
the following Area functional, defined for any smooth set E as

A(∂E) = Area(∂E) =
ˆ
∂E
dµ

1



INTRODUCTION 2

giving the area of its (n− 1)–dimensional smooth boundary, under the
constraint that the volume Vol(E) = L n(E) is fixed, choosing a suitable
norm on H−1(∂E). Obviously, µ is the “canonical” measure associated
to the Riemannian metric on ∂E induced by the scalar product of
Rn, which coincides with the n–dimensional Hausdorff measure Hn. It
clearly follows that the volume of the evolving sets Vol(Et) is constant
in time, while we remark that the convexity of Et is not necessarily
preserved along the flow (see [17]). This is a great difference between
our flow and the more famous mean curvature flow, which is also a
gradient flow of the Area functional (without the constraint on the
volume), but with respect to the L2–norm (see [19]).

Parametrizing the smooth surfaces ∂Et by some maps (embeddings)
ψt : M → Tn such that ψt(M) = ∂Et (here M is a fixed smooth
differentiable surface) and letting νt to be the outer unit normal vector
to ∂Et, the evolution law (SDF) can be expressed as

∂

∂t
ψt = (∆tHt)νt

and due to the parabolic nature of this system of PDEs, it is known that
for every smooth initial set E0 ⊆ Tn, the surface diffusion flow Et with
such initial data exists unique and smooth in some positive time interval
[0,T ). Such short time existence and uniqueness result was proved by
Escher, Mayer and Simonett in [6] for the surface diffusion flow in any
dimension of a smooth compact hypersurface in the Euclidean space.
Our aim is to present an (expected) “stability” result by Acerbi,

Fusco, Julin and Morini in [1], where they prove that if the initial set
is sufficiently “close” to a strictly stable critical set F ⊆ T3 for the
(volume–constrained) Area functional, then the flow Et actually exists
for all times and asymptotically converges in some sense to a “translate”
of F . That is, for such special class of initial data we have the existence
of a global solution of the evolution problem (SDF). This is clearly
related to the fact that the flow is the (volume–constrained) gradient
flow of the Area functional in the sense above. For this reason, the
analysis of its first and second order behavior (in Chapter 1) is one of
the key steps in the proof of such result.
We say that a smooth subset F ⊆ Tn is critical if for any smooth

one–parameter family of diffeomorphisms Φt : Tn → Tn, such that
Vol(Φt(F )) = Vol(F ) and Φ0|F = Id, there holds

d

dt
A(∂Φt(F ))

∣∣∣∣∣
t=0

= 0

that is, the first variation of the Area functional A under the constant
volume constraint is zero for F . It follows that F is critical for A if and
only if it satisfies

H = λ ∈ R on ∂F

that is, ∂F is a smooth surface with constant mean curvature.
The study of the second variation and of the related behavior of the



INTRODUCTION 3

Area functional around a critical set F , leading to the central notion
of stability, is more involved. Differently by the original papers, we
will compute it with the tools and methods of Riemannian geometry,
coherently with the “geometric spirit” of the whole thesis. In particular,
we will see that at a critical set F , the second variation ofA only depends
on the normal component ϕ on ∂F of the vector field which is the
infinitesimal generator of the family of diffeomorphisms Φt : Tn → Tn,
deforming F keeping its volume constant. This volume constraint on
the “admissible” deformations of F implies that the functions ϕ must
have zero integral on ∂F , hence it is natural to define a quadratic form
ΠF on such space of functions which is related to the second variation
of A by the following equality

ΠF (ϕ) =
d2

dt2
A(∂Φt(F ))

∣∣∣∣∣
t=0

where Φt : Tn → Tn is a one–parameter family of diffeomorphisms
satisfying Vol(Φt(F )) = Vol(F ),

Φ0|F = IdF and ∂Φt

∂t

∣∣∣∣∣
t=0

= ϕνF on ∂F ,

where νF is the outer unit normal vector of ∂F .
Since the functional A is clearly translation invariant, by choosing for
every vector η ∈ Rn the family of diffeomorphisms Φt of the n–torus
which simply translate any point by tη, it is easy to see that the form ΠF

vanishes on the finite dimensional vector space given by the functions
ψ = 〈η, νF 〉. We then say that a smooth critical set F ⊆ Tn is strictly
stable if

ΠF (ϕ) > 0

for all non–zero functions ϕ : ∂F → R, with zero integral and L2–
orthogonal to every function ψ = 〈η, νF 〉.
We underline that the presence of such “natural” degenerate space of
the quadratic form ΠF (or, equivalently, the translation invariance of
A) is the main reason of several technical difficulties in the thesis.
In order to analyze the local behavior of A around a smooth set

F ⊆ Tn, we say that the set E is “W 2,p–close” to F , if for some δ > 0
“small enough” we have Vol(E4F ) < δ, its boundary ∂E is contained
in a suitable tubular neighborhood of ∂F and can be described as

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F}

for some smooth function ψ : ∂F → R with ‖ψ‖W 2,p(∂F ) < δ. That is,
the boundary of E is represented as the “normal graph” on ∂F of the
function ψ, which is clearly a very useful way to transform the problem
on sets into a problem on functions.
Our first goal, in the last section of Chapter 1, will be to show the

result in [2] that any smooth strictly stable critical set F ⊆ Tn is a
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local minimizer of the volume–constrained Area functional (“isolated"
up to translations), among all smooth W 2,p–close sets E ⊆ Tn, if
p > max{2,n− 1}.

Then, it is possible to consider the “dynamic” stability, having heuris-
tically in mind the example of a system whose state is in a “potential
well”, that is, a region surrounding a local minimum of its potential
energy. We will show the following nonlinear stability result, proved
in [1] with a line of proof that was new in the literature, based on energy
estimates and geometric interpolation inequalities.

Theorem. Let F ⊆ T3 be a strictly stable critical set and let Nε be a
tubular neighborhood of ∂F , as in formula (1.36). For every α ∈ (0, 1/2)
there exists M > 0 such that, if E0 is a smooth set satisfying

• Vol(E0) = Vol(F ),

• Vol(E04F ) ≤M ,

• the boundary of E0 is contained in Nε and can be represented as

∂E0 = {y+ ψE0(y)νF (y) : y ∈ ∂F} ,

for some function ψE0 : ∂F → R such that ‖ψE0‖C1,α(∂F ) ≤M ,

•
ˆ
∂E0

|∇H0|2 dµ0 ≤M ,

then there exists a unique smooth solution Et of the surface diffusion flow
starting from E0, which is defined for all t ≥ 0. Moreover, Et → F + η

exponentially fast in W 3,2 as t → +∞, for some η ∈ R3, with the
meaning that the functions ψη,t : ∂F + η → R representing ∂Et as
“normal graphs” on ∂F + η, that is,

∂Et = {y+ ψη,t(y)νF+η(y) : y ∈ ∂F + η} ,

satisfy
‖ψη,t‖W 3,2(∂F+η) ≤ Ce−βt ,

for every t ∈ [0,+∞), for some positive constants C and β.

The classification of the smooth stable critical sets in T3 is complete:
they are lamellae, balls, 2–tori or gyroids (see [26]). The surfaces in the
first three classes are actually strictly stable, while the strict stability of
gyroids has been established only in some cases (see [14,15,27]). Due
to the above theorem, such sets are thus “dynamically exponentially
stable” for the surface diffusion flow.

The thesis is organized as follows: in Chapter 1 we compute in general
the first and second variation of the Area functional and we show the
W 2,p–local minimality of the smooth strictly stable critical sets. In
Chapter 2 we introduce the surface diffusion flow and in Chapter 3
we prove the nonlinear stability theorem above. Finally, in Chapter 4
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we discuss some results related to our work. In particular, we briefly
describe the surface diffusion flow with elasticity, introduced recently to
study the morphological evolution of strained elastic solids driven by
stress and surface mass transport (see [10]) and the modified Mullins–
Sekerka flow. Then, we give a classification of the “stable” critical set
and we conclude with an overview of possible lines of research.

Acknowledgements. I wish to thank Professor Nicola Fusco for his
invaluable advice and continuous help.
I thank Professor Carlo Mantegazza, I am sincerely grateful for his
presence and attention during these months. His unwavering enthusiasm
and motivation has kept me constantly engaged with this work.
Finally, I thank my colleague and friend Serena Della Corte for her
support and unconditional love.



1
THE AREA FUNCTIONAL

As we said in the introduction, the surface diffusion flow may be regarded
as a suitable gradient flow of the Area functional. In this chapter
we introduce such functional and we analyze its basic properties. In
particular, we compute its first and second variation formulas and we
prove a sufficient condition for a set to be local minimizer.

1.1 notation and geometric preliminaries

We start by recalling that our setting is the n–dimensional (unit) flat
torus Tn (as in [2]), that is the quotient of Rn with respect to the
equivalence relation x ∼ y ⇐⇒ x− y ∈ Zn, where Zn is the standard
integer lattice of Rn. The functional spaces W k,p(Tn), k ∈ N, p ≥ 1,
can be identified with the vector subspaces of W k,p

loc (R
n) of functions

that are one–periodic with respect to all coordinate directions. Similarly,
Ck,α(Tn), for α ∈ (0, 1) may be identified with the space of one–periodic
functions in Ck,α(Rn).
A set E ⊆ Tn will be called smooth (or of class Ck, W k,p) if its

one–periodic extension to Rn is smooth (or of class Ck,α, W k,p), with
the meaning that its boundary is a smooth hypersurface (or it can be
locally described as a graph of a function Ck,α, W k,p, around any of its
points).
We now introduce some basic notations and facts about smooth

hypersurfaces that we need to compute the first and second variation of
the Area functional by “geometric” methods.
We advise the reader that in all our work the convention of summing

over the repeated indices will be adopted. Moreover, when it is clear
by the contest, we will write div for both the (Riemannian) divergence
operator on a hypersurface (defined by formula (1.1) below) and the
(standard) divergence in Tn (which is locally Rn), but this latter will
be instead denoted with divTn when it will be computed at a point of
a hypersurface, in order to avoid any possibility of misunderstanding.
Finally, in all the estimates of the thesis, the constants C may vary
from a line to another.

We will consider (n− 1)–dimensional, compact, smooth hypersurfaces
∂E immersed in Tn where E is a smooth set, that is, pairs (∂E,ψ)
where ψ : ∂E → Tn is a smooth immersion (the rank of the differential
dψ is equal to n− 1 everywhere on ∂E).
Taking local coordinates around any x ∈ ∂E, we have local bases

of the tangent space Tx∂E and of its dual T ∗x∂E, respectively given by
vectors

{
∂
∂xi

}
and 1–forms {dxj}. So we denote the vectors on ∂E by

6
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X = Xi ∂
∂xi

and the 1–forms by ω = ωjdxj , where the indices refer to
the local basis.
The manifold ∂E gets in a natural way a metric tensor g turning it

into a Riemannian manifold (∂E, g), where

gij =

〈
∂ψ

∂xi
, ∂ψ
∂xj

〉
that is the pull–back of the scalar product of Rn via the immersion
map ψ. Then the “canonical” measure induced on ∂E by the metric g
is given in a coordinate chart by µ =

√
det(gij)L n−1 where L n−1 is

the standard Lebesgue measure on Rn−1.
The induced covariant derivative on (∂E, g) of a vector field X and

of a 1–form ω are respectively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,

where the Christoffel symbols Γijk are expressed by the formula

Γijk =
1
2g

il
(
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
.

Moreover, the gradient ∇f of a function, its Laplacian ∆f and the
divergence divX of a tangent vector field at a point x ∈ ∂E are defined
respectively by

g(∇f(x), v) = dfx(v) ∀v ∈ Tx∂E , ∆f = tr∇2f ,

and
divX = tr∇X = ∇iXi =

∂

∂xi
Xi + ΓiikX

k . (1.1)

We recall that by the divergence theorem for compact manifolds (without
boundary), there holds ˆ

∂E
divX dµ = 0 (1.2)

for every tangent vector field X to ∂E, which in particular impliesˆ
∂E

∆f dµ = 0

for every smooth function f : ∂E → R.
Since the hypersurface ∂E is the boundary of a smooth set, we can

consider the globally–defined outer unit normal vector νE at each point
of ∂E, then we can define a symmetric 2–form B = hij called second
fundamental form as follows,

hij = −
〈

∂2ψ

∂xi∂xj
, νE

〉
whose trace is the mean curvature H = gijhij of ∂E.
The symmetry properties of the covariant derivative of B are given by
the following Codazzi equations,

∇ihjk = ∇jhik = ∇khij . (1.3)
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Remark 1.1. Let the hypersurface ∂E ⊆ Rn be locally the graph of a
function f : Rn−1 → R, that is, ψ(x) = (x, f(x)), then we have

gij = δij +
∂f

∂xi

∂f

∂xj
, νE = − (∇f ,−1)√

1 + |∇f |2

hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f ,∇f)

(
√

1 + |∇f |2)3 = div
(

∇f√
1 + |∇f |2

)
where Hessf is the Hessian of the function f .

In the sequel, the following Gauss–Weingarten relations will be fun-
damental

∂2ψ

∂xi∂xj
= Γkij

∂ψ

∂xk
− hijνE , ∂νE

∂xj
= hjlg

ls ∂ψ

∂xs
. (1.4)

Notice that by these relations it follows

∆ψ = gij∇2
ijψ = gij

(
∂2ψ

∂xi∂xj
− Γkij

∂ψ

∂xk

)
= −gijhijνE = −HνE .

(1.5)
Morevover, we have the formula

∆νE = ∇H− |B|2νE , (1.6)

indeed, computing in normal coordinates at a point x ∈ ∂E, by the
above Gauss–Weingarten relations, we have

∆νE = gij
(
∂2νE
∂xi∂xj

− Γkij
∂νE
∂xk

)
= gij

∂

∂xi

(
hjlg

ls ∂ψ

∂xs

)
= gij∇ihjlgls

∂ψ

∂xs
+ gijhjlg

ls ∂2ψ

∂xi∂xs

= gij∇lhijgls
∂ψ

∂xs
− gijhjlglshisνE

=∇H− |B|2νE ,

since all Γkij and ∂
∂xi
gjk are zero at x ∈ ∂E and we used Codazzi

equations (1.3).
Finally, we recall that by straightforward computations the Riemann

tensor, the Ricci tensor and the scalar curvature can be expressed by
means of the second fundamental form as follows,

Rijkl = g

(
∇2
ji

∂

∂xk
−∇2

ij

∂

∂xk
, ∂

∂xl

)
= hikhjl − hilhjk ,

Ricij = gklRikjl = Hhij − hilglkhkj ,
R = gijRicij = gijgklRikjl = H2 − |B|2 . (1.7)
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Hence, the formulas for the interchange of covariant derivatives, which
involve the Riemann tensor, become

∇i∇jXs −∇j∇iXs =Rijklg
ksX l = (hikhjl − hilhjk) gksX l ,

∇i∇jωk −∇j∇iωk =Rijklg
lsωs = (hikhjl − hilhjk) glsωs . (1.8)

1.2 first and second variation of the area func-
tional

We define the Area functional

A(∂E) =
ˆ
∂E
dµ

on the boundary of any smooth set E ⊆ Tn. Obviously, µ is the
canonical measure aforementioned, which coincides with the (n− 1)–
dimensional Hausdorff measure Hn−1 on ∂E.

We are interested in computing the first and second variation of the
Area functional with respect to volume–preserving variations, that is,
the flows Φ as in the following definition.

Definition 1.2. Let E ⊆ Tn be a smooth set.
We say that a vector field X ∈ C∞(Tn, Rn) is admissible for E if the
associated flow Φ : I ×Tn → Tn, defined by∂Φ

∂t (t,x) = X(Φ(t,x))
Φ(0,x) = x

(1.9)

satisfies
Vol(Φ(t,E)) = Vol(E)

for all t ∈ I and x ∈ Tn.

To do this, we first compute such first and second variations for
“general” (not necessarily volume–preserving) variations Φ, generated
by (not necessarily admissible) vector fields X ∈ C∞(Tn, Rn), then we
restrict to X as in this definition. In order to simplify the notation, in
the following, we will write often Φt in place of Φ(t, ·) and Et in place
of Φt(E) = Φ(t,E).

As a preliminary computation, we discuss the behavior of the metric
tensor g and of the canonical measure µ of ∂E under the effect of
the “deformation” of ∂E given by a smooth one parameter family of
immersions ψt : ∂E → Tn, with t ∈ I and ψ0 = ψ = Id. Defining the
field X = ∂ψt

∂t

∣∣∣
t=0

along ∂E (the infinitesimal generator of the variation
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ψt) and setting Xτ = X − 〈X, νE〉νE , to denote the “tangential part”
of X, letting νE the outer normal unit vector of ∂E, we compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ψt
∂xi

, ∂ψt
∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi
, ∂ψ
∂xj

〉
+

〈
∂X

∂xj
, ∂ψ
∂xi

〉
=

∂

∂xi

〈
X, ∂ψ

∂xj

〉
+

∂

∂xj

〈
X, ∂ψ

∂xi

〉
− 2

〈
X, ∂2ψ

∂xi∂xj

〉
=

∂

∂xi

〈
Xτ ,

∂ψ

∂xj

〉
+

∂

∂xj

〈
Xτ ,

∂ψ

∂xi

〉
− 2Γkij

〈
Xτ ,

∂ψ

∂xk

〉
+ 2hij〈X, νE〉 ,

where we used the Gauss–Weingarten relations (1.4) in the last step.
Letting ω be the 1–form defined by ω(Y ) = g(Xτ ,Y ), this formula can
be rewritten as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj

+ 2Γkijωk + 2hij〈X, νE〉

= ∇iωj +∇jωi + 2hij〈X, νE〉 , (1.10)

being ψ : ∂E → Tn the inclusion (identity) map of ∂E.
We remind that

d

dt
detA(t) = det

[
A−1(t)

d

dt
A(t)

]
, (1.11)

for any n× n squared matrix A(t) dependent on t, then we get
∂

∂t

√
detgij

∣∣∣∣
t=0

=
1

2
√

detgij
∂

∂t
detgij

∣∣∣∣
t=0

=

√
detgijgij ∂∂tgij

2

∣∣∣∣
t=0

=

√
detgijgij(∇iωj +∇jωi + 2hij〈X, νE〉

2
=
√

detgij
(
divXτ + H〈X, νE〉

)
(1.12)

which can be expressed as
∂

∂t
µt

∣∣∣∣
t=0

=
(
divXτ + H〈X, νE〉

)
µ , (1.13)

where µt is the canonical Riemannian measure of the smooth hyper-
surface ∂Et. We are now ready to compute the first variation of the
functional A.

Theorem 1.3 (First variation of the Area functional). Let E ∈ Tn a
smooth set and X ∈ C∞(Tn, Rn) the infinitesimal generator of the flow
Φ : I ×Tn → Tn. Then,

d

dt
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

H〈X, νE〉 dµ

where νE and H are respectively, the outer normal and the mean curva-
ture of ∂E (here Et = Φt(E)).
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Proof. We let ψt : ∂E → Tn be given by

ψt(x) = Φ(t,x) ,

for x ∈ ∂E and t ∈ I, then ψt(∂E) = ∂Et and ∂tψt |t=0 = X at every
point of ∂E.
Denoting with gij = gij(t) the induced metrics (via ψt) on the smooth
hypersurfaces ∂Et and setting ψ0 = ψ = Id, by the above computation,
we have

d

dt
A(∂E)

∣∣∣∣
t=0

=
d

dt

ˆ
∂Et

dµt

∣∣∣∣
t=0

=
d

dt

ˆ
∂E

√
detgij dx

∣∣∣∣
t=0

=

ˆ
∂E

∂

∂t

√
detgij

∣∣∣∣
t=0

dx

=

ˆ
∂E

√
detgij(divXτ + H〈X, νE〉) dx

=

ˆ
∂E

(divXτ + H〈X, νE〉) dµ

=

ˆ
∂E

H〈X, νE〉 dµ

(1.14)

where the last equality follows from the divergence theorem (1.2).

It follows that every smooth set E with zero first variation of the
Area functional under a volume constraint (for instance, a minimum)
must satisfy the condition

ˆ
∂E

H〈X, νE〉 dµ = 0 (1.15)

for all admissible X ∈ C∞(Tn, Rn).
We now note that if X ∈ C∞(Tn, Rn) is an admissible vector field

and Φ is the associated flow, then Vol(Et) = Vol(E) for all t ∈ I,
thus, by the divergence theorem, denoting with JΦt the Jacobian of
Φt : Tn → Tn, we have

0 =
d

dt
Vol(Et)

∣∣∣∣
t=0

=
d

dt

ˆ
Et

dx

∣∣∣∣
t=0

=
d

dt

ˆ
E
JΦ(t, z) dz

∣∣∣∣
t=0

=

ˆ
E

∂

∂t
JΦt(z)

∣∣∣∣
t=0

dz

=

ˆ
E

divX(x) dx

=

ˆ
∂E
〈X, νE〉 dµ ,
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that is, the normal component ϕ = 〈X, νE〉 of X has zero integral on
∂E.
We remark that we used the fact that

∂

∂t
JΦt

∣∣∣∣
t=0

= divX , (1.16)

indeed, as JΦt(z) = det[dΦt(z)], by means of formula (1.11), we obtain

∂

∂t
JΦt(z) = JΦt(z)) tr [dΦt(z)

−1 ◦ dX(Φt(z)) ◦ dΦt(z)],

since, by definition of Φ, we have
∂

∂t
[dΦt(z)] = d

(
∂

∂t
Φt(z)

)
= d

[
X(Φt(z))

]
= dX(Φt(z)) ◦ dΦt(z) ,

then, being the trace of a matrix invariant by conjugation, we conclude
∂

∂t
JΦt(z) = JΦt(z) tr [dX(Φt(z))] = JΦt(z))divX(Φt(z)) (1.17)

and considering t = 0, we obtain equality (1.16). More in general, we
have

0 =
d

dt
Vol(Et)

=

ˆ
E

∂

∂t
JΦt(z) dz

=

ˆ
E

divX(Φ(t, z))JΦ(t, z) dz

=

ˆ
Et

divX(x) dx

=

ˆ
∂Et

〈X, νEt〉 dµt (1.18)

where νEt is the outer unit normal vector of the smooth hypersurface
∂Et.
Conversely, we have the following lemma whose proof is postponed

after Lemma 1.16, since the arguments are very similar.

Lemma 1.4. Let ϕ : ∂E → R a C∞ function with zero integral.
Then, there exists an admissible vector field X ∈ C∞(Tn, Rn) such that
ϕ = 〈X, νE〉.

Hence, from equality (1.15) and this lemma, it followsˆ
∂E

Hϕdµ = 0

for all ϕ ∈ C∞(∂E) with zero integral, which is equivalent to say that
there exists a constant λ ∈ R such that

H = λ on ∂E,

That is, ∂E is a smooth hypersurface with constant mean curvature.
This motivates the following definition.
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Definition 1.5 (Critical sets). We say that a smooth subset F ⊆ Tn

is critical for the Area functional A (under volume constraint), if there
exists a constant λ ∈ R such that

H = λ on ∂F .

Remark 1.6. Clearly, the critical sets for the unconstrained Area func-
tional must satisfy ˆ

∂F
H〈X, νF 〉 dµ = 0

for every X ∈ C∞(Tn, Rn), which easily implies the minimal surface
equation H = 0 on ∂F .

Now we turn our attention to the second variation of A.

Theorem 1.7 (Second variation of the Area functional). Let E and X
be as in Theorem 1.3, then

d2

dt2
A(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X, νE〉|2 − 〈X, νE〉2|B|2

)
dµ

+

ˆ
∂E

H
(
H〈X, νE〉2 + 〈Z, νE〉 − 2〈Xτ ,∇〈X, νE〉〉+B(Xτ ,Xτ )

)
dµ ,

where B is the second fundamental form on ∂E and |B|2 is its norm,
which coincides with the sum of squares of the principal curvatures of
∂E, moreover we set Xτ = X − 〈X, νE〉νE as the tangential part of X
on ∂E and

Z =
∂2

∂t2
Φ(0, ·) = ∂

∂t
X(Φ(0, ·)) = dX(X).

Proof. We let ψt = Φ(t, ·)|∂E as in Theorem 1.3 where we showed that

d

dt
A(∂Et) =

d

dt

ˆ
∂Et

√
detgij dx =

ˆ
∂Et

H〈X, νEt〉 dµt .

Consequently, we have

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=
d

dt

ˆ
∂Et

H〈X, νEt〉
√

detgij dx
∣∣∣∣
t=0

.

In order to semplify notations we set ν = νE and ϕ = 〈X, νEt〉, moreover
we drop the subscript t in ψt, that is, we write simply ψ. We need to
compute the following derivatives

∂H
∂t

∣∣∣∣
t=0

, ∂ϕ

∂t

∣∣∣∣
t=0

and ∂

∂t

√
detgij

∣∣∣∣
t=0

. (1.19)

By formula (1.12), there holds

∂

∂t

√
detgij

∣∣∣∣
t=0

=
(
divXτ + Hϕ

)√
detgij
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hence, the contribution of the third term above to the second variation
is given by ˆ

∂E

(
ϕHdivXτ + ϕ2H2

)
dµ .

We now compute

∂ϕ

∂t

∣∣∣∣
t=0

=
∂

∂t
〈X, νEt〉

∣∣∣∣
t=0

=

〈
∂X

∂t
, ν
〉∣∣∣∣
t=0

+

〈
X, ∂νEt

∂t

〉∣∣∣∣
t=0

(1.20)

and, using the fact that ∂ν
∂t is tangent to ∂E, we have

∂ϕ

∂t

∣∣∣∣
t=0

= 〈Z, ν〉+
〈
Xτ ,

∂νEt
∂t

〉∣∣∣∣
t=0

.

We remember that in coordinates Xτ = Xp
τ
∂ψ
∂xp

, then〈
Xτ ,

∂νEt
∂t

∣∣∣∣
t=0

〉
= Xp

τ

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

.

From
〈
∂ψ
∂xp

, ν
〉
= 0, for every p ∈ {1, . . . ,n− 1}, it follows that

0 =
∂

∂t

〈
∂ψ

∂xp
, νEt

〉 ∣∣∣∣
t=0

=

〈
∂X

∂xp
, ν
〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

=
∂

∂xp
〈X, ν〉 −

〈
X, ∂ν

∂xp

〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

=
∂ϕ

∂xp
−
〈
Xτ ,

∂ν

∂xp

〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

=
∂ϕ

∂xp
−Xq

τ

〈
∂ψ

∂xq
, ∂ν
∂xp

〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

.

Now we use the second equality (1.4) to obtain

∂ϕ

∂xp
−Xq

τ

〈
∂ψ

∂xq
, ∂ν
∂xp

〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

=
∂ϕ

∂xp
−Xq

τ

〈
∂ψ

∂xq
,hplgli

∂ν

∂xi

〉
+

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

=
∂ϕ

∂xp
−Xq

τhplg
ligqi +

〈
∂ψ

∂xp
, ∂νEt
∂t

〉∣∣∣∣
t=0

,

that is, 〈
∂ψ

∂xq
, ∂νEt
∂t

〉∣∣∣∣
t=0

= − ∂ϕ
∂xp

+Xq
τhpq .

Therefore equality (1.20) becomes

∂ϕ

∂t

∣∣∣∣
t=0

= 〈Z, ν〉+Xq
τ

〈
∂ψ

∂xq
, ∂νEt
∂t

〉∣∣∣∣
t=0

= 〈Z, ν〉 −Xq
τ

∂u

∂xp
+Xp

τX
q
τhpq

= 〈Z, ν〉 − 〈Xτ ,∇〈X, ν〉〉+B(Xτ ,Xτ ) ,
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hence, the contribution of the second term in (1.19) to the second
variation formula isˆ

∂E
H
(
〈Z, ν〉 − 〈Xτ ,∇〈X, ν〉〉+B(Xτ ,Xτ )

)
dµ .

Finally, we compute ∂H
∂t

∣∣∣
t=0

, recalling that

H = −
〈

∂2ψ

∂xi∂xj
, ν
〉
gij ,

hence we can write

∂H
∂t

∣∣∣∣
t=0

= −
〈

∂2ψ

∂xi∂xj
, ν
〉
∂gij

∂t

∣∣∣∣
t=0
−
〈

∂2ψ

∂xi∂xj
, ∂νEt
∂t

〉∣∣∣∣
t=0

gij

−
〈
∂

∂t

∂2ψ

∂xi∂xj
, ν
〉∣∣∣∣
t=0

gij . (1.21)

Since we know from formula (1.10) that

∂gij
∂t

∣∣∣∣
t=0

=
∂

∂t

〈
∂ψ

∂xi
, ∂ψ
∂xj

〉 ∣∣∣∣
t=0

= ∇iωj +∇jωi + 2hij〈X, ν〉 ,

where ω(Y ) = g(Xτ ,Y ), and for all indices i, k there holds gijgjk = 0,
we get

0 =
∂gij
∂t

gjk
∣∣∣∣
t=0

+ gij
∂gjk

∂t

∣∣∣∣
t=0

= gjk(∇iωj +∇jωi + 2hij〈X, ν〉) + gij
∂gjk

∂t

∣∣∣∣
t=0

.

Hence,

∂gpk

∂t

∣∣∣∣
t=0

= −gjpgik(∇iωj +∇jωi + 2hij〈X, ν〉)

= −∇pXk
τ −∇kXp

τ − 2hpkϕ . (1.22)

Furthermore, by the computations above,〈
∂2ψ

∂xi∂xj
, ∂νEt
∂t

〉∣∣∣∣
t=0

gij =

〈
Γkij

∂ψ

∂xk
, ∂νEt
∂t

〉∣∣∣∣
t=0

gij

= gijΓkij

〈
∂ψ

∂xk
, ∂νEt
∂t

〉∣∣∣∣
t=0

= gijΓkij

(
− ∂ϕ

∂xk
+Xq

τhqk

)
. (1.23)

We now compute the last term in formula (1.21)〈
∂

∂t

∂2ψ

∂xi∂xj
, ν
〉∣∣∣∣
t=0

gij =

〈
∂2X

∂xi∂xj
, ν
〉
gij

=

〈
∂2(ϕν)

∂xi∂xj
, ν
〉
gij +

〈
∂2Xτ

∂xi∂xj
, ν
〉
gij .
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We split this computation, first we consider〈
∂2(ϕν)

∂xi∂xj
, ν
〉
gij =

∂2ϕ

∂xi∂xj
gij +

〈
∂

∂xi

(
hilg

lp ∂ψ

∂xp

)
, ν
〉
gijϕ

=
∂2ϕ

∂xi∂xj
gij +

〈
∂

∂xi

(
hjlg

lp ∂ψ

∂xp

)
, ν
〉
gijϕ

=
∂2ϕ

∂xi∂xj
gij + ϕhjlg

lphipg
ij

=
∂2ϕ

∂xi∂xj
gij + ϕ|B|2 . (1.24)

Then, we compute〈
∂2Xτ

∂xi∂xj
, ν
〉
gij =

∂

∂xi

〈
∂Xτ

∂xj
, ν
〉
gij −

〈
∂Xτ

∂xj
, ∂ν
∂xi

〉
gij

=
∂

∂xi

〈
∂

∂xj

(
Xp
τ

∂ψ

∂xp

)
, ν
〉
gij −

〈
∂Xτ

∂xj
, ∂ν
∂xi

〉
gij

=
∂

∂xi

[
Xp
τ

〈
∂2ψ

∂xj∂xp
, ν
〉]
gij −

〈
∂Xτ

∂xj
, ∂ν
∂xi

〉
gij

= − ∂

∂xi

(
Xp
τhpj

)
gij −

〈
∂Xτ

∂xj
, ∂ν
∂xi

〉
gij

= − ∂

∂xi

(
Xp
τhpj

)
gij −

〈
∂

∂xj

(
Xp
τ

∂ψ

∂xp

)
, ∂ν
∂xi

〉
gij

= − ∂

∂xi

(
Xp
τhpj

)
gij −Xp

τ

〈
∂2ψ

∂xj∂xp
, ∂ν
∂xi

〉
gij

− ∂Xp
τ

∂xi

〈
∂ψ

∂xp
, ∂ν
∂xi

〉
gij

= − ∂

∂xi

(
Xp
τhpj

)
gij −Xp

τ Γkjp

〈
∂ψ

∂xk
, ∂ν
∂xi

〉
gij

− ∂Xp
τ

∂xi

〈
∂ψ

∂xp
, ∂ν
∂xi

〉
gij

= − ∂

∂xi

(
Xp
τhpj

)
gij −Xp

τ Γkjphilg
lqgkqg

ij

− ∂Xp
τ

∂xi
hilg

lqgpqg
ij

= − ∂

∂xi

(
Xp
τhpj

)
gij −Xp

τ Γkjphikg
ij − ∂Xk

∂xi
hikg

ij

= − ∂

∂xi

(
Xp
τhpj

)
gij − hij∇iXj

τ (1.25)
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where we used formulas (1.4) again.
Using equalities (1.22), (1.23), (1.24) and (1.25) we obtain

∂H
∂t

∣∣∣∣
t=0

= hij(−∇iXj
τ −∇jXi

τ − 2hijϕ)

+ gijΓkij

(
∂ϕ

∂xk
−Xq

τhqk

)
− ∂2ϕ

∂xi∂xj
gij + ϕ|B|2

+
∂

∂xi

(
Xp
τhpj

)
gij + hij∇iXj

τ

= − 2hij∇iXj
τ − 2ϕ|B|2 + gijΓkij

(
∂ϕ

∂xk
−Xq

τhqk

)
− ∂2ϕ

∂xi∂xj
gij + ϕ|B|2 + ∂

∂xi

(
Xp
τhpj

)
gij + hij∇iXj

τ

= −ϕ|B|2 − hij∇iXj
τ − ∆ϕ+ gij

[
∂

∂xi

(
Xp
τhpj

)
− ΓkijX

p
τhpk

]
= −ϕ|B|2 − hij∇iXj

τ − ∆ϕ+ gij∇i
(
Xp
τhpj

)
= −ϕ|B|2 − ∆ϕ+Xp

τ divBp
= −ϕ|B|2 − ∆ϕ+ 〈Xτ ,∇H〉

(1.26)
where in the last equality we used the following consequence of taking
the trace in the Codazzi formula (1.3),

divBi = gjk∇jhki = ∇iH .

Hence the contribution of the first term (1.19) is given by
ˆ
∂E
ϕ
(
−ϕ|B|2 − ∆ϕ+ 〈Xτ ,∇H〉

)
dµ

and we have the following second variation of the area functional,

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

[
−ϕ∆ϕ−ϕ2|B|2 + ϕ〈Xτ ,∇H〉+ ϕHdivXτ + ϕ2H2

+ H
(
〈Z, ν〉 − 〈Xτ ,∇ϕ〉+B(Xτ ,Xτ )

)]
dµ .

Now, integrating by parts
ˆ
∂E
ϕ〈Xτ ,∇H〉 dµ = −

ˆ
∂E

(
H〈Xτ ,∇ϕ〉+ ϕHdivXτ

)
dµ

and ˆ
∂E
−ϕ∆ϕdµ =

ˆ
∂E
|∇ϕ|2 dµ ,

we obtain the formula in the statement of the theorem

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

[
|∇ϕ|2 −ϕ2|B|2 + ϕ2H2

+ H
(
〈Z, ν〉 − 2〈Xτ ,∇ϕ〉+B(Xτ ,Xτ )

)]
dµ .
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It follows that if we have a critical set E for the unconstrained Area
functional, hence H = 0 on ∂E (see Remark 1.6), the second variation
of A is simply given by

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X, νE〉|2 − 〈X, νE〉2|B|2

)
dµ

which only depends on the normal component of X on ∂E, that is, on
〈X, νE〉.
We want to see now that the same holds for a critical set of the Area
functional under volume constraint. We claim that

H〈X, ν〉2 + 〈Z, ν〉 − 2〈Xτ ,∇〈X, ν〉〉+B(Xτ ,Xτ )

= 〈X, ν〉divTnX − div(〈X, ν〉Xτ ) , (1.27)

where, as in the previous proof, we set ν = νE .
We notice that, being every derivative of ν a tangent vector field,

〈Xτ ,∇〈X, ν〉〉 = 〈ν, dX(Xτ )〉+ 〈X, 〈Xτ ,∇ν〉〉
= 〈ν, dX(Xτ )〉+ 〈Xτ , 〈Xτ ,∇ν〉〉
= 〈ν, dX(Xτ )〉+B(Xτ ,Xτ ) .

Therefore, recalling that Z = dX(X), we have

H〈X, ν〉2 + 〈Z, ν〉 − 2〈Xτ ,∇〈X, ν〉〉+B(Xτ ,Xτ )

= H〈X, ν〉2 + 〈ν, dX(X)〉 − 〈Xτ ,∇〈X, ν〉〉 − 〈ν, dX(Xτ )〉
= H〈X, ν〉2 + 〈ν, dX(〈X, ν〉ν)〉 − 〈Xτ ,∇〈X, ν〉〉
= H〈X, ν〉2 + 〈X, ν〉〈ν, dX(ν)〉+ 〈X, ν〉divXτ − div(〈X, ν〉Xτ ) .

Now we notice that, choosing an orthonormal basis e1, . . . , en−1, en = ν

of Rn at a point x ∈ ∂E and letting X = Xiei, we have

〈ei,∇>Xi〉 = 〈ei,∇Xi − 〈∇Xi, ν〉ν〉 = divTnX − 〈ν, dX(ν)〉

where the symbol>denotes the projection on the tangent space to ∂E.
Moreover, if we choose a local parametrizazion of ∂E such that ∂ψ

∂xi
= ei,

for i ∈ {1, . . . ,n− 1}, at x ∈ ∂E we have eji =
∂ψj

∂xi
= gij = δij and

〈ei,∇>Xi〉 = 〈ei,∇>Xi
τ 〉+ 〈ei,∇>(〈X, ν〉νi)〉

= 〈e>i ,∇Xi
τ 〉+ 〈X, ν〉〈e>i ,∇νi〉

= 〈e>i ,∇Xi
τ 〉+ 〈X, ν〉∂ψ

j

∂xi
hjlg

ls∂ψ
i

∂xs

=∇eiXi
τ + 〈X, ν〉hii

= divXτ + 〈X, ν〉H

where we used the Gauss–Weingarten relations (1.4) and the fact that
the covariant derivative of a vector field along a hypersurface of Rn
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can be obtained by differentiating in Euclidean coordinates (a local
extension of) the vector field and projecting the result on the tangent
space to the hypersurface (see [11], for instance). Hence, we get

〈ν, dX(ν)〉 = divTnX − 〈ei,∇>Xi〉 = divTnX − divXτ − 〈X, ν〉H

and it follows

H〈X, ν〉2 + 〈Z, ν〉 − 2〈Xτ ,∇〈X, ν〉〉+B(Xτ ,Xτ )

= 〈X, ν〉divTnX − div(〈X, ν〉Xτ )

which is equation (1.27).
Then, we can rewrite the second variation of the Area functional as

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X, νE〉|2 − 〈X, νE〉2|B|2

)
dµ

+

ˆ
∂E

H〈X, νE〉divTnX dµ

−
ˆ
∂E

H div(〈X, νE〉Xτ ) dµ . (1.28)

Theorem 1.8. Let F ⊆ Tn be a critical set for the Area functional,
under volume constraint, that is, H is constant on ∂F , then for every
admissible X ∈ C∞(Tn, Rn) there holds

d2

dt2
A(∂Ft)

∣∣∣∣
t=0

=

ˆ
∂F

(
|∇〈X, νF 〉|2 − 〈X, νF 〉2|B|2

)
dµ. (1.29)

In particular, the second variation at F only depends on the normal
component of X on ∂F , that is, on 〈X, νF 〉.

Proof. As the vector field X is admissible, by formula (1.17), we have

0 =
d2

dt2
Vol(Ft)

∣∣∣∣
t=0

=

ˆ
F

∂

∂t

[
divX(Φt(x))JΦt(x)

] ∣∣∣∣
t=0

dx

=

ˆ
F

[
〈∇divX,X〉+ (divX)2

]
dx

=

ˆ
F

div[(divX)X ] dx

=

ˆ
∂F
〈X, νF 〉divTnX dµ ,

hence, being H constant, the first term in the second line of equa-
tion (1.28) is zero. The second term is also zero, by the divergence
theorem (1.2) and again since H is constant, thus we are done.

By this theorem, the second variation of the Area functional A at a
critical smooth set F is a quadratic form depending only on the normal
component of X ∈ C∞(Tn, Rn) on ∂F , that is, on ϕ = 〈X, νF 〉. This
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and the fact that the admissible vector fields X ∈ C∞(Tn, Rn) are in a
way “characterized” by having zero integral of such normal component
(see the discussion after Theorem 1.3 and Lemma 1.4), suggest the
following definitions of the Sobolev space (see [4])

H̃1(∂F ) =

{
ϕ ∈ H1(∂F ) :

ˆ
∂F
ϕdµ = 0

}
, (1.30)

and of the quadratic form ΠF : H̃1(∂F )→ R, given by

ΠF (ϕ) =

ˆ
∂F
|∇ϕ|2 dµ−

ˆ
∂F
ϕ2|B|2 dµ . (1.31)

Then, if F is critical, by formula (1.29), we have

d2

dt2
A(∂Ft)

∣∣∣∣
t=0

= ΠF (〈X, νF 〉) , (1.32)

for every smooth vector field X which is admissible for F .
We observe that, by the translation invariance of A, the constant

vector field X = η ∈ Rn is clearly admissible, as the associated flow is
given by Φt(x) = x+ tη, then A(∂Ft) = A(∂F ) and

0 =
d2

dt2
A(∂Ft)

∣∣∣∣
t=0

= ΠF (〈η, νF 〉) ,

that is, the form ΠF is zero on the vector subspace

T (∂F ) =
{
〈η, νF 〉 : η ∈ Rn

}
⊆ H̃1(∂F ) .

of dimension less or equal than n. We can then split

H̃1(∂F ) = T (∂F )⊕ T⊥(∂F ) ,

where T⊥(∂F ) ⊆ H̃1(∂F ) is the vector subspace L2–orthogonal to
T (∂F ) (with respect to the measure µ on ∂F ), that is,

T⊥(∂F ) =

{
ϕ ∈ H̃1(∂F ) :

ˆ
∂F
ϕνF dµ = 0

}
=

{
ϕ ∈ H1(∂F ) :

ˆ
∂F
ϕdµ = 0 and

ˆ
∂F
ϕνF dµ = 0

}
and define the following “stability” conditions.

Definition 1.9 (Stability). We say that a critical set F ⊆ Tn is stable
if

ΠF (ϕ) ≥ 0 for all ϕ ∈ H̃1(∂F )

and strictly stable if

ΠF (ϕ) > 0 for all ϕ ∈ T⊥(∂F ) \ {0}.



1.3 W 2,p–local minimality 21

Remark 1.10. We observe that there exists an orthonormal frame
{e1, . . . , en} of Rn such that the functions 〈νF , ei〉 are orthogonal in
L2(∂F ), that is ˆ

∂F
〈νF , ei〉〈νF , ej〉 dµ = 0, (1.33)

for all i 6= j. Indeed, considering the symmetric n×n–matrix A = (aij)

with components aij =
´
∂F ν

i
F ν

j
F dµ, where νiF = 〈νF , εi〉 for some basis

{ε1, . . . , εn} of Rn, we have
ˆ
∂F

(OνF )i(OνF )j dµ = (OAO−1)ij ,

for every O ∈ SO(n). Choosing O such that OAO−1 is diagonal and
setting ei = O−1εi, relations (1.33) are clearly satisfied.
Hence, the functions 〈νF , ei〉 which are not identically zero are an
orthogonal basis of T (∂F ). We set

IF =
{
i ∈ {1, . . . ,n} : 〈νF , ei〉 is not identically zero

}
and

OF = Span{ei : i ∈ IF }, (1.34)

then, given any ϕ ∈ H̃1(∂F ), its projection on T⊥(∂F ) is

π(ϕ) = ϕ−
∑
i∈IF

´
∂F ϕ〈νF , ei〉 dµ
‖〈νF , ei〉‖2L2

µ(∂F )

〈νF , ei〉. (1.35)

1.3 W 2,p–local minimality

We will make a large use of Sobolev spaces on smooth hypersurfaces.
Most of their properties hold as in Rn, standard references are [3], in
the Euclidean space and the book [4] when the ambient is a manifold.

Given a smooth set F ⊆ Tn, for ε > 0 small enough we let (d is the
“Euclidean” distance on Tn)

Nε = {x ∈ Tn : d(x, ∂F ) < ε} (1.36)

to be a tubular neighborhood of ∂F such that the orthogonal projection
map πF : Nε → ∂F giving the (unique) closest point on ∂F and the
signed distance function dF : Nε → R from ∂F

dF (x) =

d(x, ∂F ) if x /∈ F ,
−d(x, ∂F ) if x ∈ F

(1.37)

are well defined and smooth in Nε. Moreover, for every x ∈ Nε, the
projection map is given explicitely by

πF (x) = x−∇d2
F (x)/2 = x− dF (x)∇dF (x) (1.38)
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and the unit vector ∇dF (x) is orthogonal to ∂F at the point πF (x) ∈
∂F , indeed actually ∇dF (x) = ∇dF (πF (x)) = νF (πF (x)), which
means that the integral curves of the vector field ∇dF are straight
segments orthogonal to ∂F .
This clearly implies that the map

∂F × (−ε, ε) 3 (y, t) 7→ L(y, t) = y+ t∇dF (y) = y+ tνF (y) ∈ Nε

(1.39)
is a smooth diffeomorphism with inverse

Nε 3 x 7→ L−1(x) = (πF (x), dF (x)) ∈ ∂F × (−ε, ε),

moreover, denoting with JL its (partial and “relative” to the hypersur-
face ∂F ) Jacobian, there holds

0 < C1 ≤ JL(y, t) ≤ C2

on ∂F × (−ε, ε), for a couple of constants C1,C2, depending on F and
ε (for a proof of the existence of such tubular neighborhood and of these
properties, see [20] for instance).

By means of such tubular neighborhood of a smooth set F ⊆ Tn and
the map L, we can speak of “W k,p–closedness” (or “Ck,α–closedness”
to F of another smooth set E ⊆ Tn, asking that for some δ > 0 “small
enough”, we have Vol(F4E) < δ and that ∂E is contained in a tubular
neighborhood Nε of F , as above, described by

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F},

for a smooth function ψ : ∂F → R with ‖ψ‖Wk,p(∂F ) < δ (resp.
‖ψ‖Ck,α(∂F ) < δ). That is, we are asking that the two sets E and
F differ by a set of small measure and that their boundaries are “close”
in W k,p (or Ck,α).
Notice that clearly

ψ(y) = π2 ◦L−1
(
∂F ∩ {y+ λνF (y) : λ ∈ R}

)
,

where π2 : ∂F × (−ε, ε)→ R is the projection on the second factor.
Moreover, given a sequence of smooth sets Ei ⊆ Tn, we will write Ei →
F in W k,p (resp. Ck,α) if for every δ > 0, there holds Vol(Ei4F ) < δ,
the smooth boundary ∂Ei is contained in Nε and it is described by

∂Ei = {y+ ψi(y)νF (y) : y ∈ ∂F},

for a smooth function ψi : ∂F → R with ‖ψi‖Wk,p(∂F ) < δ (resp.
‖ψi‖Ck,α(∂F ) < δ), for every i ∈N large enough.

From now on, in all the rest of the thesis, we will refer to the volume–
constrained Area functional A, sometimes without underlining the pres-
ence of such constraint, by simplicity. Morever, with Nε we will always
denote a suitable tubular neighborhood of a smooth set, with the above
properties.
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Definition 1.11. We say that a smooth set F ⊆ Tn is a local minimizer
for the Area functional if there exists δ > 0 such that

A(∂E) ≥ A(∂F )

for all E ⊆ Tn with Vol(E) = Vol(F ) and Vol(F4E) < δ.
We say that a smooth set F ⊆ Tn is a W 2,p–local minimizer if there
exists δ > 0 such that

A(∂E) ≥ A(∂F )

for all E ⊆ Tn with Vol(E) = Vol(F ), Vol(F4E) < δ, moreover ∂E
is contained in a tubular neighborhood Nε of F , as above and it is
described by

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F},

for a smooth function ψ : ∂F → R with ‖ψ‖W 2,p(∂F ) < δ.

We immediately see a necessary condition for local minimizers. Notice
that a local minimizer is clearly also a W 2,p–local minimizer.

Proposition 1.12. Let a smooth set F ⊆ Tn be aW 2,p–local minimizer
of A, then F is a critical set and

ΠF (ϕ) ≥ 0 for all ϕ ∈ H̃1(∂F ),

in particular F is stable.

Proof. If F is a local minimizer of A, for any admissible vector field
X ∈ C∞(Tn, Rn) with associated flow smooth Φ, we have Vol(Ft) =
Vol(Φt(F )) = Vol(F ) and for every δ > 0, there clearly exists ε > 0
such that for t ∈ (−ε, ε) we have Vol(F4Ft) < δ and

∂Ft = {y+ ψ(y)νF (y) : y ∈ ∂F} ⊆ Nε

for a smooth function ψ : ∂F → R with ‖ψ‖W 2,p(∂F ) < δ. Hence, the
W 2,p–local minimality of F implies

A(∂F ) ≤ A(∂Ft),

for every t ∈ (−ε, ε). Thus,

0 =
d

dt
A(∂Ft)

∣∣∣∣∣
t=0

=

ˆ
∂F

H〈X, νF 〉 dµ ,

by Theorem 1.3, which implies that F is a critical set, by the subsequent
discussion and

0 ≤ d2

dt2
A(∂Ft)

∣∣∣∣∣
t=0

= ΠF (〈X, νF 〉),

by Theorem 1.7 and equation (1.32).
Since by Lemma 1.4, for every smooth function ϕ : ∂F → R with
zero integral there exists an admissible vector field X ∈ C∞(Tn, Rn)

such that ϕ = 〈X, νF 〉, we conclude that ΠF (ϕ) ≥ 0 for every ϕ ∈
C∞(∂F ) ∩ H̃1(∂F ), then the thesis follows by the density of this space
in H̃1(∂F ) (see [4]).
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The rest of this section will be devoted to strictly stable sets (see
Definition 1.9), in particolar, we will show that the strict stability is
a sufficient condition for the W 2,p–local minimality. Precisely, we will
prove the following main theorem of this chapter.

Theorem 1.13. Let p > max{2,n − 1} and F ⊆ Tn be a smooth
strictly stable critical set for the Area functional A (under a volume
constraint) as in Definition 1.9, and let Nε be a tubular neighborhood of
∂F as in formula (1.36). Then, there exist constants δ,C > 0 such that

A(∂E) ≥ A(∂F ) +C[α(F ,E)]2

for all smooth sets E ⊆ Tn such that Vol(E) = Vol(F ), Vol(E4F ) < δ,
∂E ⊆ Nε and

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F}

for a smooth ψ with ‖ψ‖W 2,p(∂F ) < δ, where the “distance" α(F ,E) is
defined as

α(F ,E) = min
η∈Rn

Vol(F4(E + η)) .

As a consequence, F is a W 2,p–local minimizer of A. Moreover, if E
is W 2,p–close enough to F and A(∂E) = A(∂F ), then E is a translate
of F , that is, F is locally the unique W 2,p–local minimizer, up to
translations.

Remark 1.14. We could have introduced the definitions of strict local
minimizer or strict W 2,p–local minimizer for the Area functional, by
asking that the inequalities A(∂E) ≤ A(∂F ) in Definition 1.11 are
equalities if and only if E is a translate of F . With such notion, the
conclusion of this theorem is that F is actually a strict W 2,p–local
minimizer.
Remark 1.15. With some extra effort, it can be proved that in the same
hypotheses of Theorem 1.13, the set F is actually a local minimizer
(see [2]). Since in the analysis of the surface diffusion flow in the next
chapter we do not need such stronger result, we omitted its proof.
We postpone the proof of this result after showing some technical

lemmas. We underline that most of the difficulties are due to the
presence of the degeneracy subspace T (∂F ) of the form ΠF (that is,
where it is zero), related to the translation invariance of the Area
functional (recall the discussion before Definition 1.9 of stability).
In the next key lemma we are going to show how to construct ad-

missible smooth vector fields for a smooth set F , “related” to smooth
sets which are W 2,p–close to it. By the same technique we then also
prove Lemma 1.4 immediately after, whose proof was postponed from
Section 1.2.

Lemma 1.16. Let F ⊆ Tn be a smooth set and Nε a tubular neigh-
borhood of ∂F as above, in formula (1.36). For all p > n− 1, there
exist constants δ,C > 0 with the following property: if ψ ∈ C∞(∂F )
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and ‖ψ‖W 2,p(∂F ) < δ, then there exists a field X ∈ C∞(Tn, Rn) with
divX = 0 in Nε and with the associated flow Φ satisfying

Φ(1, y) = y+ ψ(y)νF (y), for all y ∈ ∂F . (1.40)

Moreover, for every t ∈ [0, 1], there holds

‖Φ(t, ·)− Id‖W 2,p(∂F ) ≤ C‖ψ‖W 2,p(∂F ) . (1.41)

Finally, if Vol(F1) = Vol(F ), then Vol(Ft) = Vol(F ) for all t ∈ [−1, 1],
that is, the vector field X is admissible.

Proof. We start considering the vector field X̃ ∈ C∞(Nε, Rn) defined
as

X̃(x) = ξ(x)∇dF (x) ∀x ∈ Nε (1.42)

where dF : Nε → R is the signed distance and ξ is the function defined
as follows: for all y ∈ ∂F we let

fy : (ε0, ε0)→ R

to be the unique solution of the ODEf ′y(t) + fy(t)∆dF (y+ tνF (y)) = 0
fy(0) = 1

and we set

ξ(x) = ξ(y+ tνF (y)) = fy(t) = exp
(
−
ˆ t

0
∆dF (y+ sνF (y)) ds

)
,

recalling that the map (y, t) 7→ x = y+ tνF (y) is a smooth diffeomor-
phism between ∂F × (−ε, ε) and Nε. Notice that the function f is
always positive, thus the same holds for ξ and ξ = 1, ∇dF = νF , hence
X̃ = νF on ∂F . Our aim is to prove that the smooth vector field X
defined by

X(x) =

ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πF (x))
X̃(x) (1.43)

for every x ∈ Nε and extended smoothly to all Tn, satisfies all the
properties of the statement of the lemma.
Step 1. We saw that X̃|∂F = νF , now we show that divX̃ = 0 and
analogously divX = 0 in Nε.
Given any x = y+ tνF (y) ∈ Nε, with y ∈ ∂F , we have

divX̃(x) = div[ξ(x)∇dF (x)]
= 〈∇ξ(x),∇dF (x)〉+ ξ(x)∆dF (x)

=
∂

∂t
[ξ(y+ tνF (y))] + ξ(y+ tνF (y))∆dF (y+ tνF (y))

= f ′y(t) + fy(t)∆dF (y+ tνF (y))

= 0,
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where we used the fact that f ′y(t) = 〈∇ξ(y+ tνF (y)), νF (y)〉 and that
we have ∇dF (y+ tνF (y)) = νF (y).
Since the function

x 7→
ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πF (x))
= θ(x)

is constant along the segments t 7→ x+ t∇dF (x), for every x ∈ Nε, it
follows that

0 =
∂

∂t

[
θ(x+ t∇dF (x))

] ∣∣∣∣
t=0

= 〈∇θ(x),∇dF (x)〉,

hence,
divX = 〈∇θ,∇dF 〉ξ + θdivX̃ = 0.

Step 2. Recalling that ψ ∈ C∞(∂F ) and p > n− 1, we have

‖ψ‖L∞(∂F ) ≤ ‖ψ‖C1(∂F ) ≤ CF ‖ψ‖W 2,p(∂F ),

by Sobolev embeddings (see [4]). Then, we can choose δ < ε/CF such
that for all x ∈ ∂F we have that x±ψ(x)νF (x) ∈ Nε.
To check that equation (1.40) holds, we observe that the integral

ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πE(x)))
= θ(x)

represents the time needed to go from πF (x) to πF (x)+ψ(πF (x))νF (πF (x))

along the trajectory of the vector field X̃, which is the segment con-
necting πF (x) and πF (x) + ψ(πF (x))νF (πF (x)), of length ψ(πF (x)),
parametrized as

s 7→ πF (x) + sψ(πF (x))νF (πF (x)),

for s ∈ [0, 1] and which is traveled with velocity ξ(πF (x)+ sνF (πF (x))) =

fπF (x)(s). Therefore, by the above definition of X = θX̃ and the fact
that the function θ is constant along such segments, we conclude that

Φ(1, y)−Φ(0, y) = ψ(y)νF (y)

and, equivalently,
Φ(1, y) = y+ ψ(y)νF (y)

for all y ∈ ∂F .
Step 3. To establish inequality (1.41), we first show that

‖X‖W 2,p(Nε) ≤ C‖ψ‖W 2,p(∂F ) (1.44)

for a constant C > 0 depending only on F and ε. This estimate will
follow from the definition of X in equation (1.43) and the definition of
W 2,p–norm, that is,

‖X‖W 2,p(Nε) = ‖X‖Lp(Nε) + ‖∇X‖Lp(Nε) + ‖∇
2X‖Lp(Nε) .
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As |∇dF | = 1 everywhere and the positive function ξ, by its definition
at the beginning of the proof, satisfies 0 < C1 ≤ ξ ≤ C2 in Nε, for a
pair of constants C1 and C2, we have

‖X‖p
Lp(Nε)

=

ˆ
Nε

∣∣∣∣∣
ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πF (x)))
ξ(x)∇dF (x)

∣∣∣∣∣
p

dx

≤ ‖ξ‖p
L∞(Nε)

ˆ
Nε

∣∣∣∣∣
ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πF (x)))

∣∣∣∣∣
p

dx

≤ Cp1
Cp2

ˆ
Nε

|ψ(πF (x))|p dx

=
Cp1
Cp2

ˆ
∂F

ˆ ε

−ε
|ψ(πF (y+ tνF (y)))|pJL(y, t) dt dµ(y)

=
Cp1
Cp2

ˆ
∂F
|ψ(y)|p

ˆ ε

−ε
JL(y, t) dt dµ(y)

≤ C
ˆ
∂F
|ψ(y)|p dµ(y)

= C‖ψ‖p
Lp(∂F ) .

where L : ∂F × (−ε, ε) → Nε the smooth diffeomorphism defined in
formula (1.39) and JL its Jacobian. Notice that the constant C depends
only on E and ε.

Now we estimate the Lp–norm of ∇X. We compute

∇X =
∇ψ(πF (x))dπF (x)

ξ(πF (x) + ψ(πF (x))νF (πF (x)))
ξ(x)∇dF (x)

−
[ˆ ψ(πF (x))

0

∇ξ(πF (x) + sνF (πF (x)))

ξ2(πF (x) + sνF (πF (x)))
dπF (x)(Id + sdνF (πF (x))) ds

]
·

· ξ(x)∇dF (x)

+

ˆ ψ(πF (x))

0

ds

ξ(πF (x) + sνF (πF (x)))

(
∇ξ(x)∇dF (x) + ξ(x)∇2dF (x)

)

and we deal with the integrals in the three terms as before, changing
variable by means of the function L. That is, since all the functions
dπF , dνF , ∇2νF , ξ, 1/ξ, ∇ξ are bounded by some constants depending
only on E and ε, we easily get (the constant C could vary from line to
line)

‖∇X‖p
Lp(Nε)

≤C
ˆ
Nε

|∇ψ(πF (x))|p dx+C

ˆ
Nε

|ψ(πF (x))|p dx

=C

ˆ
∂F

ˆ ε

−ε
|∇ψ(πF (y+ tνF (y)))|p JL(y, t) dt dµ(y)

+C

ˆ
∂F

ˆ ε

−ε
|ψ(πF (y+ tνF (y)))|p JL(y, t) dt dµ(y)
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=C

ˆ
∂F

(
|ψ(y)|p + |∇ψ(y)|p

) ˆ ε

−ε
JL(y, t) dt dµ(y)

≤ C‖ψ‖p
Lp(∂F ) +C‖∇ψ‖p

Lp(∂F )

≤ C‖ψ‖p
W 1,p(∂F ) .

A very analogous estimate works for ‖∇2X‖p
Lp(Nε)

and we obtain also

‖∇2X‖p
Lp(Nε)

≤ C‖ψ‖p
W 2,p(∂F ) ,

hence, inequality (1.44) follows with C = C(F , ε).
Applying now Lagrange theorem to every component of Φ(·, y) for

every y ∈ ∂F and t ∈ [0, 1], we have

Φi(t, y)− yi = Φi(t, y)−Φi(0, y) = tXi(Φ(s, y)) ,

for every i ∈ {1, . . . ,n}, where s = s(y, t) is a suitable value in (0, 1).
Then, it clearly follows

‖Φ(t, ·)− Id‖L∞(∂F ) ≤ C‖X‖L∞(Nε) ≤ C‖X‖W 2,p(Nε) ≤ C‖ψ‖W 2,p(∂F )

(1.45)
by estimate (1.44), with C = C(F , ε) (notice that we used Sobolev
embeddings, being p > n− 1, the dimension of ∂F ).
Differentiating the equations relating Φ to X in system (1.9), we have
(recall that we use the convention of summing over the repeated indices) ∂

∂t∇
iΦj(t, y) = ∇kXj(Φ(t, y))∇iΦk(t, y)

∇iΦj(0, y) = δij
(1.46)

for every i, j ∈ {1, . . . ,n}. It follows,

∂

∂t

∣∣∣∇iΦj(t, y)− δij
∣∣∣2≤ 2

∣∣∣(∇iΦj(t, y)− δij)∇kXj(Φ(t, y))∇iΦk(t, y)
∣∣∣∣

≤ 2‖∇X‖L∞(Nε)

∣∣∣∇iΦj(t, y)− δij
∣∣∣2

+ 2‖∇X‖L∞(Nε)

∣∣∣∇iΦj(t, y)− δij
∣∣∣

hence, for almost every t ∈ [0, 1] where the following derivative exists,

∂

∂t

∣∣∣∇iΦj(t, y)− δij
∣∣∣≤C‖∇X‖L∞(Nε)

(∣∣∣∇iΦj(t, y)− δij
∣∣∣+1

)
.

Integrating this differential inequality, we get∣∣∣∇iΦj(t, y)− δij
∣∣∣≤ etC‖∇X‖L∞(Nε) − 1 ≤ eC‖X‖W2,p(Nε) − 1,

as t ∈ [0, 1] and where we used Sobolev embeddings again. Then, by
inequality (1.44), we estimate∑
1≤i,j≤n

‖∇iΦj(t, ·)− δij‖L∞(∂F ) ≤ C
(
e
C‖ψ‖W2,p(∂F ) −1

)
≤ C‖ψ‖W 2,p(∂F ),

(1.47)
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as ‖ψ‖W 2,p(∂F ) ≤ δ, for any t ∈ [0, 1] and y ∈ ∂F , with C = C(F , ε, δ).
Differentiating equations (1.46), we obtain

∂
∂t∇

`∇iΦj(t, y) = ∇s∇kXj(Φ(t, y))∇iΦk(t, y)∇`Φs(t, y)
+∇kXj(Φ(t, y))∇`∇iΦk(t, y)

∇`∇iΦ(0, y) = 0

(where we sum over s and k), for every t ∈ [0, 1], y ∈ ∂F and i, j, ` ∈
{1, . . . ,n}.
This is a linear non–homogeneous system of ODEs such that, if we control
C‖ψ‖W 2,p(∂F ), the smooth coefficients in the right side multiplying the
solutions ∇`∇iΦj(·, y) are uniformly bounded (as in estimate (1.47),
Sobolev embeddings imply that∇X is bounded in L∞ by C‖ψ‖W 2,p(∂F )).
Then, arguing as before, for almost every t ∈ [0, 1] where the following
derivative exists, there holds

∂

∂t

∣∣∣∇2Φ(t, y)
∣∣∣≤C‖∇X‖L∞(Nε)

∣∣∣∇2Φ(t, y)
∣∣∣+C|∇2X(Φ(t, y))|

≤Cδ
∣∣∣∇2Φ(t, y)

∣∣∣+C|∇2X(Φ(t, y))| ,

by inequality (1.44) (notice that inequality (1.47) gives an L∞–bound
on ∇Φ, not only in Lp, which is crucial). Thus, by means of Gronwall’s
lemma (see [25], for instance), we obtain the estimate∣∣∣∇2Φ(t, y)

∣∣∣≤ C ˆ t

0
|∇2X(Φ(s, y))|eCδ(t−s) ds ≤ C

ˆ t

0
|∇2X(Φ(s, y))| ds ,

hence,

‖∇2Φ(t, ·)‖p
Lp(∂F ) ≤C

ˆ
∂F

(ˆ t

0
|∇2X(Φ(s, y))| ds

)p
dµ(y)

≤C
ˆ t

0

ˆ
∂F
|∇2X(Φ(s, y))|p dµ(y)ds

=C

ˆ
Nε

|∇2X(x)|pJL−1(x) dx

≤C‖∇2X‖p
Lp(Nε)

≤C‖X‖p
W 2,p(Nε)

≤C‖ψ‖p
W 2,p(∂F ) , (1.48)

by estimate (1.44), for every t ∈ [0, 1], with C = C(F , ε, δ).
Clearly, putting together inequalities (1.45), (1.47) and (1.48), we get
the estimate (1.41) in the statement of the lemma.
Step 4. Finally, we remind that

d2

dt2
Vol(Ft) =

ˆ
∂Ft

〈X, νEt〉divTnX dµt,

hence, since by Step 1 we know that divX = 0, we conclude d2

dt2 Vol(Ft) =
0 for all t ∈ [−1, 1], that is, the function t 7→ Vol(Ft) is linear. If
Vol(F1) = Vol(F ) = Vol(F0), it follows that Vol(Ft) = Vol(F ), for all
t ∈ [−1, 1].
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With an argument similar to the one of Step 4 in this proof, we now
prove Lemma 1.4.

Proof of Lemma 1.4. Let ϕ : ∂E → R a C∞ function with zero integral,
then we define the following smooth vector field in Nε,

X(x) = ϕ(πE(x))X̃(x),

where X̃ is the smooth vector field defined by formula (1.42) and we
extend it to a smooth vector field X ∈ C∞(Tn, Rn) on the whole Tn.
Clearly, by the properties of X̃ seen above,

〈X(y), νE(y)〉 = ϕ(y)〈X̃(y), νE(y)〉 = ϕ(y)

for every y ∈ ∂E.
As the function x 7→ ϕ(πE(x)) is constant along the segments t 7→
x+ t∇dE(x), for every x ∈ Nε, it follows, as in Step 1 of the previous
proof, that divX = 0 inNε. Then, arguing as in Step 4, the function t 7→
Vol(Et) is linear, for t in some interval (−δ, δ). Since, by equation (1.18),
there holds

d

dt
Vol(Et)

∣∣∣∣
t=0

=

ˆ
∂E
〈X, νE〉 dµ =

ˆ
∂E
ϕdµ = 0,

such function t 7→ Vol(Et) must actually be constant.
Hence, Vol(Et) = Vol(E), for all t ∈ (−δ, δ) and X is admissible.

The next lemma gives a technical estimate needed in the proof of
Theorem 1.13.

Lemma 1.17. Let p > max{2,n− 1} and F ⊆ Tn a smooth strictly
stable critical set for the (volume–constrained) functional A. Then,
in the hypotheses and notation of Lemma 1.16, there exist constants
δ,C > 0 such that if ‖ψ‖W 2,p(∂F ) ≤ δ, then |X| ≤ C|〈X, νFt〉| on ∂Ft
and

‖∇X‖L2(∂Ft) ≤ C‖〈X, νFt〉‖H1(∂Ft), (1.49)

hence,
‖X‖H1(∂Ft) ≤ C‖〈X, νFt〉‖H1(∂Ft)

(here ∇ is the covariant derivative along Ft), for all t ∈ [0, 1], where
X ∈ C∞(Tn, Rn) is the smooth vector field defined in formula (1.43).

Proof. Fixed ε > 0, from inequality (1.41) it follows that there exists
δ > 0 such that if ‖ψ‖W 2,p(∂F ) ≤ δ there holds

|νFt(Φt(y))− νF (y)| ≤ ε

for every y ∈ ∂F , hence, as ∇dF = νF on ∂F , we have

|∇dF (Φ−1
t (y))− νFt(y)| = |νF (Φ−1

t (y))− νFt(y)| ≤ ε
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for every y ∈ ∂Ft. Then, if ‖ψ‖W 2,p(∂F ) is small enough, Φ−1
t is close

to the identity, thus

|∇dF (Φ−1
t (y))−∇dF (y)| ≤ ε

on ∂Ft and we conclude

‖∇dF − νFt‖L∞(∂Ft) ≤ 2ε .

We estimate Xτt = X − 〈X, νFt〉νFt (recall that X = 〈X,∇dF 〉∇dF ),

|Xτt | = |X − 〈X, νFt〉νFt |
= |〈X,∇dF 〉∇dF − 〈X, νFt〉νFt |
= |〈X,∇dF 〉∇dF − 〈X, νFt〉∇dF + 〈X, νFt〉∇dF − 〈X, νFt〉νFt |
≤ |〈X, (∇dF − νFt)〉∇dF |+ |〈X, νFt〉(∇dF − νFt)|
≤ 2|X| |∇dF − νFt |
≤ 4ε|X| ,

then
|Xτt | ≤ 4ε|Xτt + 〈X, νFt〉νFt | ≤ 4ε|Xτt |+ |〈X, νFt〉| ,

hence,
|Xτt | ≤ C|〈X, νFt〉| . (1.50)

We now estimate its covariant derivative ∇ along Ft, that is,

|∇Xτt | = |∇X −∇(〈X, νFt〉νFt)|
= |∇(〈X,∇dF 〉∇dF )−∇(〈X, νFt〉νFt)|
= |∇(〈X,∇dF 〉∇dF )−∇(〈X, νFt〉∇dF )

+∇(〈X, νFt〉∇dF )−∇(〈X, νFt〉νFt)|
≤ |∇(〈X, (∇dF − νFt)〉∇dF )|+ |∇(〈X, νFt〉(∇dF − νFt))|

≤Cε
[
|∇X|+ |∇〈X, νFt〉|

]
+C|X|

[
|∇(∇dF )|+ |∇νFt |

]
≤Cε

[
|∇(〈X, νFt〉νFt +Xτt)|+ |∇〈X, νFt〉|

]
+C

(
|〈X, νFt〉|+ |Xτt |

) [
|∇2dF |+ |∇νFt |

]
hence, using inequality (1.50) and arguing as above, there holds

|∇Xτt | ≤ C|∇〈X, νFt〉|+C|〈X, νFt〉|
[
|∇2dF |+ |∇νFt |

]
.

Then, we get

‖∇Xτt‖2L2(∂Ft)
≤C‖∇〈X, νFt〉‖2L2(∂Ft)

+C

ˆ
∂Ft

|〈X, νFt〉|2
[
|∇2dF |+ |∇νFt |

]2
dµ

≤C‖〈X, νFt〉‖2H1(∂Ft)

+C‖〈X, νFt〉‖2
L

2p
p−2 (∂Ft)

∥∥∥|∇2dF |+ |∇νFt |
∥∥∥2

Lp(∂Ft)

≤C ‖〈X, νFt〉‖2H1(∂Ft)
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where in the last inequality we used as usual Sobolev embeddings, as
p > max{2,n− 1}.
Considering now the covariant derivative of X = Xτt + 〈X, νFt〉νFt ,
putting together this inequality, the trivial one

‖∇〈X, νFt〉‖L2(∂Ft) ≤ ‖〈X, νFt〉‖H1(∂Ft)

and inequality (1.50), we obtain estimate (1.49).

We now prove that any smooth set E sufficiently W 2,p–close to
another smooth set F , can be “translated” by a vector η ∈ Rn such
that ∂E − η = {y+ ϕ(y)νF (y) : y ∈ ∂F}, for a function ϕ ∈ C∞(∂F )
having a suitable small “projection” on T (∂F ) (see the definitions and
the discussion at the end of the previous section).

Lemma 1.18. Let p > n− 1 and F ⊆ Tn a smooth set with a tubular
neighborhood Nε as above, in formula (1.36). For any τ > 0 there exist
constants δ,C > 0 such that if another smooth set E ⊆ Tn satisfies
Vol(E4F ) < δ and ∂E = {y + ψ(y)νF (y) : y ∈ ∂F} ⊆ Nε for a
function ψ ∈ C∞(R) with ‖ψ‖W 2,p(∂F ) < δ, then there exist η ∈ Rn

and ϕ ∈ C∞(∂F ) with the following properties:

∂E − η = {y+ ϕ(y)νF (y) : y ∈ ∂F} ,

|η| ≤ C‖ψ‖W 2,p(∂F ), ‖ϕ‖W 2,p(∂F ) ≤ C‖ψ‖W 2,p(∂F )

and ∣∣∣∣ˆ
∂F
ϕνF dµ

∣∣∣∣ ≤ τ‖ϕ‖L2(∂F ) .

Proof. We let dF to be the signed distance function from ∂F . We
underline that, throughout all the proof, the various constants will be
all independent of ψ : ∂F → R.

We recall that in Remark 1.10 we saw that there exists an orthonormal
basis {e1, . . . , en} of Rn such that the functions 〈νF , ei〉 are orthogonal
in L2(∂F ), that is,

ˆ
∂F
〈νF , ei〉〈νF , ej〉 dµ = 0 , (1.51)

for all i 6= j and we let IF to be the set of the indices i ∈ {1, . . . ,n}
such that ‖〈νF , ei〉‖L2(∂F ) > 0. Given a smooth function ψ : ∂F → R,
we set η =

∑n
i=1 ηiei, where

ηi =


1

‖〈νF ,ei〉‖2
L2(∂F )

´
∂F ψ(x)〈νF (x), ei〉 dµ if i ∈ IF ,

ηi = 0 otherwise.
(1.52)

Note that, from Hölder inequality, it follows

|η| ≤ C1‖ψ‖L2(∂F ) . (1.53)
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Step 1. Let Tψ : ∂F → ∂F be the map

Tψ(y) = πF (y+ ψ(y)νF (y)− η) .

It is easily checked that there exists ε0 > 0 such that if

‖ψ‖W 2,p(∂F ) + |η| ≤ ε0 ≤ 1 , (1.54)

then Tψ is a smooth diffeomorphism, moreover,

‖JTψ − 1‖L∞(∂F ) ≤ C‖ψ‖C1(∂F ) (1.55)

and

‖Tψ − Id‖W 2,p(∂E) + ‖T−1
ψ − Id‖W 2,p(∂E) ≤ C(‖ψ‖W 2,p(∂F ) + |η|) .

(1.56)
Therefore, setting Ê = E − η, we have

∂Ê = {z + ϕ(z)νF (z) : z ∈ ∂F}

for some function ϕ, which is linked to ψ by the following relation: for
all y ∈ ∂F we let z = z(y) ∈ ∂F such that

y+ ψ(y)νF (y)− η = z + ϕ(z)νF (z) ,

then

Tψ(y) = πF (y+ ψ(y)νF (y)− η) = πF (z + ϕ(z)νF (z)) = z ,

that is, y = T−1
ψ (z) and

ϕ(z) =ϕ(Tψ(y))

= dF (z + ϕ(z)νF (z))

= dF (y+ ψ(y)νF (y)− η)
= dF (T

−1
ψ (z) + ψ(T−1

ψ (z))νF (Tψ(y))− η) .

Thus, using inequality (1.56), we have

‖ϕ‖W 2,p(∂F ) ≤ C2
(
‖ψ‖W 2,p(∂F ) + |η|

)
, (1.57)

for some constant C2 > 1. We now estimate
ˆ
∂F
ϕ(z)νF (z) dµ(z) =

ˆ
∂f
ϕ(Tψ(y))νF (Tψ(y))JTψ(y) dµ(y)

=

ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y)) dµ(y) +R1 ,

(1.58)

where

|R1| =
∣∣∣∣∣
ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y)) [Jn−1∇Tψ(y)− 1] dµ(y)

∣∣∣∣∣
≤ C3‖ψ‖C1(∂F )‖ϕ‖L2(∂F ) ,

(1.59)
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by inequality (1.55).
On the other hand,
ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y)) dµ(y)

=

ˆ
∂F

[
y+ ψ(y)νF (y)− η− Tψ(y)

]
dµ(y)

=

ˆ
∂F

[
y+ ψ(y)νF (y)− η− πF (y+ ψ(y)νF (y)− η)

]
dµ(y)

=

ˆ
∂F

{
ψ(y)νF (y)− η+

[
πF (y)− πF (y+ ψ(y)νF (y)− η)

]}
dµ(y)

=

ˆ
∂F

(ψ(y)νF (y)− η) dµ(y) +R2 ,

(1.60)
where

R2 =

ˆ
∂F

[
πF (y)− πF (y+ ψ(y)νF (y)− η)

]
dµ(y)

= −
ˆ
∂F
dµ(y)

ˆ 1

0
∇πF (y+ t(ψ(y)ν(y)− η))(ψ(y)νF (y)− η) dt

= −
ˆ
∂F
∇πF (y)(ψ(y)νF (y)− η) dµ(y) +R3 .

(1.61)
In turn, recalling inequality (1.53), we get

|R3| ≤
ˆ
∂F
dµ(y)

ˆ 1

0
|∇πF (y+ t(ψ(y)νF (y)− η))

−∇πF (y)| |ψ(y)νF (y)− η| dt
≤C4‖ψ‖2L2(∂F ) .

(1.62)

Since in Nε, by equation (1.38), we have πF (x) = x− dF (x)∇dF (x), it
follows

∂πiF
∂xj

(x) = δij −
∂dF
∂xi

(x)
∂dF
∂xj

(x)− dF (x)
∂2dF
∂xi∂xj

(x),

thus, for all y ∈ ∂F

∂πiF
∂xj

(y) = δij −
∂dF
∂xi

(y)
∂dF
∂xj

(y) .

From this identity and equalities (1.58), (1.60) and (1.61), we conclude
ˆ
∂F
ϕ(z)νF (z) dµ(z) =

ˆ
∂F

[
ψ(x)νF (x)− 〈η, νF (x)〉νF (x)

]
dµ(x)

+R1 +R3 .
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As the integral at the right–hand side vanishes by relations (1.51)
and (1.52), estimates (1.59) and (1.62) imply∣∣∣∣ˆ

∂F
ϕ(y)νF (y) dµ(y)

∣∣∣∣ ≤C3‖ψ‖C1(∂F )‖ϕ‖L2(∂F ) +C4‖ψ‖2L2(∂F )

≤C‖ψ‖C1(∂F )

(
‖ϕ‖L2(∂F ) + ‖ψ‖L2(∂F )

)
≤C5‖ψ‖1−ϑW 2,p(∂F )‖ψ‖

ϑ
L2(∂F )

(
‖ϕ‖L2(∂F )

+ ‖ψ‖L2(∂F )

)
, (1.63)

where in the last passage we used a well–known interpolation inequality,
with ϑ ∈ (0, 1) depending only on p > n− 1 (see [4, Theorem 3.70]).
Step 2. The previous estimate does not allow to conclude directly, but
we have to rely on the following iteration procedure. Fix any number
K > 1 and assume that δ ∈ (0, 1) is such that (possibly considering a
smaller τ)

τ + δ < ε0/2, C2δ(1 + 2C1) ≤ τ , 2C5δ
ϑK ≤ δ . (1.64)

Given ψ, we set ϕ0 = ψ and we denote by η1 the vector defined as
in (1.52). We set E1 = E − η1 and denote by ϕ1 the function such that
∂E1 = {x+ ϕ1(x)νF (x) : x ∈ ∂F}. As before, ϕ1 satsfies

y+ ϕ0(y)νF (y)− η1 = z + ϕ1(z)νF (z) .

Since ‖ψ‖W 2,p(∂F ) ≤ δ and |η| ≤ C1‖ψ‖L2(∂F ), by inequalities (1.53), (1.57)
and (1.64) we have

‖ϕ1‖W 2,p(∂F ) ≤ C2δ(1 +C1) ≤ τ . (1.65)

Using again that ‖ψ‖W 2,p(∂F ) < δ < 1, by estimate (1.63) we obtain∣∣∣∣ˆ
∂F
ϕ1(y)νF (y) dµ(y))

∣∣∣∣ ≤ C5‖ϕ0‖ϑL2(∂F )

(
‖ϕ1‖L2(∂F ) + ‖ϕ0‖L2(∂F )

)
,

where we have ‖ϕ0‖L2(∂F ) ≤ δ.
We now distinguish two cases.
If ‖ϕ0‖L2(∂F ) ≤ K‖ϕ1‖L2(∂F ), from the previous inequality and (1.64),
we get∣∣∣∣ˆ

∂F
ϕ1(y)νF (y) dµ(y)

∣∣∣∣ ≤ C5δ
ϑ
(
‖ϕ1‖L2(∂F ) + ‖ϕ0‖L2(∂F )

)
≤ 2C5δ

ϑK‖ϕ1‖L2(∂F )

≤ δ‖ϕ1‖L2(∂F ) ,

thus, the conclusion follows with η = η1.
In the other case,

‖ϕ1‖L2(∂F ) ≤
‖ϕ0‖L2(∂F )

K
≤ δ

K
≤ δ . (1.66)
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We then repeat the whole procedure: we denote by η2 the vector defined
as in formula (1.52) with ψ replaced by ϕ1, we set E2 = E1 − η2 =

E − η1 − η2 and we consider the corresponding ϕ2 which satisfies

w+ ϕ2(w)νF (w) = z + ϕ1(z)νF (z)− η2 = y+ ϕ0(y)νF (y)− η1 − η2 .

Since

‖ϕ0‖W 2,p(∂F ) + |η1 + η2| ≤ δ +C1δ +C1‖ϕ1‖L2(∂F )

≤ δ +C1δ

(
1 + 1

K

)
≤ C2δ(1 + 2C1) ≤ τ ,

the map Tϕ0(y) = πF (y+ϕ0(y)νF (y)− (η1 + η2)) is a diffeomorphism
thanks to formula (1.54) (having chosen τ and δ small enough).

Thus, by applying inequalities (1.57) (with η = η1 + η2), (1.53), (1.64)
and (1.66), we get

‖ϕ2‖W 2,p(∂F ) ≤ C2
(
‖ϕ0‖W 2,p(∂F )+ |η1 + η2|

)
≤ C2δ

(
1+C1 +

C1
K

)
≤ τ ,

as K > 1, analogously to conclusion (1.65). On the other hand, by
estimates (1.53), (1.65) and (1.66),

‖ϕ1‖W 2,p(∂F ) + η2 ≤ C2δ(1 +C1) +C1
δ

K
≤ C2δ(1 + 2C1) ≤ τ ,

hence, also the map Tϕ1(x) = πF (x+ ϕ1(x)νF (x)− η2) is a diffeomor-
phism satisfying inequalities (1.54) and (1.55). Therefore, arguing as
before, we obtain∣∣∣∣ˆ

∂F
ϕ2(y)νF (y) dµ(y)

∣∣∣∣ ≤ C5‖ϕ1‖ϑL2(∂F )

(
‖ϕ2‖L2(∂F ) + ‖ϕ1‖L2(∂F )

)
.

Since ‖ϕ1‖L2(∂F ) ≤ δ by inequality (1.66), if ‖ϕ1‖L2(∂F ) ≤ K‖ϕ2‖L2(∂F )

the conclusion follows with η = η1 + η2. Otherwise, we iterate the
procedure observing that

‖ϕ2‖L2(∂F ) ≤
‖ϕ1‖L2(∂F )

K
≤
‖ϕ0‖L2(∂F )

K2 ≤ δ

K2 .

This construction leads to three (possibly finite) sequences ηn, En and
ϕn such that

En = E − η1 − · · · − ηn, |ηn| ≤ C1δ
Kn−1

‖ϕn‖W 2,p(∂F ) ≤ C2
(
‖ϕ0‖W 2,p(∂F ) + |η1 + · · ·+ ηn|

)
≤ C2δ(1 + 2C1)

‖ϕn‖L2(∂F ) ≤ δ
Kn

∂En = {x+ ϕn(x)νF (x) : x ∈ ∂F}

If for some n ∈N we have ‖ϕn−1‖L2(∂F ) ≤ K‖ϕn‖L2(∂F ), the construc-
tion stops, since, arguing as before,∣∣∣∣ˆ

∂F
ϕn(y)νF (y) dµ(y)

∣∣∣∣ ≤ δ‖ϕn‖L2(∂F )
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and conclusion follows with η = η1 + · · ·+ ηn and ϕ = ϕn. Otherwise,
the iteration continues indefinitely and we reach the conclusion with

η =
∞∑
n=1

ηn, ϕ = 0 ,

(notice that the series is converging) which actually means that E =

η+ F , hence the thesis is obvious.

We are now ready to prove the main theorem of this chapter.

Proof of Theorem 1.13.
Step 1. We first want to show that

m0 = inf
{

ΠF (ϕ) : ϕ ∈ T⊥(∂F ), ‖ϕ‖H1(∂F ) = 1
}
> 0.

We consider a minimizing sequence ϕi for such infimum and we assume
that ϕi ⇀ ϕ0 weakly in H1(∂F ), then ϕ0 ∈ T⊥(∂F ) (since it is a closed
subspace of H1(∂F )) and if ϕ0 6= 0, there holds

m0 = lim
i→∞

ΠF (ϕi) ≥ ΠF (ϕ0) > 0

due to the the strict stability of F and the lower semicontinuity of ΠF

(recall formula (1.31) and the fact that the weak convergence in H1(∂F )

implies strong convergence in L2(∂F ) by Sobolev embeddings). On
the other hand, if instead ϕ0 = 0, again by the strong convergence of
ϕi → ϕ0 in L2(∂F ), by looking at formula (1.31), we have

mo = lim
i→∞

ΠF (ϕi) = lim
i→∞

ˆ
∂F
|∇ϕi|2 dµ = lim

i→∞
‖ϕi‖2H1(∂F ) = 1

since ‖ϕi‖L2(∂F ) → 0.
Step 2. Now we prove that there exists a constant δ1 > 0 such that if
E is like in the statement and ∂E = {y + ψ(y)νF (y) : y ∈ ∂F}, with
‖ψ‖W 2,p(∂F ) < δ1, and Vol(E) = Vol(F ), then

inf
{

ΠE(ϕ) : ϕ ∈ H̃1(∂E), ‖ϕ‖H1(∂E) = 1,
∣∣∣∣ˆ
∂E
ϕνE dµ

∣∣∣∣ < δ1

}
≥ m0

2 .

We argue by contradiction assuming that there exists a sequence
of smooth sets Ei with ∂Ei = {y + ψi(y)νF (y) : y ∈ ∂F} with
‖ψi‖W 2,p(∂F ) → 0 and Vol(Ei) = Vol(F ), and a sequence of smooth
functions ϕi ∈ H̃1(∂Ei) with ‖ϕi‖H1(∂Ei) = 1 and

´
∂Ei

ϕiνEi dµi → 0,
such that

ΠEi(ϕi) <
m0
2 .

We then define the following sequence of smooth functions

ϕ̃i(y) = ϕi(y+ ψi(y)νF (y))−
 
∂F
ϕi(y+ ψi(y)νF (y)) dµ(y) (1.67)
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which clearly belong to H̃1(∂F ). Setting θi(y) = y + ψi(y)νF (y), as
p > max{2,n− 1}, by the Sobolev embeddings, θi → Id in C1,α and
νEi ◦ θi → νF in C0,α(∂F ), hence, the sequence ϕ̃i is bounded inH1(∂F )

and if {ek} is the special orthonormal basis found in Remark 1.10, we
have 〈νEi ◦ θi, ek〉 → 〈νF , ek〉 uniformly for all k ∈ {1, . . . ,n}. Thus,ˆ

∂F
ϕ̃i〈νF , ek〉 dµ→ 0,

as i→∞, indeed,ˆ
∂F
ϕ̃i〈νF , ek〉 dµ−

ˆ
∂F
ϕ̃i〈νEi ◦ θi, ek〉 dµ→ 0

and ˆ
∂F
ϕ̃i〈νEi ◦ θi, ek〉 dµ =

ˆ
∂Ei

ϕi〈νEi , ek〉 Jθ−1
i dµi → 0,

as the Jacobians (notice that Jθi are Jacobians “relative” to the hyper-
surface ∂E) Jθ−1

i → 1 uniformly and we assumed
ˆ
∂Ei

ϕiνEi dµi → 0 .

Hence, using expression (1.35) for the projection map π on T⊥(∂F ), it
follows ‖π(ϕ̃i)− ϕ̃i‖H1(∂F ) → 0, as i→∞ and

lim
i→∞
‖π(ϕ̃i)‖H1(∂F ) = lim

i→∞
‖ϕ̃i‖H1(∂F ) = lim

i→∞
‖ϕi‖H1(∂Ei) = 1, (1.68)

since ‖ψi‖W 2,p(∂F ) → 0, thus ‖ψi‖C1,α(∂F ) → 0, by looking at the
definition of the functions ϕ̃i in formula (1.67).
Note now that the W 2,p–convergence of Ei to F (computing similarly
to Remark 1.1, the second fundamental form B∂Ei of ∂Ei is “morally”
the Hessian of ψi) implies

B∂Ei ◦ θi → B∂F in Lp(∂F ) ,

as i→∞. Moreover, by the Sobolev embeddings again (in particular
H1(∂F ) ↪→ Lq(∂F ) for any q ∈ [1, 2∗), with 2∗ = 2(n− 1)/(n− 3)
which is larger than 2) and the W 2,p–convergence of Ei to F , we getˆ

∂Ei

|B∂Ei |
2ϕ2

i dµi −
ˆ
∂F
|B∂F |2ϕ̃2

i dµ→ 0 .

Finally, recalling formula (1.31), we conclude

ΠEi(ϕi)−ΠF (ϕ̃i)→ 0 ,

since we have
‖ϕi‖L2(∂Ei) − ‖ϕ̃i‖L2(∂F ) → 0 ,

which easily follows again by looking at the definition of the functions
ϕ̃i in formula (1.67) and taking into account that ‖ψi‖C1,α(∂F ) → 0,
hence limits (1.68) imply

‖∇ϕi‖L2(∂Ei) − ‖∇ϕ̃i‖L2(∂F ) → 0 .
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By the previous conclusion ‖π(ϕ̃i)− ϕ̃i‖H1(∂F ) → 0 and Sobolev em-
beddings, it this then straightforward, arguing as above, to get also

ΠF (ϕ̃i)−ΠF (π(ϕ̃i))→ 0 ,

hence,
ΠEi(ϕi)−ΠF (π(ϕ̃i))→ 0 .

Since we assumed that ΠEi(ϕi) < m0/2, we conclude that for i ∈N,
large enough there holds

ΠF (π(ϕ̃i)) ≤
m0
2 < m0 ,

which is a contradiction to Step 1, as π(ϕ̃i) ∈ T⊥(∂F ).
Step 3. Let us fix E such that Vol(E) = Vol(F ), Vol(E4F ) < δ and

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F} ⊆ Nε ,

with ‖ψ‖W 2,p(∂F ) ≤ δ, where δ > 0 is smaller than δ1 given by Step 2.
Taking a possibly smaller δ > 0, we consider the smooth vector field X
given by Lemma 1.16 and the associated flow Φ. Hence, divX = 0 in
Nε and Φ(1, y) = y + ψ(y)νF (y), for all y ∈ ∂F , that is, Φ(1, ∂F ) =
∂E ⊆ Nε which implies F1 = Φ(1,F ) = E. Then X is an admissible
smooth vector field, as Vol(F1) = Vol(E) = Vol(F ), by the last part of
such lemma.
By Lemma 1.18, choosing an even smaller δ > 0 if necessary, possibly
replacing the set E with a translate E − η, for some small η ∈ Rn, we
can assume that ∣∣∣∣ˆ

∂F
ψνF dµ

∣∣∣∣ ≤ δ1
2 ‖ψ‖L2(∂F ) . (1.69)

Letting Ft = Φt(F ), we now claim that∣∣∣∣ˆ
∂Ft

〈X, νFt〉νFt dµt
∣∣∣∣ ≤ δ1‖〈X, νFt〉‖L2(∂Ft) , (1.70)

for every t ∈ [0, 1]. To this aim, we write
ˆ
∂Ft

〈X, νFt〉νFt dµ =

ˆ
∂F
〈X ◦Φt, νFt ◦Φt〉(νFt ◦Φt) JΦt dµ

=

ˆ
∂F
〈X ◦Φt, νF 〉νF dµ+R1

=

ˆ
∂F
〈X, νF 〉νF dµ+R1 +R2

=

ˆ
∂F
ψνF dµ+R1 +R2 +R3 .

By the definition of the vector field X in formula (1.43) (in the proof of
Lemma 1.16), the bounds 0 < C1 ≤ ξ ≤ C2 and ‖J(πF ◦Φt)−1‖L∞(∂F ) ≤
C3 (by inequality (1.41) and Sobolev embeddings, as p > max{2,n− 1},
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we have ‖Φ(t, ·) − Id‖C1,α(∂F ) ≤ C‖ψ‖W 2,p(∂F ) ≤ Cδ), the following
inequality holds
ˆ
∂F
|X(Φt(y))| dµ(y)

=

ˆ
∂F

∣∣∣∣ˆ ψ(πF (Φt(y)))

0

ξ(Φt(y))∇dF (Φt(y))

ξ(Φt(y) + sνF (πF (Φt(y))))
ds

∣∣∣∣ dµ(y)
≤ C

ˆ
∂F
|ψ(πF (Φt(y)))| dµ(y)

= C

ˆ
∂F
|ψ(z)| J(πF ◦Φt)

−1(z) dµ(z)

≤ C‖ψ‖L2(∂F ), (1.71)

for every t ∈ [0, 1].
We want now to prove that for every ε > 0, choosing a suitably small
δ > 0 we have the estimate

|R1|+ |R2|+ |R3| ≤ ε‖ψ‖L2(∂F ) . (1.72)

First,

R1 =

ˆ
∂F
〈X ◦Φt, νFt ◦Φt〉νFt ◦Φt [JΦt − 1] dµ

+

ˆ
∂F
〈X ◦Φt, νFt ◦Φt〉νFt ◦Φt dµ−

ˆ
∂F
〈X ◦Φt, νF 〉νF dµ

=

ˆ
∂F
〈X ◦Φt, νFt ◦Φt〉νFt ◦Φt [JΦt − 1] dµ

+

ˆ
∂F
〈X ◦Φt, νFt ◦Φt − νF 〉νF dµ

+

ˆ
∂F
〈X ◦Φt, νFt ◦Φt〉(νFt ◦Φt − νF ) dµ

≤
ˆ
∂F
|X ◦Φt| ‖JΦt − 1‖L∞(∂F ) dµ

+

ˆ
∂F
|X ◦Φt| ‖νF − νFt ◦Φt‖L∞(∂F ) dµ ,

then, since by inequality (1.41) it follows that for every t ∈ [0, 1] the
two terms

‖νF − νFt ◦Φt‖L∞(∂F ) and ‖JΦt − 1‖L∞(∂F )

can be made (uniformly in t ∈ [0, 1]) small as we want, if δ > 0 is small
enough, by using inequality (1.71), we obtain

|R1| ≤ ε‖ψ‖L2(∂F )/3.
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Then we estimate, by means of inequality (1.41) and where s = s(t, y) ∈
[t, 1],

|R2| ≤
ˆ
∂F

(
|X(Φt(y))−X(Φ1(y))|+ |X(Φ1(y))−X(y)|

)
dµ(y)

≤
ˆ
∂F
|X(Φt(y))−X(Φ1(y))| dµ(y) + ‖∇X‖L2(Nε)‖ψ‖L2(∂F )

=

ˆ
∂F

(1− t)|∇X(Φs(y))|
∣∣∣∣∂Φs

∂t
(y)

∣∣∣∣ dµ(y) + ‖∇X‖L2(Nε)‖ψ‖L2(∂F )

≤
ˆ
∂F
|∇X(Φs(y)| |X(Φs(y))| dµ(y) + ‖∇X‖L2(Nε)‖ψ‖L2(∂F )

≤ C‖∇X‖L∞(Nε)‖ψ‖L2(∂F ) + ‖∇X‖L2(Nε)‖ψ‖L2(∂F ) ,

where in the last inequality we used estimate (1.71). Hence, by in-
equality (1.44) and Sobolev embeddings, as p > max{2,n − 1}, we
get

|R2| ≤ C‖ψ‖W 2,p(∂F )‖ψ‖L2(∂F ) ,

then, since ‖ψ‖W 2,p(∂F ) < δ, we obtain

|R2| < ε‖ψ‖L2(∂F )/3 ,

if δ > 0 is small enough.
Arguing similarly, recalling the definition of X given by formula (1.43),
we also obtain |R3| ≤ ε‖ψ‖L2(∂F ), hence estimate (1.72) follows. We
can then conclude that, for δ > 0 small enough, we have∣∣∣∣∣

ˆ
∂Ft

〈X, νFt〉νFt dµt

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
∂F
ψνF dµ

∣∣∣∣∣+ ε‖ψ‖L2(∂F )

≤
(δ1

2 + ε
)
‖ψ‖L2(∂F ) ,

for any t ∈ [0, 1], where in the last inequality we used the assump-
tion (1.69), thus choosing ε = δ1/4 we get∣∣∣∣∣

ˆ
∂Ft

〈X, νFt〉νFt dµt

∣∣∣∣∣ ≤ 3δ1
4 ‖ψ‖L2(∂F ) .

Along the same line, it is then easy to prove that

‖〈X, νFt〉‖L2(∂Ft) ≥ (1− ε)‖ψ‖L2(∂F ) ,

for any t ∈ [0, 1], hence claim (1.70) follows.
As a consequence, since 〈X, νFt〉 ∈ H̃(∂Ft), being X admissible for Ft
(recalling computation 1.2) and ∂Ft can be described as a graph over
∂F using a function with small norm in W 2,p(∂F ) (by estimate (1.41)
of Lemma 1.16 and arguing as in Remark 1.1), we can apply Step 2
with E = Ft to the function 〈X, νFt〉/‖〈X, νFt〉‖H1(∂Ft), concluding

ΠFt(〈X, νFt〉) ≥
m0
2 ‖〈X, νFt〉‖H1(∂Ft) . (1.73)
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By means of Lemma 1.17, for δ > 0 small enough, we now show
the following inequality on ∂Ft (here div is the divergence operator
and Xτt = X − 〈X, νFt〉νFt is a tangent vector field on ∂Ft), for any
t ∈ [0, 1],

‖div(Xτt〈X, νFt〉)‖
L

p
p−1 (∂Ft)

= ‖divXτt〈X, νFt〉+ 〈Xτt ,∇〈X, νFt〉〉‖
L

p
p−1 (∂Ft)

≤C‖∇Xτt‖L2(∂Ft)‖〈X, νFt〉‖
L

2p
p−2 (∂Ft)

+C‖Xτt‖
L

2p
p−2 (∂Ft)

‖∇〈X, νFt〉‖L2(∂Ft)

≤C‖X‖H1(∂Ft)‖X‖
L

2p
p−2 (∂Ft)

≤C‖X‖2H1(∂Ft)

≤C‖〈X, νFt〉‖2H1(∂Ft)
, (1.74)

where we used the Sobolev embedding H1(∂Ft) ↪→ L
2p
p−2 (∂Ft), as

p > max{2,n− 1}.
Then, we compute (here Ht is the mean curvature of ∂Ft)

A(∂E)−A(∂F ) =A(∂F1)−A(∂F )

=

ˆ 1

0
(1− t) d

2

dt2
A(∂Ft) dt

=

ˆ 1

0
(1− t)

(
ΠFt(〈X, νFt〉)

−
ˆ
∂Ft

Ht div(Xτt〈X, νFt〉) dµt
)
dt ,

by equation (1.28), the definition of ΠFt in formula (1.31) and taking
into account that divX = 0 in Nε.
Hence, by estimate (1.73), we have (recall that H = H0 = λ, as F is a
critical set, hence the mean curvature H of ∂F is constant)

A(∂E)−A(∂F ) ≥ m0
2

ˆ 1

0
(1− t)‖〈X, νFt〉‖2H1(∂Ft)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Ft

Ht div(Xτt〈X, νFt〉) dµt dt

=
m0
2

ˆ 1

0
(1− t)‖〈X, νFt〉‖2H1(∂Ft)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Ft

[Ht − λ]div(Xτt〈X, νFt〉) dµt dt

≥ m0
2

ˆ 1

0
(1− t)‖〈X, νFt〉‖2H1(∂Ft)

dt

−
ˆ 1

0
(1− t)‖Ht − λ‖Lp(∂Ft)‖div(Xτt〈X, νFt〉)‖

L
p
p−1 (∂Ft)

dt

≥ m0
2

ˆ 1

0
(1− t)‖〈X, νFt〉‖2H1(∂Ft)

dt

−C
ˆ 1

0
(1− t)‖Ht − λ‖Lp(∂Ft)‖〈X, νFt〉‖2H1(∂Ft)

dt ,
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by estimate (1.74). If δ > 0 is sufficiently small, as Ft is W 2,p–close to
F (recall again Remark 1.1), we have ‖Ht − λ‖Lp(∂Ft) < m0/4C, hence

A(∂E)−A(∂F ) ≥ m0
4

ˆ 1

0
(1− t)‖〈X, νFt〉‖2H1(∂Ft)

dt .

Then, we can conclude the proof of the theorem with the following series
of inequalities, holding for a suitably small δ > 0 as in the statement,

A(∂E) ≥ A(∂F ) + m0
4

ˆ 1

0
(1− t)‖〈X, νFt〉‖2L2(∂Ft)

dt

≥ A(∂F ) +C‖〈X, νF 〉‖2L2(∂F )

≥ A(∂F ) +C‖ψ‖2L2(∂F )

≥ A(∂F ) +C[Vol(F4E)]2

≥ A(∂F ) +C[α(F ,E)]2 ,

where the first inequality is due to the W 2,p–closedness of Ft to F , the
second one by the expression (1.43) of the vector field X on ∂F ,

|〈X(y), νF (y)〉| =
∣∣∣∣ˆ ψ(y)

0

ds

ξ(y+ sνF (y))

∣∣∣∣ ≤ C|ψ(y)| ,
the third follows by a straighforward computation (involving the map L
defined by formula (1.39) and its Jacobian), as ∂F is a “normal graph”
over ∂E with ψ as “height function”, finally the last one simply by the
definition of the “distance” α, recalling that we possibly translated the
“original” set E by a vector η ∈ Rn, at the beginning of this step.

We conclude the chapter by showing two results that deal with strictly
stable critical sets, which will be used later. The following lemma
says that when a smooth set is sufficiently W 2,p–close to a strictly
stable critical set of the Area functional, then the quadratic form (1.31)
remains uniformly positive definite (on the orthogonal complement of
its degeneracy subspace, see the discussion at the end of the previous
section).

Lemma 1.19. Let p > max{2,n− 1} and F ⊆ Tn be a smooth strictly
stable critical set with Nε a tubular neighborhood of ∂F as in for-
mula (1.36). Then, for every θ ∈ (0, 1] there exist σθ, δ > 0 such that if
a smooth set E ⊆ Tn is W 2,p–close to F , that is, Vol(E4F ) < δ and
∂E ⊆ Nε with

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F} ,

for a smooth ψ with ‖ψ‖W 2,p(∂F ) < δ, there holds

ΠE(ϕ) ≥ σθ‖ϕ‖2H1(∂E)

for all ϕ ∈ H̃1(∂E) satisfying

min
η∈OF

‖ϕ− 〈η, νE〉‖L2(∂E) ≥ θ‖ϕ‖L2(∂E) ,

where OF is defined by formula (1.34).
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Proof.
Step 1. We first claim that the strict stability of F implies

ΠF (ϕ) > 0 for all ϕ ∈ H̃(∂F ) \ T (∂F ). (1.75)

By means of formula (1.6)

∆νF = ∇H− |B|2νF ,

since F (being critical) satisfies H = λ for some constant λ ∈ R, we have
∆νF = −|B|2νF on ∂F . This equation can be written as L(νi) = 0, for
every i ∈ {1, . . . ,n}, where L is the self–adjoint, linear operator defined
as

L(ϕ) = −∆ϕ− |B|2ϕ ,

then, if we “decompose” a smooth function ϕ ∈ H̃(∂F ) \ T (∂F ) as
ϕ = ψ + 〈η, νF 〉, for some η ∈ Rn and ψ ∈ T⊥(∂F ) \ {0}, we have
(recalling formula (1.31))

ΠF (ϕ) =

ˆ
∂F
〈L(ϕ),ϕ〉 dµ

=

ˆ
∂F

(
〈L(ψ),ψ〉+ 2〈L(〈η, νF 〉),ψ〉+ 〈L(〈η, νF 〉), 〈η, νF 〉〉

)
dµ

=ΠF (ψ) .

By approximation with smooth functions, we conclude that this equality
holds for every function in H̃(∂F ) \T (∂F ), hence ΠF (ϕ) = ΠF (ψ) > 0
for every ϕ ∈ H̃(∂F ) \ T (∂F ), by the strict stability assumption on F .
We now show that for every θ ∈ (0, 1] there holds

mθ = inf
{

ΠF (ϕ) : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1 and

min
η∈OF

‖ϕ− 〈η, νF 〉‖L2(∂F ) ≥ θ‖ϕ‖L2(∂F )

}
> 0 . (1.76)

Indeed, let ϕi be a minimizing sequence for this infimum and assume
that ϕi ⇀ ϕ0 ∈ H̃1(∂F ) weakly in H1(∂F ).
If ϕ0 6= 0, as the weak convergence in H1(∂F ) implies strong conver-
gence in L2(∂F ) by Sobolev embeddings, for every η ∈ OF we have

‖ϕ0 − 〈η, νF 〉‖L2(∂F ) = lim
i→∞
‖ϕi − 〈η, νF 〉‖L2(∂F )

≥ lim
i→∞

θ‖ϕi‖L2(∂F )

= θ‖ϕ0‖L2(∂F ),

hence,
min
η∈OF

‖ϕ0 − 〈η, νF 〉‖L2(∂F ) ≥ θ‖ϕ0‖L2(∂F ) > 0,

thus, we conclude ϕ0 ∈ H̃1(∂F ) \ T (∂F ) and

mθ = lim
i→∞

ΠE(ϕi) ≥ ΠE(ϕ0) > 0 ,
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where the last inequality follows from estimate (1.75).
If ϕ0 = 0, then again by the strong convergence of ϕi → ϕ0 in L2(∂F ),
by looking at formula (1.31), we have

mθ = lim
i→∞

ΠF (ϕi) = lim
i→∞

ˆ
∂F
|∇ϕi|2 dµ = lim

i→∞
‖ϕi‖2H1(∂F ) = 1

since ‖ϕi‖L2(∂F ) → 0.
Step 2. In order to conclude the proof it is enough to show the existence
of some δ > 0 such that if Vol(E4F ) < δ and ∂E = {y+ ψ(y)νF (y) :
y ∈ ∂F} with ‖ψ‖W 2,p(∂F ) < δ, then

inf
{

ΠE(ϕ) : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂E) = 1 and

min
η∈OF

‖ϕ− 〈η, νE〉‖L2(∂E) ≥ θ‖ϕ‖L2(∂E)

}
≥ σθ =

1
2 min{mθ/2, 1} ,

(1.77)
where mθ/2 is defined by formula (1.76), with θ/2 in place of θ.
Assume by contradiction that there exist a sequence of smooth sets
Ei ⊆ Tn, with ∂Ei = {y+ψi(y)νF (y) : y ∈ ∂F} and ‖ψi‖W 2,p(∂F ) → 0,
and a sequence ϕi ∈ H̃1(∂Ei), with ‖ϕi‖H1(∂Ei) = 1 and

min
η∈OF

‖ϕi − 〈η, νEi〉‖L2(∂Ei) ≥ θ‖ϕi‖L2(∂Ei) ,

such that
ΠEi(ϕi) < σθ ≤ mθ/2/2 . (1.78)

Let us suppose first that limi→∞ ‖ϕi‖L2(∂Ei) = 0 and observe that by
Sobolev embeddings ‖ϕi‖Lq(∂Ei) → 0 for some q > 2, thus, since the
functions ψi are uniformly bounded in W 2,p(∂F ) for p > max{2,n− 1},
recalling formula (1.31), it is easy to see that

lim
i→∞

ΠEi(ϕi) = lim
i→∞

ˆ
∂Ei

|∇ϕi|2 dµi = lim
i→∞
‖ϕi‖2H1(∂Ei)

= 1 ,

which is a contradiction with assumption (1.78).
Hence, we may assume that

lim
i→∞
‖ϕi‖L2(∂Ei) > 0. (1.79)

The idea now is to write every ϕi as a function on ∂F . We define the
functions ϕ̃i(∂F )→ R, given by

ϕ̃i(y) = ϕi
(
y+ ψi(y)νF (y)

)
−
 
∂F
ϕi(y+ ψi(y)νF (y)) dµ(y) ,

for every y ∈ ∂F .
As ψi → 0 in W 2,p(∂F ), we have in particular that

ϕ̃i ∈ H̃1(∂F ) , ‖ϕ̃i‖H1(∂F ) → 1 and
‖ϕ̃i‖L2(∂F )

‖ϕi‖L2(∂Ei)
→ 1 .
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Moreover, note also that νEi(·+ ψi(·)νF (·)) → νF in W 1,p(∂F ) and
thus in C0,α(∂F ) for some α ∈ (0, 1) (depending on p) by Sobolev
embeddings. Using this fact and taking into account the third limit
above and inequality (1.79), one can easily show that

lim
i→∞

minη∈OF ‖ϕ̃i − 〈η, νF 〉‖L2(∂F )

‖ϕ̃i‖L2(∂F )
≥ lim

i→∞

minη∈OF ‖ϕi − 〈η, νEi〉‖L2(∂Ei)

‖ϕi‖L2(∂Ei)

which is larger or equal than θ.
Hence, for i ∈N large enough, we have

‖ϕ̃i‖H1(∂F ) ≥ 3/4 and min
η∈OF

‖ϕ̃i−〈η, νF 〉‖L2(∂F ) ≥
θ

2‖ϕ̃i‖L2(∂F ) ,

then, in turn, by Step 1, we infer

ΠF (ϕ̃i) ≥
9
16mθ/2 . (1.80)

Moreover, the W 2,p–convergence of Ei to E imply (see the proof of The-
orem 1.13 for more details) the convergence of the second fundamental
forms

B∂Ei

(
·+ ψi(·)νF (·)

)
→ B∂F in Lp(∂F ),

for i → ∞ and, since p > 2, the Sobolev embeddings and the W 2,p–
convergence of Ei to F imply

ˆ
∂Ei

|B∂Ei |
2ϕ2

i dµ−
ˆ
∂F
|B∂F |2ϕ̃2

i dµ→ 0 .

Combining all these convergences, we conclude that all the terms of
ΠEi(ϕi) are asymptotically close to the corresponding terms of ΠF (ϕ̃i),
thus

ΠEi(ϕi)−ΠE(ϕ̃i)→ 0 .

which is a contradiction, by inequalities (1.78) and (1.80). This estab-
lishes inequality (1.77) and concludes the proof.

The next proposition states the fact that in the neighborhood of
a strictly stable critical set there are no other critical sets, up to
translations.

Proposition 1.20. Let p > max{2,n− 1} and F ⊆ Tn be a smooth
strictly stable critical set with Nε a tubular neighborhood of ∂F as in
formula (1.36). Then, there exists δ > 0 such that if F ′ ⊆ Tn is
a smooth critical set such that Vol(F ′) = Vol(F ), Vol(F4F ′) < δ,
∂F ′ ⊆ Nε and

∂F ′ = {y+ ψ(y)νF (y) : y ∈ ∂F},

for a smooth ψ with ‖ψ‖W 2,p(∂F ) < δ, then F ′ is a traslate of F .
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Proof. We have seen in Step 3 of the proof of Theorem 1.13 that in
these hypotheses of F and F ′, if δ > 0 is small enough, we may find
a small vector η ∈ Rn and an admissible smooth vector field X for F ,
with the associated flow Φ satisfying Φ0(F ) = F , Φ1(F ) = F ′ − η and

d2

dt2
A(∂Φt(F )) ≥ C[Vol(F4(F ′ − η))]2 ,

for all t ∈ [0, 1], where C is a positive constant independent of F ′.
Assume that F ′ is a smooth critical set as in the statement, which is
not a translate of F , then

d

dt
A(∂Φt(F ))

∣∣∣
t=0

= 0 ,

but from the above formula it follows

d

dt
A(∂Φt(F ))

∣∣∣
t=1

> 0 ,

which implies that F ′ − η cannot be critical, hence neither F ′, which
is a contradiction. Indeed, −X is an admissible vector field for F ′ − η
with an associate flow Ψ satisfying Ψs(F ′ − η) = Φ1−s(F ), for every
s ∈ [0, 1], hence

d

ds
A(∂Ψs(F

′−η))
∣∣∣∣∣
s=0

=
d

ds
A(∂Φ1−s(F ))

∣∣∣∣∣
s=0

= − d

dt
A(∂Φt(F ))

∣∣∣∣∣
t=1

< 0 ,

showing that F ′ − η is not critical.



2
THE SURFACE DIFFUS ION FLOW

In this chapter we introduce the surface diffusion flow, we discuss its
basic properties and we prove some technical lemmas in order to show
a global existence result in the three–dimensional case, in the next
chapter.

2.1 definition and basic properties

Definition 2.1 (Smooth flow of sets). Let Et ⊆ Tn for t ∈ [0,T ) be a
one–parameter family of sets, we say that it is a smooth flow if there
exists a smooth reference set F ⊆ Tn and a map Ψ ∈ C∞([0,T ) ×
Tn, Tn) such that Ψt = Ψ(t, ·) is a smooth diffeomorphism from Tn to
Tn and Et = Ψt(F ), for all t ∈ [0,T ).

The velocity of the motion of any point x = Ψt(y) of the set Et, with
y ∈ F , is then given by

Xt(x) =
∂Ψt

∂t
(y) ,

hence,
∂Ψt

∂t
(y) = Xt(Ψt(y))

for every y ∈ F . Notice that, in general, the smooth vector field Xt is
not independent of t, so it is not the infinitesimal generator of the flow
Ψ, but we will see that in the computations in the sequel, it will behave
similarly.
When x ∈ ∂Et, we define the outer normal velocity of the flow of the
boundaries, which are smooth hypersurface of Tn,

Vt(x) = 〈Xt(x), νEt(x)〉 , (2.1)

for every t ∈ [0,T ), where νEt is the outer unit normal vector to Et.

Definition 2.2 (Surface diffusion flow). Let E ⊆ Tn be a smooth set.
We say that a smooth flow Et for t ∈ [0,T ), with E0 = E, is a surface
diffusion flow starting from E if the outer normal velocity Vt of the
moving boundaries ∂Et is given by

Vt = ∆tHt for all t ∈ [0,T ), (2.2)

where ∆t and Ht are respectively the Laplacian and the mean curvature
of ∂Et.

48
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Parametrizing the smooth hypersurfaces Mt = ∂Et of Tn by some
smooth embeddings ψt : M → Tn such that ψt(M ) = ∂Et (here M is a
fixed smooth differentiable (n− 1)–dimensional manifold and the map
(t, p) 7→ ψ(t, p) = ψt(p) is smooth), the geometric evolution law (2.2)
can be expressed equivalently as〈

∂ψt
∂t

, νt
〉
= ∆tHt , (2.3)

where we denoted with νt the outer unit normal to Mt = ∂Et.
Moreover, as the moving hypersurfaces Mt = ∂Et are compact, it is
always possible to smoothly reparametrize them with maps (that we
still call) ψt such that

∂ψt
∂t

= (∆tHt)νt , (2.4)

describing such surface diffusion flow. This follows by the invariance
by tangential perturbations of the velocity, shared by the flow due to its
geometric nature and can be proved following the line in Section 1.3
of [19], where the analogous property is shown in full detail for the
(more famous) mean curvature flow. Roughly speaking, the tangential
component of the velocity of the points of the moving hypersurfaces,
does not affect the global “shape” during the motion.

Formula (2.4) is actually the more standard way to define the surface
diffusion flow, in the more general situation of smooth and possibly
immersed–only hypersurfaces (usually in Rn), without being the bound-
ary of any set.
By means of equation (1.5), this system can be rewritten as

∂ψt
∂t

= −∆t∆tψt + lower order terms (2.5)

and it can be seen that it is a fourth order, quasilinear and degenerate,
parabolic system of PDEs. Indeed, it is quasilinear, as the coefficients
(as second order partial differential operator) of the Laplacian associated
to the induced metrics gt on the evolving hypersurfaces, that is,

∆tψt(p) = ∆gt(p)ψt(p) = gijt (p)∇
gt(p)
i ∇gt(p)j ψt(p)

depend on the first order derivatives of ψt, as gt (and the coefficient
of ∆t∆t on the third order derivatives). Moreover, the operator at the
right hand side of system (2.4) is degenerate, as its symbol (the symbol
of the linearized operator) admits zero eigenvalues due to the invariance
of the Laplacian by diffeomorphisms.

Like the Area functional, the flow is obviously invariant by rotations
and translations, or more generally under any isometry of Tn (or Rn).
Moreover, if ψ : [0,T )×M → Tn is a surface diffusion flow and Φ :
[0,T )×M →M is a time–dependent family of smooth diffeomorphisms
of M , then it is easy to check that the reparametrization ψ̃ : [0,T )×
M → Tn defined as ψ̃(t, p) = ψ(t, Φ(t, p)) is still a surface diffusion
flow (in the sense of equation (2.3)). This property can be reread as “the
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flow is invariant under reparametrization”, suggesting that the really
relevant objects of the flow are actually the subsets Mt = ψt(M) of Tn.

We now state a short time existence and uniqueness result (and also
of dependence on the initial data) of the surface diffusion flow starting
from a smooth hypersurface, proved by Escher, Mayer and Simonett
in [6], which is expected due to the parabolic nature of the system (2.4),
made evident by formula (2.5). It deals with the evolution in the whole
space Rn of a generic hypersurface, only immersed, hence possibly
with self–intersections. It is then straightforward to adapt the same
arguments to our case, when the ambient is the flat torus Tn and we
are looking for the surface diffusion flow of the boundaries of the sets
Et as in Definition 2.2, getting a (unique) surface diffusion flow in a
positive time interval [0,T ), for every initial smooth set E0 ⊆ Tn.

Theorem 2.3 (Short time existence and uniqueness). Let ψ0 : M → Rn

be a smooth and compact, immersed hypersurface. Then, there exists
a unique smooth surface diffusion flow ψ : [0,T )×M → Rn, starting
from M0 = ψ0(M) and solving system (2.4), for some maximal time of
existence T > 0.
Moreover, the maximal time of existence depend continuosly on the C2,α

norm of the inital hypersurface.

As an easy consequence, we have the following proposition, better
suited for our situation.

Proposition 2.4. Let F ⊆ Tn be a smooth set and Nε a tubular
neighborhood of ∂F , as in formula (1.36), Then, for every α ∈ (0, 1)
and M ∈ (0, ε/2) small enough, there exists T = T (F ,M ,α) > 0 such
that if E0 ∈ C2,α

M (F ) there exists a unique smooth surface diffusion flow,
starting from E0, in the time interval [0,T ).

It is well–known that the surface diffusion flow of boundaries of sets is
volume–preserving, that is, the volume of the moving sets Et is constant,
while neither convexity (see [17]) is maintained (nor the embeddedness,
in the “stand–alone” formulation of motion of hypersurfaces, as in
formula (2.4), see [13]), nor there holds the so–called “comparison
property” asserting that if two initial sets are one contained in the
other, they stay so during the two respective flows, due to the lack of
maximum principle for parabolic equations or systems of order larger
than two (these two properties holds instead for the mean curvature
flow, see [19, Chapter 2] for instance).
The volume–preserving property follows immediately arguing as in

computation (1.18), indeed, if Et = Ψt(F ) is a surface diffusion flow,
described by Ψ ∈ C∞([0,T )×Tn, Tn), with associated smooth vector
field Xt satisfying

∂Ψt

∂t
(y) = Xt(Ψt(y))



2.1 definition and basic properties 51

as we said above, we have

0 =
d

dt
Vol(Et)

=

ˆ
F

∂

∂t
JΨt(y) dy

=

ˆ
F

divXt(Ψ(t, y))JΨ(t, y) dy

=

ˆ
Et

divXt(x) dx

=

ˆ
∂Et

〈X, νEt〉 dµt

=

ˆ
∂Et

Vt dµt

=

ˆ
∂Et

∆tHt dµt

= 0 ,

where µt is in the canonical measure induced on ∂Et by the flat metric
of Tn and in the last equality we applied the divergence theorem (1.2).
Moreover, the surface diffusion flow can be regarded as the H̃−1–

gradient flow of the volume–constrained Area functional, in the fol-
lowing sense (see [12], for instance). For a smooth set E ⊆ Tn, we
let the space H̃−1(∂E) ⊆ L2(∂E) to be the dual of H̃1(∂E) with the
norm ‖u‖

H̃1(∂E)
=

´
∂E |∇u|

2 dµ (the functions in H1(∂E) with zero
integral) and the pairing between H̃1(∂E) and H̃−1(∂E) simply being
the integral of the product of the functions on ∂E.
Then, it follows easily that the norm of a smooth function v ∈ H̃−1(∂E)

is given by

‖v‖2
H̃−1(∂E)

=

ˆ
∂E
v(−∆)−1v dµ =

ˆ
∂E
〈∇(−∆)−1v,∇(−∆)−1v〉 dµ

and, by polarization, we have the H̃−1(∂E)–scalar product between a
pair of smooth functions u, v : ∂E → R with zero integral,

〈u, v〉
H̃−1(∂E)

=

ˆ
∂E
〈∇(−∆)−1u,∇(−∆)−1v〉 dµ =

ˆ
∂E
u(−∆)−1v dµ ,

integrating by parts.
This scalar product, extended to the whole space H̃−1(∂E), make it
a Hilbert space, hence, by Riesz representation theorem, there exists
a function ∇H̃−1

∂E A ∈ H̃−1(∂E) such that, for every smooth function
v ∈ H̃−1(∂E), there holdsˆ
∂E
vH dµ = δA∂E(v) = 〈v,∇H̃−1

∂E A〉H̃−1(∂E)
=

ˆ
∂E
v(−∆)−1∇H̃−1

∂E A dµ ,

by Theorem 1.3.
Then, by the fundamental lemma of calculus of variations, we conclude

(−∆)−1∇H̃−1
∂E A = H + c ,
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for a constant c ∈ R, that is,

∇H̃−1
∂E A = −∆H .

It clearly follows that the outer normal velocity of the moving boundaries
of a surface diffusion flow Vt = ∆tHt is minus the H̃−1–gradient of the
volume–constrained functional A.
Remark 2.5. Arguing analogously, we can see easily that the mean
curvature flow, where Vt = −Ht is the L2–gradient flow of the Area
functional (without constraints).

2.2 energy identities and technical lemmas

In this section we prove some auxiliary results that we need in the
sequel. From now on we drop the t–subscript on Ht, Bt, ∆t, µt and we
simply write H, B, ∆, µ for the mean curvature, second fundamental
form, Laplacian and canonical measure, respectively, when it is clear
that they refer to the set Et and its boundary.

Lemma 2.6 (Energy identities). Let Et ⊆ Tn be a surface diffusion
flow. Then, the following identities hold:

d

dt
A(∂Et) = −

ˆ
∂Et

|∇H|2 dµ , (2.6)

and
d

dt

1
2

ˆ
∂Et

|∇H|2 dµ =−ΠEt(∆H)−
ˆ
∂Et

B(∇H,∇H)∆H dµ

+
1
2

ˆ
∂Et

H|∇H|2∆H dµ , (2.7)

where ΠEt is the quadratic form defined in formula (1.31).

Proof. Let ψt the smooth family of maps describing the flow as in for-
mula (2.4). By formula (1.13), where X is the smooth (velocity) vector
fieldXt =

∂ψt
∂t = (∆H)νEt along ∂Et, henceXτ = Xt−〈Xt, νEt〉νEt = 0

(as usual νEt is the outer normal unit vector of ∂Et), following compu-
tation (1.14), we have

d

dt
A(∂Et) =

d

dt

ˆ
∂Et

dµ

=

ˆ
∂Et

(divXτ + H〈X, νEt〉) dµ

=

ˆ
∂Et

H∆H dµ

= −
ˆ
∂Et

|∇H|2 dµ ,

where the last equality follows integrating by parts. This establishes
relation (2.6).
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In order to get relation (2.7) we also need the time derivatives of
the evolving metric and of the mean curvature of ∂Et, that we already
computed in formulas (1.10), (1.22) and (1.26) (where the function ϕ
in this case is equal to ∆H and Xτ = 0), that is,

∂gij
∂t

= 2hij∆H and ∂gij

∂t
= −2hij∆H ,

∂H
∂t

= −|B|2∆H− ∆∆H

Then, we compute

d

dt

1
2

ˆ
∂Et

|∇H|2 dµ =
1
2

ˆ
∂Et

H|∇H|2 ∆H dµ−
ˆ
∂Et

hij∇iH∇jH ∆H dµ

−
ˆ
∂Et

gij∇iH∇j
(
|B|2∆H + ∆∆H

)
dµ

=
1
2

ˆ
∂Et

H|∇H|2 ∆H dµ−
ˆ
∂Et

B(∇H,∇H)∆H dµ

+

ˆ
∂Et

|B|2(∆H)2 dµ+

ˆ
∂Et

∆H ∆∆H dµ

=
1
2

ˆ
∂Et

H|∇H|2 ∆H dµ−
ˆ
∂Et

B(∇H,∇H)∆H dµ

+

ˆ
∂Et

|B|2(∆H)2 dµ−
ˆ
∂Et

|∇∆H|2 dµ ,

which is formula (2.7), recalling the definition of ΠEt in formula (1.31).

Given a smooth set F ⊆ Tn and a tubular neighborhood Nε of ∂F ,
as in formula (1.36), for any M ∈ (0, ε/2) (recall the discussion at the
beginning of Section 1.3 about our notion of “closedness” of sets), we
denote by C1

M (F ), the class of all smooth sets E ⊆ F ∪Nε such that
Vol(E4F ) ≤M and

∂E = {x+ ψE(x)νF (x) : x ∈ ∂F} , (2.8)

for some ψE ∈ C∞(∂F ), with ‖ψE‖C1(∂F ) ≤M (hence, ∂E ⊆ Nε). For
every k ∈ N and α ∈ (0, 1), we also denote by Ck,α

M (F ) the collection
of sets E ∈ C1

M (F ) such that ‖ψE‖Ck,α(∂F ) ≤M .

From now on, we restrict ourselves to the three–dimensional case,
that is, we will consider smooth subsets of T3 with boundaries which
then are smooth embedded (2–dimensional) surfaces.

In the estimates in the following series of lemmas, we will be interested
in having uniform constants for the families C1,α

M (F ), given a smooth set
F ⊆ Tn and a tubular neighborhood Nε of ∂F as in formula (1.36), for
any M ∈ (0, ε/2) and α ∈ (0, 1). This is guaranteed if the constants in
the Sobolev, Gagliardo–Nirenberg interpolation and Calderón–Zygmund
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inequalities, relative to all the smooth hypersurfaces ∂E boundaries of
the sets E ∈ C1,α

M (F ), are uniform, as it is proved in detail in [5].

We remind that in all the inequalities, the constants C may vary from
one line to another.

The following lemma is an easy consequence of Theorem 3.70 in [4],
with j = 0, m = 1, n = 2 and r = q = 2, taking into account the
previous discussion.

Lemma 2.7 (Interpolation on boundaries). Let F ⊆ T3 be a smooth
set. In the previous notations, for every p ∈ [2,+∞) there exists a
constant C = C(F ,M ,α, p) > 0 such that for every set E ∈ C1,α

M (F )

and g ∈ H1(∂E), we have

‖g‖Lp(∂E) ≤ C(‖∇g‖θL2(∂E)‖g‖
1−θ
L2(∂E) + ‖g‖L2(∂E)) ,

with θ = 1− 2/p.
Moreover, the following Poincaré inequality holds

‖g− g‖Lp(∂E) ≤ C‖∇g‖L2(∂E) ,

where g(x) =
ffl

Γ g dµ, if x belongs to a connected component Γ of ∂E.

Then, we have the following mixed “analytic–geometric” estimate.

Lemma 2.8 (H2–estimates on boundaries). Let F ⊆ T3 be a smooth
set. Then there exists a constant C = C(F ,M ,α, p) > 0 such that if
E ∈ C1,α

M (F ) and f ∈ H1(∂E) with ∆f ∈ L2(∂E), then f ∈ H2(∂E)

and
‖∇2f‖L2(∂E) ≤ C‖∆f‖L2(∂E)(1 + ‖H‖2L4(∂E)) .

Proof. We first claim that the following inequality holds,
ˆ
∂E
|∇2f |2 dµ ≤

ˆ
∂E
|∆f |2 dµ+C

ˆ
∂E
|B|2|∇f |2 dµ . (2.9)

Indeed, if we integrate by parts the left–hand side, we obtain (the
Hessian of a function is symmetric)

ˆ
∂E
gikgjl∇2

ijf∇2
klf dµ = −

ˆ
∂E
gikgjl∇k∇j∇if∇lf dµ .

Hence, using relations (1.7) and (1.8), interchanging the covariant
derivatives and integrating by parts, we get

−
ˆ
∂E
gikgjl∇k∇j∇if∇lf dµ = −

ˆ
∂E
gikgjl∇j∇k∇if∇lf dµ

−
ˆ
∂E
gikgjlRkjipg

ps∇sf∇lf dµ
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= −
ˆ
∂E
gjl∇j∆f∇lf dµ

−
ˆ
∂E

Ric(∇f ,∇f) dµ

=

ˆ
∂E
|∆f |2 dµ

+

ˆ
∂E

[
|B|2|∇f |2 −HB(∇f ,∇f)

]
dµ

≤
ˆ
∂E
|∆f |2 dµ+C

ˆ
∂E
|B|2|∇f |2 dµ ,

thus, inequality (2.9) holds (in the last passage we applied Cauchy–
Schwarz inequality and the well known relation |H| ≤

√
2|B|, then

C = 1 +
√

2).
We now estimate the last term in formula (2.9) by means of Lemma 2.7

(which is easily extended to vector valued functions g : ∂E → Rm) with
g = ∇f and p = 4:
ˆ
∂E
|B|2|∇f |2 dµ ≤ ‖B‖2L4(∂E)‖∇f‖

2
L4(∂E)

≤ C‖B‖2L4(∂E)

(
‖∇2f‖1/2

L2(∂E)‖∇f‖
1/2
L2(∂E) + ‖∇f‖L2(∂E)

)2

≤ C‖B‖2L4(∂E)

(
‖∇2f‖L2(∂E)‖∇f‖L2(∂E) + ‖∇f‖2L2(∂E)

)
.

Hence, expanding the product on the last line, using Peter–Paul (Young)
inequality on the first term of such expansion and “adsorbing” in the left
hand side of inequality (2.9) the small fraction of the term ‖∇2f‖2L2(∂E)
that then appears, we obtain

‖∇2f‖2L2(∂E) ≤ C(‖∆f‖
2
L2(∂E) + ‖∇f‖

2
L2(∂E)(‖B‖

2
L4(∂E) + ‖B‖

4
L4(∂E)))

≤ C(‖∆f‖2L2(∂E) + ‖∇f‖
2
L2(∂E)(1 + ‖B‖

4
L4(∂E)) . (2.10)

By the fact that ∆f has zero average on each connected component of
∂E, there holds

‖∇f‖2L2(∂E) = −
ˆ
∂E
f∆f dµ

= −
ˆ
∂E

(f − f)∆f dµ

≤ ‖f − f‖L2(∂E)‖∆f‖L2(∂E)

≤ C‖∇f‖L2(∂E)‖∆f‖L2(∂E) ,

where we used Lemma 2.7 again, hence,

‖∇f‖L2(∂E) ≤ C‖∆f‖L2(∂E) . (2.11)

Thus, from inequality (2.10), we deduce

‖∇2f‖2L2(∂E) ≤ C‖∆f‖
2
L2(∂E)(1 + ‖B‖

4
L4(∂E)) . (2.12)
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Now, by means of Calderón–Zygmund estimates, it is possible to show
(see [5]) that there exists a constant C > 0 depending only on F , M , α
and q > 1 such that for every E ∈ C1,α

M (F ), there holds

‖B‖Lq(∂E) ≤ C(1 + ‖H‖Lq(∂E)) . (2.13)

Then, since it is easy to check that also all the other constant in the
previous inequalities (and the ones coming from Lemma 2.7 also) depend
only on F , M , α and p, if E ∈ C1,α

M (F ), substituting this estimate, with
q = 4, in formula (2.12), the thesis of the lemma follows.

The following lemma provides a crucial “geometric interpolation” that
will be needed in the proof of the main theorem.

Lemma 2.9 (Geometric interpolation). Let F ⊆ T3 be a smooth set.
Then there exists a constant C = C(F ,M ,α) > 0 such that the following
estimates holdsˆ

∂E
|B||∇H|2|∆H| dµ ≤ C‖∇∆H‖2L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖3L6(∂E)) ,

for every E ∈ C1,α
M (F ).

Proof. First, by a standard application of Hölder inequality, we have
ˆ
∂E
|B||∇H|2|∆H| dµ ≤ ‖∆H‖L3(∂E)

(ˆ
∂E
|B|

3
2 |∇H|3 dµ

)2/3
.

Then, using the Poincaré inequality stated in Lemma 2.7 and the fact
that ∆H has zero average on each connected component of ∂E, we get

‖∆H‖L3(∂E) ≤ C‖∇∆H‖L2(∂E).

Now, we use Hölder inequality again(ˆ
∂E
|B|

3
2 |∇H|3 dµ

)2/3
≤
(ˆ

∂E
|∇H|4 dµ

)1/2(ˆ
∂E
|B|6 dµ

)1/6
,

and we apply Lemma 2.7 with p = 4,(ˆ
∂E
|∇H|4 dµ

)1/2
≤ C(‖∇2H‖L2(∂E)‖∇H‖L2(∂E) + ‖∇H‖2L2(∂E)) .

Combining all these inequalities, we conclude
ˆ
∂E
|B||∇H|2|∆H| dµ ≤ C ‖∇∆H‖L2(∂E) ‖B‖L6(∂E) ‖∇H‖L2(∂E)·

· (‖∇2H‖L2(∂E) + ‖∇H‖L2(∂E)) .

By Lemma 2.8 and estimate (2.11), with H in place of f , the right–hand
side of the previous inequality can be bounded from above by

C‖∇∆H‖L2(∂E) ‖B‖L6(∂E) ‖∆H‖L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖2L4(∂E)).
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Hence, using again Poincaré inequality and estimate (2.13) with q = 6,
we have

‖∆H‖L2(∂E) ≤ C‖∇∆H‖L2(∂E)

and
‖B‖L6(∂E) ≤ C(1 + ‖H‖L6(∂E)) .

Finally, using this relations and Hölder inequality, we obtain the thesis
ˆ
∂E
|B||∇H|2|∆H| dµ ≤ C‖∇∆H‖2L2(∂E) ‖∇H‖L2(∂E) (1 + ‖H‖3L6(∂E)) .

We now remind that since ∂E can be disconnected (as in the case
of lamellae), the Poincaré inequality could fail for ∂E. However, if E
is sufficiently close to a stable critical set then it is true for the mean
curvature of ∂E.

Lemma 2.10 (Geometric Poincaré inequality). Fixed p > 2 and a
smooth strictly stable critical set F ⊆ T3, let δ > 0 be the constant
provided by Lemma 1.19, with θ = 1. Then, for M small enough, there
exists a constant C = C(F ,M ,α, p) > 0 such that

ˆ
∂E
|H−H|2 dµ ≤ C

ˆ
∂E
|∇H|2 dµ , (2.14)

for every set E ∈ C1,α
M (F ) such that ∂E ⊆ Nε with

∂E = {y+ ψ(y)νF (y) : y ∈ ∂F} ,

for a smooth function ψ with ‖ψ‖W 2,p(∂F ) < δ.

Proof. Since ˆ
∂E

(H−H)νE dµ = 0 ,

there holdsˆ
∂E
|H−H− 〈η, νE〉|2 dµ = ‖H−H‖2L2(∂E) +

ˆ
∂E
〈η, νE〉2 dµ

≥‖H−H‖2L2(∂E)

for all η ∈ Rn. Choosing M < δ, we may then apply Lemma 1.19 with
θ = 1 and ϕ = H−H, obtaining

σ1

ˆ
∂E
|H−H|2 dµ ≤

ˆ
∂E
|∇H|2 dµ−

ˆ
∂E
|B|2|H−H|2 dµ ≤

ˆ
∂E
|∇H|2 dµ .

The following lemma is straightforward.
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Lemma 2.11. Let E ⊆ T3 be a smooth set. If f ∈ H1(∂E) and
g ∈W 1,4(∂E), then

‖∇(fg)‖L2(∂E) ≤ C‖∇f‖L2(∂E)‖g‖L∞(∂E) +C‖f‖L4(∂E)‖∇g‖L4(∂E) ,

for a constant C independent of E.

Proof. We estimate with Cauchy–Schwarz inequality,

‖∇(fg)‖2L2(∂E) ≤ 2‖∇f‖2L2(∂E)‖g‖
2
L∞(∂E) + 2

ˆ
∂E
|f |2|∇g|2 dµ

≤ 2‖∇f‖2L2(∂E)‖g‖
2
L∞(∂E) + 2‖f‖2L4(∂E)‖∇g‖

2
L4(∂E) ,

hence the thesis follows.

As a corollary, we prove the following result.

Lemma 2.12. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F ). Then,

for M small enough, there holds

‖ψE‖W 3,2(∂F ) ≤ C(F ,M ,α)(1 + ‖H‖2H1(∂E)) ,

where H is the mean curvature of ∂E (the function ψE is defined by
formula (2.8)).

Proof. By a standard localization/partition of unity/straightening ar-
gument, we may reduce ourselves to the case where the function ψE
is defined in a disk D ⊆ R2 and ‖ψE‖C1,α(D) ≤ M . Fixed a smooth
cut–off function ϕ with compact support in D and equal to one on a
smaller disk D′ ⊆ D, we have (see Remark 1.1)

∆(ϕψE)−
∇2(ϕψE)∇ψE∇ψE

1 + |∇ψE |2
= ϕH

√
1 + |∇ψE |2 +R(x,ψE ,∇ψE) ,

where the remainder term R(x,ψE ,∇ψE) is a smooth Lipschitz function.
Then, using Lemma 2.11 and recalling that ‖ψE‖C1,α(D) ≤ M , we
estimate

‖∇∆(ϕψE)‖L2(D) ≤ C(F ,M ,α)
(
M2‖∇3(ϕψE)‖L2(D)

+ ‖∇H‖L2(∂E)(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W 2,4(D))

+ 1 + ‖ψE‖W 2,4(D)

)
.

We now use the fact that, by a simple integration by part argument, if
u is a smooth function with compact support in R2, there holds

‖∇∆u‖L2(R2) = ‖∇3u‖L2(R2) ,

hence,
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‖∇3(ϕψE)‖L2(D) = ‖∇∆(ϕψE)‖L2(D)

≤ C(F ,M ,α)
(
M2‖∇3(ϕψE)‖L2(D)

+ ‖∇H‖L2(∂E)(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W 2,4(D))

+ 1 + ‖ψE‖W 2,4(D)

)
,

then, if M is small enough, we have

‖∇3(ϕψE)‖L2(D) ≤ C(F ,M ,α)(1 + ‖H‖H1(∂E))(1 + ‖HessψE‖L4(D)) ,
(2.15)

as
‖H‖L4(∂E) ≤ C(F ,M ,α)‖H‖H1(∂E) , (2.16)

by Theorem 3.70 in [4].
By the Calderón–Zygmund estimates (holding uniformly for every hy-
persurface ∂E, with E ∈ C1,α

M (F ), see [5]),

‖HessψE‖L4(D) ≤ C‖∆ψE‖L4(D) +C‖ψE‖L4(D) (2.17)

and the expression of the mean curvature (Remark (1.1))

H =
∆ψE√

1 + |∇ψE |2
− HessψE(∇ψE∇ψE)

(
√

1 + |∇ψE |2)3 ,

we obtain

‖∆ψE‖L4(D) ≤ 2M‖H‖L4(∂E) +M2‖HessψE‖L4(D)

≤ 2M‖H‖L4(∂E) +CM2(‖ψE‖L4(D) + ‖∆ψE‖L4(D)) ,

hence, possibly choosing a smaller M , we conclude

‖∆ψE‖L4(D) ≤ C(F ,M ,α)(1+ ‖H‖L4(∂E)) ≤ C(F ,M ,α)(1+ ‖H‖H1(∂E)) ,

again by inequality (2.16).
Thus, by estimate (2.17), we get

‖HessψE‖L4(D) ≤ C(F ,M ,α)(1 + ‖H‖H1(∂E)) , (2.18)

and using this inequality in estimate (2.15),

‖∇3(ϕψE)‖L2(D) ≤ C(F ,M ,α)(1 + ‖H‖H1(∂E))
2 ,

hence,

‖∇3ψE‖L2(D′) ≤ C(F ,M ,α)(1+ ‖H‖H1(∂E))
2 ≤ C(F ,M ,α)(1+ ‖H‖2H1(∂E)) .

The inequality in the statement of the lemma then easily follows by
this inequality, estimate (2.18) and ‖ψE‖C1,α(D) ≤M , with a standard
covering argument.
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Lemma 2.13 (Compactness). Let F ⊆ T3 be a smooth set and En ⊆
C1,α
M (F ) a sequence of smooth sets such that

sup
n∈N

ˆ
∂En

|∇Hn|2 dµn < +∞ .

Then, if α ∈ (0, 1/2) and M is small enough, there exists a smooth set
F ′ ∈ C1

M (F ) such that, up to a (non relabeled) subsequence, En → F ′

in W 2,p for all 1 ≤ p < +∞ (recall the definition of convergence of sets
at the beginning of Section 1.3).
Moreover, if inequality (2.14) holds for every set En with a constant C
independent of n and

ˆ
∂En

|∇Hn|2 dµn → 0 ,

then F ′ is critical for the volume–constrained Area functional A and
the convergence En → F ′ is in W 3,2.

Proof. We first claim that

sup
n∈N

‖Hn‖H1(∂En) < +∞. (2.19)

We set H̃n =
ffl
∂En

Hn dµn, then, by the “geometric” Poincaré inequality
of Lemma 2.10, which holds with a “uniform” constant C = C(F ,M ,α),
for all the sets E ∈ C1,α

M (F ) (see [5]), if M is small enough, we have

‖Hn − H̃n‖2H1(∂En)
≤ sup

n∈N

ˆ
∂En

|∇Hn|2 dµn < C < +∞

with a constant C independent of n ∈N.
Then, we note that by the uniform C1,α–bounds on ∂En, we may find
a solid cylinder of the form C = D × (−L,L), with D ⊆ R2 a ball
centered at the origin and functions fn, with

sup
n∈N

‖fn‖C1,α(D) < +∞ , (2.20)

such that ∂En ∩ C = {(x′,xn) ∈ D × (−L,L) : xn = fn(x′)} with
respect to a suitable coordinate frame (depending on n ∈N).

ˆ
D
(Hn − H̃n) dx

′ + H̃nArea(D) =

ˆ
D

div
( ∇x′fn√

1 + |∇x′fn|2

)
dx′

=

ˆ
∂D

∇x′fn√
1 + |∇x′fn|2

· x
′

|x′|
dσ .

where σ is the canonical (standard) measure on the circle ∂D.
Hence, recalling the uniform bound (2.20) and the fact that ‖Hn −
H̃n‖H1(∂En) are equibounded, we get that H̃n are also equibounded
(by a standard “localization” argument, “uniformly” applied to all the
hypersurfaces ∂En). Therefore, the claim (2.19) follows.
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By applying the Sobolev embedding theorem on each connected compo-
nent of ∂F , we have that

‖Hn‖Lp(∂En) ≤ C‖Hn‖H1(∂En) < C < +∞ for all p ∈ [1,+∞).

for a constant C independent of n ∈N.
Now, by means of inequality (2.13), we obtain

‖B‖Lp(∂E) ≤ C(1 + ‖H‖Lp(∂E)) .

for every E ∈ C1,α
M (F ) with a uniform constant C. Then, if we write

∂En = {y+ ψn(y)νF (y) : y ∈ ∂F} ,

we have supn∈N ‖ψn‖W 2,p(∂F ) < +∞, for all p ∈ [1,+∞) (taking into
account Remark 1.1).
Thus, by the Sobolev compact embedding W 2,p(∂F ) ↪→ C1,α(∂F ), up
to a subsequence (not relabeled), there exists a set F ′ ∈ C1,α

M (F ) such
that

ψn → ψF ′ in C1,α(∂F ),

for all α ∈ (0, 1/2) and β ∈ (0, 1).
From estimate (2.19) and Lemma 2.12 (possibly choosing a smaller
M), we have then that the functions ψn are bounded in W 3,2(∂F ).
Hence, possibly passing to another subsequence (again not relabeled),
we conclude that En → F ′ in W 2,p for every p ∈ [1,+∞), by the
Sobolev compact embeddings.
For the second part of the lemma, we first observe that if

ˆ
∂En

|∇Hn|2 dµn → 0 ,

then there exists λ ∈ R and a subsequence En (not relabeled) such that

Hn

(
·+ψn(·)νF (·)

)
→ λ = H

(
·+ψF ′(·)νF (·)

)
in H1(∂F ), where H is the mean curvature of F ′. Hence F ′ is critical.
To conclude the proof we only need to show that ψn converge to ψ = ψF ′

in W 3,2(∂F ).
Fixed δ > 0, arguing as in the proof of Lemma 2.12, we reduce ourselves
to the case where the functions ψn are defined on a disk D ⊆ R2,
are bounded in W 3,2(D), converge in W 2,p(D) for all p ∈ [1,+∞)

to ψ ∈ W 3,2(D) and ‖∇ψ‖L∞(D) ≤ δ. Then, fixed a smooth cut–off
function ϕ with compact support in D and equal to one on a smaller
disk D′ ⊆ D, we have

∆(ϕψn)√
1 + |∇ψn|2

− ∆(ϕψ)√
1 + |∇ψ|2

= (∇2(ϕψn)−∇2(ϕψ))
∇ψ∇ψ

(1 + |∇ψ|2)3/2

+∇2(ϕψn)

( ∇ψn∇ψn
(1 + |∇ψn|2)3/2 −

∇ψ∇ψ
(1 + |∇ψ|2)3/2

)
+ ϕ(Hn −H) +R(x,ψn,∇ψn)−R(x,ψ,∇ψ) ,
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where R is a smooth Lipschitz function.
Then, using Lemma 2.11, an argument similar to the one of the proof
of Lemma 2.12 shows that∥∥∥∥∥∇

(
∆(ϕψn)√
1 + |∇ψn|2

− ∆(ϕψ)√
1 + |∇ψ|2

)∥∥∥∥∥
L2(D)

≤ C(M)
(
δ2‖∇3(ϕψn)−∇3(ϕψ)‖L2(D)

+ ‖∇2(ϕψn)−∇2(ϕψ)‖L4(D)‖∇2ψ‖L4(D)

+ ‖∇3(ϕψn)‖L2(D)‖∇ψn −∇ψ‖L∞(D)

+ ‖∇2(ϕψn)‖L4(D)(‖∇2ψn‖L4 + ‖∇2ψ‖L4(D))

+ ‖∇Hn −∇H‖L2(D) + ‖ψn −ψ‖W 2,4(D)

)
.

Using Lemma 2.11 again and arguing again as in the proof of Lemma 2.12,
we finally get

‖∇3(ϕψn)−∇3(ϕψ)‖L2(D) ≤ C(M)
(
‖ψn −ψ‖W 2,4(D)

+ ‖∇ψn −∇ψ‖L∞(D)

+ ‖∇Hn −∇H‖L2(D)

)
,

hence,

‖∇3ψn −∇3ψ‖L2(D′) ≤ C(M)
(
‖ψn −ψ‖W 2,4(D)

+ ‖∇ψn −∇ψ‖L∞(D)

+ ‖∇Hn −∇H‖L2(D)

)
,

from which the conclusion follows, by the first part of the lemma and a
standard covering argument.



3
GLOBAL EXISTENCE AND ASYMPTOTIC
STAB IL ITY

We finally prove the main result of this thesis, following the line in [1].
By means of the lemmas in the previous chapter, we will show that if
the initial set E0 is “sufficiently close” to a strictly stable critical set
F ⊆ T3, then the surface diffusion flow starting from E0 exists for all
time and converges asymptotically to a translate of F .

Theorem 3.1. Let F ⊆ T3 be a strictly stable critical set and let
Nε be a tubular neighborhood of ∂F , as in formula (1.36). For every
α ∈ (0, 1/2) there exists M > 0 such that, if E0 is a smooth set in
C1,α
M (F ) satisfying Vol(E0) = Vol(F ) andˆ

∂E0

|∇H0|2 dµ0 ≤M ,

then the unique smooth solution Et of the surface diffusion flow starting
from E0, given by Proposition 2.4, is defined for all t ≥ 0. Moreover,
Et → F + η exponentially fast in W 3,2 as t→ +∞ (recall the definition
of convergence of sets at the beginning of Section 1.3), for some η ∈ R3,
with the meaning that the functions ψη,t : ∂F + η → R representing ∂Et
as “normal graphs” on ∂F + η, that is,

∂Et = {y+ ψη,t(y)νF+η(y) : y ∈ ∂F + η},

satisfy
‖ψη,t‖W 3,2(∂F+η) ≤ Ce−βt ,

for every t ∈ [0,+∞), for some positive constants C and β.

Remark 3.2. We already said that the property of a set E0 to belong
to C1,α

M (F ) is a “closedness” in L1 of E0 and F , and in C1,α of their
boundaries. The extra condition in the theorem on the L2–smallness of
the gradient of H0 (see the second part of Lemma 2.13 and its proof)
implies that the mean curvature of ∂E0 (that from now on we renamed
as H0) is “close” to be constant, as it is for the set F (or actually for
any critical set). Notice that this is a second order condition for the
boundary of E0, in addition to the first order one E0 ∈ C1,α

M (F ).

Proof of Theorem 3.1. Throughout the whole proof C will denote a
constant depending only on F , M and α, whose value may vary from
line to line.
Assume that the surface diffusion flow Et is defined for t in the

maximal time interval [0,T (E0)), where T (E0) ∈ (0,+∞] and let the
moving boundaries ∂Et be represented as “normal graphs” on ∂F as

∂Et = {y+ ψt(y)νF (y) : y ∈ ∂F} ,

63
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for some smooth functions ψt : ∂F → R. As before we set νt = νEt .
We recall that, by Proposition 2.4, for every E ∈ C2,α

M (F ), the flow is
defined in the time interval [0,T ), with T = T (F ,M ,α) > 0.

We show the theorem for the smooth sets E0 ⊆ T3 satisfying

Vol(E0∆F ) ≤M1, ‖ψ0‖C1,α(∂F ) ≤M2 and
ˆ
∂E0

|∇H0|2 dµ0 ≤M3 ,

(3.1)
for some positive constantsM1,M2,M3, then we get the thesis by setting
M = min{M1,M2,M3}.

For any set E ∈ C1,α
M (F ) we introduce the following quantity

D(E) =

ˆ
E∆F

d(x, ∂F ) dx =

ˆ
E
dF dx−

ˆ
F
dF dx, (3.2)

where dF is the signed distance function defined in formula (1.37). We
observe that

Vol(E∆F ) ≤ C‖ψE‖L1(∂F ) ≤ C‖ψE‖L2(∂F )

for a constant C depending only on F and, as E ⊆ Nε,

D(E) ≤
ˆ
E∆F

ε dx ≤ εVol(E∆F ).

Moreover,

‖ψE‖2L2(∂F ) = 2
ˆ
∂F

ˆ |ψE(y)|
0

t dt dµ(y)

= 2
ˆ
∂F

ˆ |ψE(y)|
0

d(L(y, t), ∂F ) dt dµ(y)

= 2
ˆ
E∆F

d(x, ∂F ) JL−1(x) dx

≤ CD(E) .

where L : ∂F × (−ε, ε) → Nε the smooth diffeomorphism defined in
formula (1.39) and JL its Jacobian. As we already said, the constant
C depends only on F and ε. This clearly implies

Vol(E∆F ) ≤ C‖ψE‖L1(∂F ) ≤ C‖ψE‖L2(∂F ) ≤ C
√
D(E) . (3.3)

Hence, by this discussion, the initial smooth set E0 ∈ C1,α
M (F ) satisfies

D(E0) ≤M ≤M1 (having chosen ε < 1).
By rereading the proof of Lemma 2.13, it follows that for M2,M3

small enough, if ‖ψE‖C1,α(∂F ) ≤M2 and
ˆ
∂E
|∇H|2 dµ ≤M3 ,

then
‖ψE‖W 2,6(∂F ) ≤ ω(max{M2,M3}) , (3.4)
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where s 7→ ω(s) is a positive nondecreasing function (defined on R) such
that ω(s)→ 0 as s→ 0+. This clearly implies (recalling Remark 1.1)

‖νE‖W 1,6(∂E) ≤ ω′(max{M2,M3}) ,

for a function ω′ with the same properties of ω. Both ω and ω′ only de-
pend on F and α, forM small enough. Moreover, thanks to Lemma 2.10,
there exists C > 0 such that, choosing M2,M3 small enough, in order
that ω(max{M2,M3}) is small enough, we have

ˆ
∂E
|H−H|2 dµ ≤ C

ˆ
∂E
|∇H|2 dµ , (3.5)

where, as usual, H is the average of H over ∂E.
We split the proof of the theorem into steps.

Step 1. (Stopping–time) Let T ≤ T (E0) be the maximal time such
that

Vol(Et∆F ) ≤ 2M1, ‖ψt‖C1,α(∂F ) ≤ 2M2 and
ˆ
∂Et

|∇Ht|2 dµt ≤ 2M3 ,

(3.6)
for all t ∈ [0,T ). Hence,

‖ψt‖W 2,6(∂F ) ≤ ω(2 max{M2,M3}) (3.7)

for all t ∈ [0,T ′), as in formula (3.4). Note that such a maximal time is
clearly positive, by the hypotheses on E0.
We claim that by taking M1,M2,M3 small enough, we have T = T (E0).

Step 2. (Estimate of the translational component of the flow) We want
to show that there exists a small constant θ > 0 such that

min
η∈OF

‖∆Ht − 〈η, νt〉‖L2(∂Et) ≥ θ‖∆Ht‖L2(∂Et) for all t ∈ [0,T ) ,

(3.8)
where OF is defined by formula (1.34).
IfM is small enough, clearly there exists a constant C0 = C0(F ,M ,α) >
0 such that, for every i ∈ IF , we have ‖〈ei, νt〉‖L2(∂Et) ≥ C0 > 0, holding
‖〈ei, νF 〉‖L2(∂F ) > 0. It is then easy to show that the vector ηt ∈ OF

realizing such minimum is unique and satisfies

∆Ht = 〈ηt, νt〉+ g, (3.9)

where g ∈ L2(∂Et) is a function L2–orthogonal (with respect to the
measure µt on ∂Et) to the vector subspace of L2(∂Et) spanned by
〈ei, νt〉, with i ∈ IF , where {e1, . . . , e3} is the orthonormal basis of R3

given by Remark 1.10). Moreover, the inequality

|ηt| ≤ C‖∆Ht‖L2(∂Et) (3.10)

holds, with a constant C depending only on F , M and α.
We now argue by contradiction, assuming ‖g‖L2(∂Et) < θ‖∆Ht‖L2(∂Et).
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First we recall that ∆Ht has zero average. Then, setting H =
ffl
∂Et

H dµt,
and recalling relation (3.5), we get

‖Ht −Ht‖2L2(∂Et)
≤ C

ˆ
∂Et

|∇Ht|2 dµt

= −C
ˆ
∂Et

Ht∆Ht dµt

= −C
ˆ
∂Et

∆Ht(Ht −Ht) dµt

≤ C‖Ht −Ht‖L2(∂Et)‖∆Ht‖L2(∂Et) , (3.11)

Hence, we conclude

‖Ht −Ht‖L2(∂Et) ≤ C‖∆Ht‖L2(∂Et) . (3.12)

Since, there holds
ˆ
∂Et

Ht νt dµt =

ˆ
∂Et

νt dµt = 0 ,

by multiplying relation (3.9) by Ht−Ht, integrating over ∂Et, and using
inequality (3.12), we get∣∣∣∣ˆ

∂Et

(Ht −Ht)∆Ht dµt

∣∣∣∣ = ∣∣∣∣ˆ
∂Et

(Ht −Ht)g dµt

∣∣∣∣
< θ‖Ht −Ht‖L2(∂Et)‖∆Ht‖L2(∂Et)

≤ Cθ‖∆Ht‖2L2(∂Et)
.

Recalling now estimate (3.10), as g is orthogonal to 〈ηt, νt〉, computing
as in the first three lines of formula (3.11), we have

‖〈ηt, νt〉‖2L2(∂Et)
=

ˆ
∂Et

∆Ht〈ηt, νt〉 dµt

= −
ˆ
∂Et

〈∇Ht,∇〈ηt, νt〉〉 dµt

≤ |ηt|‖∇νt‖L2(∂Et)‖∇Ht‖L2(∂Et)

≤ C‖∇νt‖L2(∂Et)‖∆Ht‖L2(∂Et)

∣∣∣∣ˆ
∂Et

(Ht −Ht)∆Ht dµt

∣∣∣∣1/2

≤ C
√
θ‖∇νt‖L2(∂Et)‖∆Ht‖2L2(∂Et)

≤ C
√
θ‖∆Ht‖2L2(∂Et)

,

where in the last inequality we estimated ‖∇νt‖L2(∂Et) with C‖ψt‖W 2,6(∂Et)

(keeping into account Remark 1.1) and we used inequality (3.7).
If then θ > 0 is chosen so small that C

√
θ+ θ2 < 1 in the last inequality,

then we have a contradiction with equality (3.9) and the fact that
‖g‖L2(∂Et) < θ‖∆Ht‖L2(∂Et), as they imply (by L2–orthogonality) that

‖〈ηt, νt〉‖2L2(∂Et)
> (1− θ2)‖∆Ht‖2L2(∂Et)

.
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All this argument shows that for such a choice of θ condition (3.8) holds.
By Propositions 1.19 and 1.20, there exist positive constants σθ and
δ with the following properties: for any set E ∈ C1,α

M (F ) such that
‖ψE‖W 2,6(∂F ) < δ, there holds

ΠE(ϕ) ≥ ηθ‖ϕ‖2H1(∂E)

for all ϕ ∈ H̃1(∂E) such that

min
η∈OF

‖ϕ− 〈η, νE〉‖L2(∂E) ≥ θ‖ϕ‖L2(∂E)

and if F ′ is critical, Vol(F ′) = Vol(F ) with ‖ψF ′‖W 2,6(∂F ) < δ, then

F ′ = F + η (3.13)

for a suitable vector η ∈ R3. We then assume that M2,M3 are small
enough such that

ω(2 max{M2,M3}) < δ/2 (3.14)

where ω is the function introduced in formula (3.4).
Step 3. (The stopping time T is equal to the maximal time T (E0))
We show now that, by taking M1,M2,M3 smaller if needed, we have
T = T (E0).

By the previous point and the suitable choice of M2,M3 made in its
final part, formula (3.8) holds, hence we have

ΠEt(∆Ht) ≥ σθ‖∆Ht‖2H1(∂F ) for all t ∈ [0,T ).

In turn, by Lemma 2.6 and 2.9 we may estimate

d

dt

1
2

ˆ
∂Et

|∇Ht|2 dµt ≤− σθ‖∆Ht‖2H1(∂Et)
+

ˆ
∂Et

|B||∇Ht|2|∆Ht| dµt

≤ − σθ‖∆Ht‖2H1(∂Et)

+C‖∇(∆Ht)‖2L2(∂Et)
‖∇Ht‖L2(∂Et)(1 + ‖Ht‖3L6(∂Et)

)

≤ − σθ‖∆Ht‖2H1(∂Et)

+C
√
M3‖∇(∆Ht)‖2L2(∂Et)

(1 + ‖Ht‖3L6(∂Et)
)

≤ − σθ‖∆Ht‖2H1(∂Et)

+C
√
M3‖∆Ht‖2H1(∂Et)

(1 +Cω(max{M2,M3}))
(3.15)

for every t ≤ T , where in the last step we used relations (3.6) and (3.7)
(and kept into account Remark 1.1).
Noticing that from formulas (3.11) and (3.12) it follows

‖∇Ht‖L2(∂Et) ≤ C‖∆Ht‖L2(∂Et) ≤ C‖∆Ht‖H1(∂Et) ,

kepping fixed M2 a choosing a suitably small M3, we conclude

d

dt

ˆ
∂Et

|∇Ht|2 dµt ≤ −
σθ
2 ‖∆Ht‖2H1(∂Et)

≤ −c0‖∇Ht‖2L2(∂Et)
.
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This argument clearly says that the quantity
´
∂Et
|∇Ht|2 dµt is non-

increasing in time, hence, if M2,M3 are small enough, the inequality´
∂Et
|∇Ht|2 dµt ≤ M3 is preserved during the flow. If we assume by

contradiction that T < T (E0), then it must happen that

Vol(ET∆F ) = 2M1

or
‖ψT ‖C1,α(∂F ) = 2M2 .

Before showing that this is not possible, we prove that actually the quan-
tity

´
∂Et
|∇Ht|2 dµt decreases (non increases) exponentially. Indeed, in-

tegrating the differential inequality above and recalling proprierties (3.1),
we obtainˆ

∂Et

|∇Ht|2 dµt ≤ e−c0t

ˆ
∂E0

|∇H∂E0 |2 dµ0 ≤M3e
−c0t ≤M3 (3.16)

for every t ≤ T .
Then, we assume that Vol(ET∆F ) = 2M1 or ‖ψT ‖C1,α(∂E

T
) = 2M2.

Recalling formula (3.2) and denoting by Xt the velocity field of the flow
(see Definition 2.1 and the subsequent discussion), we compute

d

dt
D(Et) =

d

dt

ˆ
Et

dF dx =

ˆ
Et

div(dFXt) dx =

ˆ
∂Et

dE〈Xt, νt〉 dµt

=

ˆ
∂Et

dF ∆Ht dµt −
ˆ
∂Et

〈∇dF ,∇Ht〉 dµt

≤ C‖∇Ht‖L2(∂Et) ≤ C
√
M3e−c0t/2 ,

for all t ≤ T , where the last inequality clearly follows from inequal-
ity (3.16).
By integrating this differential inequality over [0,T ) and recalling esti-
mate (3.3), we get

Vol(ET∆F ) ≤ C‖ψT ‖L2(∂E
T
) ≤ C

√
D(ET )

≤ C
√
D(E0) +C

√
M3 ≤ C 4

√
M3 , (3.17)

as D(E0) ≤M1, provided that M1,M3 are chosen suitably small. This
shows that Vol(ET∆F ) = 2M1 cannot happen if we chose C 4√M3 ≤M1.
By arguing as in Lemma 2.13 (keeping into account inequality (3.6)
and formula (3.4)), we can see that the L2–estimate (3.17) implies a
W 2,6–bound on ψT with a constant going to zero, keeping fixed M2, as´
∂Et
|∇HT |

2 dµt → 0, hence, by estimate (3.16), as M3 → 0. Then, by
Sobolev embeddings, the same holds for ‖ψT ‖C1,α(∂E

T
), hence, if M3 is

small enough, we have a contradiction with ‖ψT ‖C1,α(∂E
T
) = 2M2.

Thus, T = T (E0) and

Vol(Et∆F ) ≤ C 4
√
M3 , ‖ψt‖C1,α(∂Et) ≤ 2M2 ,

ˆ
∂Et

|∇Ht|2 dµt ≤M3e
−c0t ,

(3.18)
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for every t ∈ [0,T (E0)), by choosing M1,M2,M3 small enough.
Step 4. (Long time existence) We now show that, by takingM1,M2,M3
smaller if needed, we have T (E0) = +∞, that is, the flow exists for all
times.
We assume by contradiction that T (E0) < +∞ and we notice that, by
computation (3.15) and the fact that T = T (E0), we have

d

dt

ˆ
∂Et

|∇Ht|2 dµt + σθ‖∆Ht‖2H1(∂Et)
≤ 0

for all t ∈ [0,T (E0)). Integrating this differential inequality over the in-
terval [T (E0)− T/2,T (E0)− T/4], where T is given by Proposition 2.4,
as we said at the beginning of the proof, we obtain

σθ

ˆ T (E0)−T/4

T (E0)−T/2
‖∆Ht‖2H1(∂Et)

dt ≤
ˆ
∂E

T (E0)−
T
2

|∇H|2 dµT (E0)−T2

−
ˆ
∂E

T (E0)−
T
4

|∇H|2 dµT (E0)−T4

≤M3 ,

where the last inequality follows from estimate (3.18). Thus, by the
mean value theorem there exists t ∈ (T (E0)− T/2,T (E0)− T/4) such
that

‖∆Ht‖
2
H1(∂Et)

≤ 4M3
Tσθ

.

Thus, by Lemma 2.8

‖∇2Ht‖
2
L2(∂Et)

≤C‖∆Ht‖
2
L2(∂Et)

(1 + ‖Ht‖
4
L4(∂Et)

)

≤CM3(1 + ω4(2 max{M2,M3}))

where in the last inequality we also used the curvature bounds provided
by formula (3.7). In turn, for p ∈ R large enough, we get

[Ht]
2
C0,α(∂Et)

≤ C‖∇Ht‖
2
Lp(∂Et)

≤ C‖∇Ht‖
2
H1(∂Et)

≤ CM3(M2,M3) ,

where [·]C0,α(∂Et)
stands for the α–Hölder seminorm on ∂Et and in the

last inequality we used the previous estimate.
By means of Schauder estimates (as Calderón–Zygmund inequality
implied estimate (2.13)), it is possible to show (see [5]) that there exists
a constant C > 0 depending only on F , M , α and p > 1 such that for
every E ∈ C1,α

M (F ), choosing even smaller M1,M2,M3, there holds

‖B‖C0,α(∂E) ≤ C(1 + ‖H‖C0,α(∂E)) .

Thus, if we choose M3 sufficiently small, by the above discussion (and
Remark 1.1, as before), we can conclude that Et ∈ C2,α

M (F ). Therefore,
the maximal time of existence of the classical solution starting from Et
is at least T , which means that the flow Et can be continued beyond
T (E0), which is a contradiction.
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Step 5. (Convergence, up to subsequences, to a translate of F ) Let
tn → +∞, then, by estimates (3.18), the sets Etn satisfy the hypotheses
of Lemma 2.13, hence, up to a (not relabeled) subsequence we have
that there exists a critical set F ′ ∈ C1,α

M (F ) such that Etn → F ′ in W 3,2.
Due to formulas (3.4) and (3.14) we also have ‖ψF ′‖W 2,6(∂F ) ≤ δ and
F ′ = F + η for some (small) η ∈ R3 (equality (3.13)).
Step 6.(Exponential convergence of the full sequence) Consider now

Dη(E) =

ˆ
E∆(F+η)

dist (x, ∂F + η) dx .

The very same calculations performed in Step 3 show that∣∣∣∣ ddtDη(Et)

∣∣∣∣ ≤ C‖∇Ht‖L2(∂Et) ≤ C
√
M3e

−c0t/2

for all t ≥ 0, moreover, by means of the previous step, it follows
limt→+∞Dη(Et) = 0. In turn, by integrating this differential inequality
and writing

∂Et = {y+ ψη,t(y)νF+η(y) : y ∈ ∂F + η} ,

we get

‖ψη,t‖2L2(∂F+η) ≤ CDη(Et) ≤
ˆ +∞

t
C
√
M3e

−c0s/2 ds ≤ C
√
M3e

−c0t/2 .

Since by the previous steps ‖ψη,t‖W 2,6(∂F+η) is bounded, we infer from
this inequality, Sobolev embeddings and standard interpolation esti-
mates that also ‖ψη,t‖C1,β(∂F+η) decays exponentially for β ∈ (0, 2/3).
Denoting the average of Ht on ∂Et by Ht, as by estimates (3.11)
and (3.16), we have that

‖Ht(·+ ψη,t(·)νF+η(·))−Ht‖H1(∂F+η)

≤ C‖Ht −Ht‖H1(∂Et)‖ψη,t‖C1(∂F+η)

≤ C‖∇Ht‖L2(∂Et)

≤ C
√
M3e

−c0t/2 .

It follows that

‖[Ht(· + ψη,t(·)νF+η(·)) − Ht] − [H∂F+η − H∂F+η]‖H1(∂F+η) → 0
(3.19)

exponentially fast, as t→ +∞, where H∂F+η stands for the average of
H∂F+η on ∂F + η.
Since Et → F + η (up to a subsequence) inW 3,2, it is easy to check that
|Ht −H∂F+η| ≤ C‖ψη,t‖C1(∂F+η) which decays exponentially, therefore,
thanks to limit (3.19), we have

‖Ht(·+ ψη,t(·)νF+η(·))−H∂F+η‖H1(∂F+η) → 0

exponentially fast.
The conclusion then follows arguing as at the end of Step 4.



4
SOME CONNECTED TOPICS AND RESEARCH
L INES

This last chapter deals with some problems related to our work. In
particular, we briefly discuss a perturbed version of the surface diffusion
flow and the modified Mullins–Sekerka flow, which is studied in [1]
using the same arguments and techniques proposed before. Then, we
give some information about the classification of the stable critical sets.
Finally, we describe some possible lines of research.

4.1 the surface diffusion flow with elasticity

We introduce the surface diffusion flow with elasticity and we give an
asymptotic stability result in the three–dimensional Euclidean space, for
more details, see [10] and the references therein. About the fractional
Sobolev spaces, we refer to [23] for definitions and basic facts.
We define a “nonlocal” energy functional, where the nonlocality is

given by an “elasticity” term. Let Ω ⊆ R3 be a bounded open set with
a smooth boundary and F ⊆ Ω a smooth set such that its closure F is
a compact subset of Ω. With νF we will denote the outer unit normal
vector to ∂F .

In all this section we will always consider sets F ⊆ Ω with this
property saying that F is “compactly contained” in Ω.

Let uF ∈ H1(Ω \F , R3) be the unique solution of the following PDE
system 

div CE(uF ) = 0 in Ω \ F
CE(uF )νF = 0 on ∂F ∪ ∂Ω \ ∂DΩ

uF = ω0 on ∂DΩ

where C is the elasticity tensor acting on 3× 3–matrices,

E(uF ) =
DuF +Du>F

2
is the elastic stress associated to the “displacement function” uF , ω0 is
a fixed function in H

1
2 (∂Ω) and ∂DΩ is a relatively open subset of ∂Ω

(Du>F is the transpose matrix of DuF ).
We then define the following modification of the Area functional

J (F ) = A(∂F ) + 1
2

ˆ
Ω\F

CE(uF ) ·E(uF ) dx , (4.1)

under a constraint of fixed volume, where the dot denotes the scalar
product between matrices, that is A ·B = trAB.

71
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We can compute the first and second variations of J , along the lines
of Chapter 1.

Proposition 4.1. Let F be a smooth set compactly contained in Ω,
X ∈ C∞c (Ω, R3) and Φt for t ∈ (−ε, ε) the associated flow, as in
formula (1.9). Then,

d

dt
J (Φt(F ))

∣∣∣∣
t=0

=

ˆ
∂F

(
H− 1

2 CE(uF ) ·E(uF )
)
ϕdµ

where ϕ = 〈X, νF 〉 on ∂F . If in addition divX = 0 in a neighborhood
of ∂F we have

d2

dt2
J (Φt(F ))

∣∣∣∣
t=0

=

ˆ
∂F
|∇ϕ|2 − |B|2ϕ2 dµ−

ˆ
Ω\F

CE(uϕ) ·E(uF ) dx

− 1
2

ˆ
∂F
〈∇(CE(uF ) ·E(uF )ϕ2), νF 〉 dµ

−
ˆ
∂F

(
H− 1

2 CE(uF ) ·E(uF )
)
div(ϕXτ ) dµ,

where the function uϕ ∈ H1(Ω \ F , R3) is the unique solution of
ˆ

Ω\F
CE(uϕ) ·E(ψ) dx = −

ˆ
∂F
〈div(ϕCE(uF )),ψ〉 dµ

with uϕ = 0 on ∂DΩ, for all ψ ∈ H1(Ω \ F , R3) such that ψ = 0 on
∂DΩ.

We fix a smooth set G ⊆ Ω and a tubular neighborhood Nε of ∂G, as
in formula (1.36), with π : Nε → ∂G the associated smooth orthogonal
projection. As before, we denote by Ck,α

M (G) the class of smooth sets F
with Vol(F4G) < M and whose boundary is a normal graph over ∂G
with a function whose Ck,α–norm is smaller that M .
Let G1, . . . ,Gm be the connected components of G, with smooth bound-
aries ΓG,1 = ∂G1, . . . , ΓG,m = ∂Gm. For M small, every F ∈ C1,α

M (G) is
C1-diffeomorphic to G, thus, ∂F has the same number m of connected
components ΓF ,1, . . . , ΓF ,m, which can be numbered in such a way that,
for every i ∈ {1, . . . ,m}, we have

ΓF ,i = {y+ hF ,i(y)νG(y) : y ∈ ΓG,i} ,

for suitable functions hFi ∈ C1,α(∂Gi) and the respectively enclosed
sets Fi are diffeomorpic to Gi.
Also in this case, we are interested in volume–preserving variations,

in the following sense.

Definition 4.2. Let F be a smooth set compactly contained in Ω. We
say that a vector field X ∈ C∞c (Ω, R3) is admissible for F , if there
exists ε0 ∈ (0, 1) such that

Vol(Φt(Fi)) = Vol(Fi) for t ∈ (−ε0, ε0) and i = 1, . . . ,m ,

where Φ is the flow associated to X.
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We then give the definition of critical and stable sets.

Definition 4.3. We say that a smooth set F ⊆ Ω, with connected
components F1, . . . ,Fm, is critical for the functional J if there exist
constants λ1, . . . ,λm such that

H− 1
2 CE(uF ) ·E(uF ) = λi on ΓF ,i

for every i = 1, . . . ,m.

Note that if F is a smooth (local) minimizer of J under a volume
constraint, then there exists a constant λ such that

H− 1
2 CE(uF ) ·E(uF ) = λ on ∂F ,

which is a stronger condition than the criticality one above.
When F is critical, the formula for the second variation in Proposi-

tion (4.1) reduces to

Π̃F (ϕ) =
d2

dt2
J (Φt(F ))

∣∣∣∣
t=0

=

ˆ
∂F
|∇ϕ|2 − |B|2ϕ2 dµ−

ˆ
Ω\F

CE(uϕ) ·E(uF ) dx

− 1
2

ˆ
∂F
〈∇(CE(uF ) ·E(uF )ϕ2), νF 〉 dµ,

where ϕ = 〈X, νF 〉 on ∂F .

Definition 4.4. Let F ⊆ Ω be a smooth critical set. We say that F is
stable if

Π̃F (ψ) ≥ 0 for all ψ ∈ H̃1(∂F )

and it is strictly stable if

Π̃F (ψ) > 0 for all ψ ∈ H̃1(∂F ) \ {0} ,

where H̃1(∂F ) is defined as in formula (1.30).

Definition 4.5 (Surface diffusion flow with elasticity ). Let F ⊆ Ω
be a smooth set. We say that a smooth flow Ft for t ∈ [0,T ), with
F0 = F , is a surface diffusion flow with elasticity starting from F , if
the outer normal velocity Vt of the moving boundaries ∂Ft, defined as
in formula (2.1), is given by

Vt = ∆t
(
H− 1

2CE(uFt) ·E(uFt)
)

for all t ∈ [0,T ) . (4.2)

By the work in [10], it is possible to prove a short time existence and
uniqueness of a solution starting from any smooth set. The strategy
proposed by Fusco, Julin e Morini is based on the idea of thinking the
elastic contribution as a “forcing term” and using a fixed point argument
in a suitably chosen function space.

To conclude, we analyze the behavior of the flow when the initial set
is close to a smooth strictly stable critical set G.
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Theorem 4.6 ([10, Theorem 5.1]). Let G ⊆ Ω be a smooth strictly
stable critical set, in the sense of Definition 4.4. There exists M > 0
such that if F0 ∈ C3

M (G), then the unique solution Ft of the flow (4.2)
starting from F0 is defined for all times t > 0.
Moreover Ft → F∞ exponentially fast, where F∞ is the unique smooth
critical set “close” to G such that Vol(F∞,i) = Vol(F0,i) for i = 1, . . . ,m.
In particular, if Vol(F0,i) = Vol(Gi) for i = 1, . . . ,m, then Ft →
G exponentially fast (Gi,F0,i,F∞,i denote the connected components
respectively of G,F0,F∞).

In order to show this asymptotic exponential stability result, it is
enough to adapt to this situation the methods used for the surface
diffusion flow. The rough idea is to look at the asymptotic behavior of
the quantity

ˆ
∂Ft

∣∣∣∇(H− 1
2 CE(uFt) ·E(uFt)

)∣∣∣2 dµt ,

and to show that it is decreasing and vanishes exponentially fast, as
t→ +∞. A crucial role in this analysis is played by energy identities
(similar to the identities proven in Lemma 2.6) and by the estimates of
the k–order derivatives of the solution, depending only on the initial
set.

4.2 the modified mullins–sekerka flow

Another interesting problem related to our work is the study of the
modified Mullins–Sekerka flow in the three–dimensional flat torus, also
carried out in [1].

We introduce the following nonlocal Area functional J , also known as
sharp–interface Ohta–Kawasaki energy, which was first proposed in [24]
to describe phase separation in diblock copolymer melts.
Let E ⊆ Tn be a smooth set, we consider the associated potential

vE(x) =

ˆ
Tn
G(x, y)uE(y)dy , (4.3)

where G is the Green function (of the Laplacian) of the torus Tn and
uE = χ

E
− χ

Tn\E.
Given γ ≥ 0, we define the (volume–constrained) functional

J(E) = A(∂E) + γ

ˆ
Tn
|∇vE(x)|2 dx , (4.4)

which has the Euler–Lagrange equation

H + 4γvE = λ on ∂E

for a constant λ ∈ R.
We observe that for this energy functional there hold the same definitions
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and results that we proved in Chapter 1 for the surface diffusion flow.
In particular, we can show, following [2], that any smooth critical set for
J with positive second variation (that is, strictly stable in an analogous
sense to Definition (1.9)) is a W 2,p–local minimizer, for all p > 2.

Then, to any smooth set E ⊆ Tn we associate the function wE which
is the unique solution in H1(Tn) of the problem∆wE = 0 in Tn \ ∂E

wE = H + 4γvE on ∂E

where vE is the potential introduced in formula (4.3) and we denote by
w+
E and w−E the restrictions wE |Tn\E and wE |E , and we set

[∂νEwE ] = ∂νEw
+
E − ∂νEw

−
E = −(∂νTe\Ew

+
E + ∂νEw

−
E) ,

that is, [∂νEwE ] is the jump of the normal derivative of wE on ∂E.

Definition 4.7 (Modified Mullins–Sekerka flow). Let E ⊆ Tn be a
smooth set. We say that a smooth flow Et, with E0 = E, is a modified
Mullins–Sekerka flow (with parameter γ ≥ 0) on the interval [0,T )
with initial datum E, if the outer normal velocity Vt of the moving
boundaries ∂Et is given by

Vt = [∂νEtwEt ] on ∂Et for all t ∈ [0,T ) .

Notice that the adjective “modified” is due to the parameter γ, when
it is positive. Indeed, if γ = 0 the potential vE becomes irrelevant, the
functional J becomes the Area functional and we recover the “classical”
Mullins–Sekerka flow, which was studied in [22] (it can be shown that
this latter can be regarded as the H−1/2–gradient flow of the Area
functional under the constraint that the volume is fixed, see [18]).
Also for this situation, analogously to the surface diffusion flow, a

short time and uniqueness result was established by Escher and Nishiura
in [7] and, in the three–dimensional case, following [1], it is possible
to show that if the initial set E ⊆ T3 is sufficiently close to a smooth
strictly stable critical set F , then the modified Mullins–Sekerka flow,
starting from E, exists for all time and converge exponentially fast to a
translate of F .

4.3 the classification of the stable critical sets

We discuss now a while the class of initial sets to which Theorem 3.1
can be applied, hence, “dynamically exponentially stable” for the sur-
face diffusion flow. In the three–dimensional case, the smooth stable
“periodic” critical sets are classified, a first description was given by Ros
in [26], where it is shown that in a three–dimensional flat torus T3, for
the volume–constrained Area functional, they are balls, 2–tori, gyroids
or lamellae.
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Figure 1: From left to right: balls, cylinders, gyroids and lamellae.

Notice that the lamellae are a finite collection of parallel planar 2–tori,
where 2–tori are simply a quotient of a circular cylinders. The surfaces
in the first three classes are actually strictly stable, hence, it is possible
to apply the aforementioned theorem. While in [14,15,27] the authors
establish the strict stability of gyroids only in some cases. To give an
example, we refer to [15] where Grosse–Brauckmann and Wohlgemuth
showed the strictly stability of the gyroids that are fixed with respect to
translations. We remind that the gyroids, that were discovered by the
crystallographer Schoen in the 1970 (see [28]), are the unique non–trivial
embedded members of the family of the Schwarz P surfaces and then
conjugate to the D surfaces, that are the simplest and most well–known
triply–periodic minimal surfaces (see [27]).

It is worth mentioning, without going into detail, that instead, for the
functional (4.4) a complete classification of the stable periodic structures
is still missing.

4.4 possible future research directions

A natural continuation of the research presented in the thesis is trying
to generalize the results to dimension n > 3, which is at the moment an
open, absolutely not easy problem. Another challenging research line
(actually, relevant for physics) is modeling the evolution of epitaxially
strained elastic films, that is, the growth of a thin layer on the surface
of a crystal so that the layer has the same structure as the underlying
crystal. The proposed physical models are driven by laws similar to the
surface diffusion flow with elasticity, seen above, with extra (regularizing)
curvature terms (as in [9]). In order to give an example, we define the
following energy functional,

Jε(F ) = A(∂F ) +
1
2

ˆ
Ω\F

CE(uF ) ·E(uF ) dx+
ε

p

ˆ
∂F
|H|p dµ

where ε is a positive parameter and p > 2, which is a “singular per-
turbation” of the energy defined in formula (4.1) and we consider the
associated (gradient) evolution law

Vt = ∆t
(
H− 1

2 CE(uFt) ·E(uFt)
)
−ε∆t∆t(|H|p−2H) + LOT

giving the motion of the boundary ∂Ft (LOT stands for “lower order
terms”).
This problem was studied in dimensions two and three by Fonseca, Fusco,
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Leoni and Morini in [8] and [9], respectively. We aim to study such flows
in higher dimensions, possibly with different singular perturbations, for
instance, of higher order as

Jε(F ) = A(∂F ) +
1
2

ˆ
Ω\F

CE(uF ) ·E(uF ) dx+ ε

ˆ
∂F
|∇mB|2 dµ

and also to investigate what happens when the perturbation “goes
to zero”, trying to show that the associated perturbed gradient flows
“converge” in some sense to the original one (surface diffusion flow with
elasticity), as the perturbation term gets smaller and smaller.
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