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I N T R O D U C T I O N

Geometric evolution problems for surfaces are a fascinating topic arising from
the study of models in physics and material sciences, usually used in descrip-
tions of phase changes or flows of fluids.
In this work, following [1], we study one of the most recent of such geometric
motions, namely, the modified Mullins–Sekerka flow. Precisely, we say that a flow
of open sets with smooth boundary Et, contained in an open set Ω ⊆ Rn and
with d(Et, ∂Ω) > 0 for every t in a time interval [0,T ), is a solution of the
modified Mullins–Sekerka flow with parameter γ ≥ 0, if there exists a pair
of continuous functions v,w : [0,T )×Ω→ R such that the following “mixed”
system is satisfied (distributionally),

Vt = [∂νtwt] on ∂Et,

∆wt = 0 in Ω \ ∂Et,
wt = Ht + 4γvt on ∂Et,

−∆vt = uEt −
ffl
Ω
uEt dx in Ω,

(1)

where wt = w(t, ·) and vt = v(t, ·), the functions νt, Ht,Vt are respectively,
the “outer” normal, the mean curvature and the outer normal velocity of the
moving boundary ∂Et. We set uEt = 2χ

Et
− 1 and [∂νtwt] is a notation for the

“jump” of the normal derivative of wt on ∂Et, that is ∂νtw
+
t − ∂νtw

−
t , with w+

t

and w−t denoting the restrictions of wt to Ω \Et and Et, respectively.
We mention that the adjective “modified” comes from the introduction of the
parameter γ ≥ 0 in the system (1), while choosing γ = 0, we have the original
flow proposed by Mullins and Sekerka in [30].
It follows that defining Mt = ∂Et, which is a family of smooth hypersurfaces
embedded in Ω, we can always describe the evolution, locally in space and time
(and globally if the sets Et have compact closure, see [26]), via some embedding
maps ϕt : M → Ω such that ϕt(M) = Mt, satisfying the evolution equation

∂

∂t
ϕt = Vtνt = [∂νtwt]νt,

where M is a fixed smooth (n− 1)–dimensional differentiable manifold.
As it is, system (1) is clearly undetermined, as the behavior of the functions

wt and vt is not prescribed on the boundary of Ω (and this latter is possibly
not bounded). One possibility to get a well–posed problem (leading to a
satisfactory short time existence and uniqueness result for the flow starting
with any smooth initial set, see [12]) which is actually a parabolic system of
PDEs, with the above parametrization of the evolving surfaces, is to ask that
Ω is bounded and that all the functions wt and vt are subject to homogeneous
(zero) Neumann boundary conditions on ∂Ω. Another possibility, which is the
one we are going to discuss in our thesis, is to assume that Ω = Rn (hence
∂Ω = Ø) and that all the functions and sets involved are periodic with respect
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introduction 2

to the standard lattice Zn of Rn. In this case the analysis is clearly equivalent
to “ambient” the problem in the n–dimensional “flat” torus Tn = Rn/Zn (that
is, Ω = Tn in system (1)), making it well–posed.
We will focus on this setting, that we call the “periodic” case and only in
dimension three. Anyway, all the results that we will present can be proved
also in the “Neumann” three–dimensional case (see Section 4.1). Moreover,
it can be shown that in the two–dimensional case the same conclusions hold
analogously, while on the opposite, when the ambient dimension is higher
than three, several questions are still open, up to our knowledge. By sake
of completeness, in the final chapter, we will briefly discuss the “Neumann”
setting and we will state the analogues of the main results in the periodic case.

The Mullins–Sekerka model has been largely studied over the last years
for its importance in the analysis of pattern–forming processes such as the
solidification in pure liquids. In particular, it arises in [25] as a limit of a non-
local version of the Cahn–Hilliard equation, a fourth order partial differential
equation proposed to describe phase separation in diblock copolymer melts
(see [33]).

It is easy to see that the solutions of problem (1) evolve in such a way that
the volume of the sets Et is preserved (while it has been shown in [10] that
convexity is not necessarily maintained, in contrast with the more famous mean
curvature flow, see [26], for instance). This property is not unexpected as the
modified Mullins–Sekerka flow is the H−1/2–gradient flow (with a suitable
norm on H−1/2(∂E)) of the following “nonlocal Area functional”

J(E) = ATn(∂E) + γ

ˆ
Tn

ˆ
Tn
G(x, y)uE(x)uE(y) dx dy ,

under the constraint that the volume Vol(E) = L n(E) is fixed, where

ATn(∂E) =

ˆ
∂E

dµ

is the Area functional on the boundary hypersurface of the subsets of Tn (µ is the
“canonical” measure associated to the Riemannian metric on ∂E, induced by the
scalar product of Rn, which coincides with the (n− 1)–dimensional Hausdorff
measure Hn−1) and G is the Green function of Tn (see [25], for details). This
means that the velocity Vt is minus the gradient of the functional J , hence the
quantity J(Et) can be regarded as a natural “energy”, decresing in time during
the evolution.

We remark that Escher and Nishiura established in [12] a short time existence
and uniqueness result for every smooth initial set E0 ⊆ Tn, consequently, the
flow Et exists in some time interval [0,T ). The purpose of this work is to show,
following Acerbi, Fusco, Julin and Morini in [1], that in dimension two and
three, for initial data sufficiently close to a smooth “strictly stable critical” set
E for J (under a volume–constraint), the flow exists for all positive times and
asymptotically “converges” exponentially fast to a “translate” of E. This result
is clearly suggested by the above property of the motion of being a gradient
flow.
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The suitable notions of criticality and stability mentioned above can be
defined in terms of the first and second variation of J . Precisely, we say that a
smooth subset E ⊆ T3 is critical for J if for any smooth one–parameter family
of diffeomorphisms Φt, such that Vol(Φt(E)) = Vol(E) and Φ0 = Id, we have

d

dt
J(Φt(E))

∣∣∣∣
t=0

= 0.

We will see that this condition is equivalent to the existence of constant λ ∈ R

such that
H + 4γvE = λ on ∂E,

where H is the mean curvature of ∂E and vE is the potential defined as

vE(x) =

ˆ
Tn
G(x, y)uE(y)dy ,

with G the Green function of the torus Tn and uE = χ
E
− χ

Tn\E .
The central notion of stability can be stated for the functional J by studying
its second variation that we will compute in great detail in a more geometric
“spirit” than in the papers in literature. Our first goal, at the end of Chapter 1

will be to describe its connection (which is quite involved) with the behavior
of the nonlocal Area functional (under a volume–constraint) close to a smooth
critical set. In particular, we will see that at a critical set E, it only depends
on the normal component ϕ on ∂E of the infinitesimal generator of the family
of diffeomorphisms Φt : T3 → T3, deforming E keeping its volume constant.
This volume constraint on the “admissible” deformations of E implies that
the functions ϕ must have zero integral on ∂E, hence it is natural to define a
quadratic form ΠE on such space of functions which is related to the second
variation of J by the following equality

ΠE(ϕ) =
d2

dt2
J(∂Φt(E))

∣∣∣∣
t=0

(2)

where Φt : Tn → Tn is a one–parameter family of diffeomorphisms satisfying
Vol(Φt(E)) = Vol(E),

Φ0 = Id and
∂Φt

∂t

∣∣∣∣
t=0

= ϕνE on ∂E,

with νE the outer unit normal vector of ∂E.
Because of the translation invariance of the functional J , it is easy to see (by
means of the formula (2)) that the form ΠE vanishes on the finite dimensional
vector space given by the functions ψ = 〈η, νE〉, for every vector η ∈ Rn. Indeed
every ψ = 〈η, νE〉 is the normal component on ∂E of the infinitesimal generator
of the family of diffeomorphisms of Tn which simply translate any point by
the vector tη. We then say that a smooth critical set E ⊆ Tn is strictly stable if

ΠE(ϕ) > 0

for all non–zero functions ϕ : ∂E → R, with zero integral and L2–orthogonal
to every function ψ = 〈η, νE〉.
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We underline that the presence of such “natural” degenerate space of the
quadratic form ΠE (or, equivalently, the translation invariance of J) is the main
reason of several technical difficulties in the thesis.

In order to connect this notion to the local behavior of J around a smooth set
F ⊆ Tn, we will say that the set E is “W 2,p–close” to F , if for a δ > 0 “small
enough” we have Vol(E4F ) < δ, its boundary ∂E is contained in a suitable
tubular neighborhood of ∂F and it can be described as

∂E = {y + ψ(y)νF (y) : y ∈ ∂F}

for some smooth function ψ : ∂F → R with ‖ψ‖W 2,p(∂F ) < δ. That is, the
boundary of E is represented as the “normal graph” on ∂F of the function
ψ, which is clearly a very useful way to transform the problem on sets into a
problem on functions. As we said above, in the last section of Chapter 1, we
will show the result in [2] that any smooth strictly stable critical set E ⊆ Tn is
a local minimizer of J under volume constraint (“isolated” up to translation),
among all smooth W 2,p–close sets F ⊆ Tn, if p > max{2,n− 1}.

The main purpose of this work is to show that a strictly stable critical set
is “asymptotically stable”. Heuristically, one can think of a system with a
“potential well”, in which the strictly stable set plays the role of the stable
equilibrium configuration (local minimum of the potential energy). Then,
starting close to the stable set, the solutions move back to the equilibrium
(asymptotically). Precisely, we will show the following main result, proved
in [1]. A challenging open problem is generalizing it to arbitrary dimension,
together with establishing a classification of the “periodic” strictly stable smooth
critical sets.

Theorem. Let E ⊆ Tn be a smooth strictly stable critical set with Nε a suitable
tubular neighborhood of E. For every α ∈ (0, 1/2) there exists M > 0 such that, if
E0 is a smooth set satisfying

• Vol(E0) = Vol(E),

• Vol(E04E) ≤M ,

• the boundary of E0 is contained in Nε and can be represented as

∂E0 = {y + ψE0(y)νE(y) : y ∈ ∂E},

for some function ψE0 : ∂E → R such that ‖ψE0‖C1,α(∂E) ≤M ,

•
ˆ

T3

|∇wE0 |2 dx ≤M

where w0 = wE0 is the function relative to E0, as in system (1),

then, there exists a unique smooth solution Et of the modified Mullins–Sekerka flow
(with parameter γ ≥ 0) starting from E0, which is defined for all t ≥ 0. Moreover,
Et → E + η exponentially fast in W 5/2,2 as t → +∞, for some η ∈ R3, with the
meaning that the functions ψη,t : ∂E + η → R representing ∂Et as “normal graphs”
on ∂E + η, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η},
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satisfy
‖ψη,t‖W 5/2,2(∂E+η) ≤ Ce−βt,

for every t ∈ [0, +∞), for some positive constants C and β.

We remark that the line of proof in [1] that we are going to present, based on
suitable energy identities and compactness arguments to establish this global
existence and exponential stability result, is a new approach to manage the
translation invariance of the functional J , in literature usually dealt with by
means of semigroup techniques.

For the case γ = 0, a classification of the stable critical sets has been estab-
lished in [39], they are lamellae, balls, 2–tori or gyroids, hence this theorem can
be applied to all of them. In particular, all the lamellae, balls and 2–tori are
actually strictly stable. On the contrary, for the case γ > 0, the “lamellar sets”
are strictly stable if the number of interfaces is larger than some minimum
value k(γ) (see [2, 6]), however, a complete classification in this case is still
missing.

Our work is organized in the following way: in Chapter 1 we study the
nonlocal Area functional J and we compute its first and second variation,
then we prove a sufficient condition for the local minimality with respect to
W 2,p–perturbations. In Chapter 2 we introduce the modified Mullins–Sekerka
flow and we show its basic properties, leading to the main theorem presented
in Chapter 3. Finally, in the fourth and last chapter, we describe the “Neumann”
case and discuss the classification of the (strictly) stable smooth critical sets,
concluding with the connection of the nonlocal Area functional J with the
so–called Ohta–Kawasaki functional and with a brief overview of some possible
future work.

Acknowledgements. I would like to thank Professor Carlo Mantegazza for
supporting and encouraging me during these months. His advice on my work
and on my future path has been invaluable.
I also wish to thank Professor Nicola Fusco for his precious help with several
discussions and suggestions.
Finally, I thank my friend and colleague Antonia Diana for always being by my
side.



1
T H E N O N L O C A L A R E A F U N C T I O N A L

In this chapter we describe the nonlocal Area functional and its basic properties.
In particular, our main purpose will be to show a sufficient condition for the
W 2,p–local minimality.

1.1 notations and preliminaries

In the following we denote by Tn the n–dimensional flat torus of unit volume
which is defined as the quotient of Rn with respect to the equivalence relation
x ∼ y ⇐⇒ x− y ∈ Zn with Zn the standard integer lattice of Rn. Then, the
functional space W k,p(Tn), with k ∈ N and p ≥ 1, can be identified with the
subspace of W k,p

loc (Rn) of functions that are one–periodic with respect to all
coordinate directions. Similarly, Ck,α(Tn), with α ∈ (0, 1), denotes the space
of one–periodic functions in Ck,α(Rn). Finally, a set E ⊆ Tn is of class Ck (or
smooth) if its “one–periodic extension” to Rn is of class Ck (or smooth,) which
means that its boundary is locally a graph of a function of class Ck around
every point. We will denote with Vol(E) = L n(E) the volume of a set E ⊆ Tn.

Given a smooth set E ⊆ Tn, we consider the associated potential

vE(x) =

ˆ
Tn
G(x, y)uE(y)dy , (1.1)

where G is the Green function (of the Laplacian) of the torus Tn and uE =

χ
E
− χ

Tn\E. Precisely, G is the (distributional) solution of

−∆xG(x, y) = δy − 1 in Tn, with
ˆ

Tn
G(x, y) dx = 0, (1.2)

for every y ∈ Tn, where δy denotes the Dirac delta measure at y ∈ Tn (the
n–torus Tn has unit volume).
By the properties of the Green function, vE is the unique solution of−∆vE = uE −m in Tnˆ

Tn
vE(x) dx = 0

(1.3)

where m = Vol(E)−Vol(Tn \E) = 2Vol(E)− 1.

Remark 1.1. By standard elliptic regularity arguments (see [13], for instance),
vE ∈ W 2,p(Tn) for all p ∈ [1, +∞). More precisely, there exists a constant
C = C(n, p) such that ‖vE‖W 2,p(Tn) ≤ C, for all E ⊆ Tn such that Vol(E)−
Vol(Tn \E) = m.

We can now define the nonlocal Area functional (see [24, 31, 43], for instance).

6



1.2 first and second variation of the nonlocal area functional 7

Definition 1.2 (Nonlocal Area functional). Given γ ≥ 0, the nonlocal Area
functional J is defined as

J(E) = ATn(∂E) + γ

ˆ
Tn
|∇vE(x)|2 dx, (1.4)

for every smooth set E ⊆ Tn, where the function vE : Tn → R is defined by
formulas (1.1)–(1.3) and

ATn(∂E) =

ˆ
∂E

dµ

is the Area functional (µ is the “canonical” measure associated to the Riemannian
metric on ∂E, induced by the scalar product of Rn, which coincides with the
Hausdorff (n− 1)–dimensional measure on ∂E).

By the properties of the potential function vE defined by relations (1.3) and
integrating by parts, we obtain the following equalities

ˆ
Tn
|∇vE(x)|2 dx = −

ˆ
Tn
vE(x)∆vE(x) dx

=

ˆ
Tn
vE(x)(uE(x)−m) dx

=

ˆ
Tn
vE(x)uE(x) dx

=

ˆ
Tn

ˆ
Tn
G(x, y)uE(x)uE(y) dxdy, (1.5)

hence, the functional J can be also written in the following way,

J(E) = ATn(∂E) + γ

ˆ
Tn

ˆ
Tn
G(x, y)uE(x)uE(y) dxdy.

1.2 first and second variation of the nonlocal area func-
tional

We want to compute the first variation of the functional J with respect to
volume–preserving variations.

Definition 1.3. Let E ⊆ Tn be a smooth set. We say that a vector field X ∈
C∞(Tn; Rn) is admissible for E if the associated smooth flow Φ : (−ε, ε)×Tn →
Tn, defined by the system{

∂Φ
∂t (t,x) = X(Φ(t,x)),

Φ(0,x) = x

for every x ∈ Tn and t ∈ (−ε, ε), for some ε > 0, satisfies

Vol(Et) = Vol(E) for all t ∈ (−ε, ε),

where we set Et = Φ(t,E).
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We immediately see some properties of admissible fields X that we will need
in the following.
Since Vol(Et) = Vol(Φ(t,E)) = Vol(E) for all t ∈ (−ε, ε), denoting with
JΦ(t, ·) the Jacobian of Φ(t, ·), by changing variables, we have

0 =
d

dt
Vol(Et) =

d

dt

ˆ
Et

dx =
d

dt

ˆ
E
JΦ(t, z) dz =

ˆ
E

∂

∂t
JΦ(t, z) dz. (1.6)

As JΦ(t, z) = det[dΦ(t, z)], by means of the formula

d

dt
detA(t) = detA(t) tr [A−1(t) ◦A′(t)], (1.7)

holding for any n× n squared matrix A(t) dependent on t, we obtain

∂

∂t
JΦ(t, z) = JΦ(t, z) tr [dΦ(t, z)−1 ◦ dX(Φ(t, z)) ◦ dΦ(t, z)],

since, by definition of Φ, we have

∂

∂t
[dΦ(t, z)] = d

( ∂
∂t

Φ(t, z)
)

= d
[
X(Φ(t, z))

]
= dX(Φ(t, z)) ◦ dΦ(t, z).

Being the trace of a matrix invariant by conjugation, we conclude

∂

∂t
JΦ(t, z) = JΦ(t, z)) tr [dX(Φ(t, z))] = JΦ(t, z)) divX(Φ(t, z)), (1.8)

hence, by equality (1.6) and the divergence theorem, it follows

0 =
d

dt
Vol(Et) =

ˆ
E

divX(Φ(t, z))JΦ(t, z) dz =

ˆ
Et

divX(x) dx

=

ˆ
∂Et

〈X|νEt〉 dµt , (1.9)

where νEt is the outer unit normal vector and µt the canonical Riemannian
measure of the smooth hypersurface ∂Et.

Hence, if X ∈ C∞(Tn; Rn) is admissible for E, letting t = 0, we have that the
normal component ϕ = 〈X|νE〉 of X has zero integral on ∂E. Conversely, we
have the following lemma whose proof is postponed after Lemma 1.22, since
the arguments are very similar.

Lemma 1.4. Let ϕ : ∂E → R a C∞ function with zero integral. Then, there exists an
admissible vector field X ∈ C∞(Tn; Rn) such that ϕ = 〈X|νE〉.

We now also compute the expression of the second derivative of the volume
of Et. By means of the previous computations, we have

0 =
d2

dt2
Vol(Et) =

d

dt

ˆ
Et

divX dx

=
d

dt

ˆ
E

divX(Φ(t, z))JΦ(t, z) dz

=

ˆ
E

[
〈∇divX(Φ(t, z))|X(Φ(t, z))〉+ (divX(Φ(t, z))2

]
JΦ(t, z) dz

=

ˆ
Et

[
〈∇ divX|X〉+ (divX)2

]
dx
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=

ˆ
Et

div[(divX)X ] dx

=

ˆ
∂Et

〈X|νEt〉 divTnX dµt . (1.10)

By letting t = 0, it follows that for every vector field X ∈ C∞(Tn; Rn) admissi-
ble for E, there holds ˆ

∂E
〈X|νE〉divTnX dµ = 0, (1.11)

where we denoted with divTn the (standard) divergence operator in Tn (which
is locally Rn), in order to distinguish it by the (Riemannian) divergence operator
div on the hypersurface ∂E (see Appendix A).

Given any vector field X ∈ C∞(Tn; Rn) (admissible or not) with associated
flow Φ as in Definition 1.3, the first variation of J at E with respect to Φ is then
given by

d

dt
J(Et)

∣∣∣
t=0

.

We are going to compute the first variation of the nonlocal Area functional
for a “general” (non necessarily volume–preserving) flow Φ and we will see
that it depends only on the values of its infinitesimal generator X on ∂E, then
we will restrict ourselves only to admissible vector fields X .

Since we will compute the first and the second variation of the Area functional
using “geometric” notations and techniques, we refer to Appendix A for basic
facts about the (Riemannian) geometry of hypersurfaces in Rn.

In the whole thesis, we will adopt the convention of summing over the repeated
indices. Moreover, when it is clear by the contest, we will write ∇ and div for both
the (Riemannian) gradient/divergence operators on a hypersurface and the standard
gradient/divergence in Tn, but these latter will be instead denoted with ∇Tn and
divTn when they will be computed at a point of a hypersurface, in order to avoid any
possibility of misunderstanding. Finally, in all the estimates of the thesis, the constants
C may vary from a line to another.

Given any smooth immersion of the smooth hypersurface ∂E, boundary of a
smooth set E,

ψ : ∂E → Rn

we can write the Area functional in the following way, using local charts
(abusing a little the notation)

ATn(ψ(∂E)) =

ˆ
∂E
dµ =

ˆ
∂E

√
det gij(x) dx

where

gij =

〈
∂ψ

∂xi

∣∣∣∣ ∂ψ∂xj
〉

is the pull–back metric on ∂E via the map ψ.
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Theorem 1.5 (First variation of J). Let E ⊆ Tn a smooth set and Φ : (−ε, ε)×
Tn → Tn a smooth flow generated by a vector field X ∈ C∞(Tn; Rn). Then,

d

dt
J(Et)

∣∣∣
t=0

=
d

dt
J(Φ(t,E))

∣∣∣
t=0

=

ˆ
∂E

(H + 4γvE)〈X|νE〉 dµ

where νE is the outer unit normal vector and H denotes the mean curvature of
the boundary ∂E (i.e. the sum of the principal curvatures of ∂E), while the function
vE : Tn → R is the potential associated to E, defined by formulas (1.1)–(1.3).

Proof. We start by computing the derivative of the Area functional term of J
(see [26], for instance). We let ψt : ∂E → Tn given by

ψt(x) = Φ(t,x) ,

for x ∈ ∂E and t ∈ (−ε, ε), then ψt(∂E) = ∂Et and ∂tψt
∣∣
t=0

= X at every point
of ∂E.
Denoting with gij = gij(t) the induced metrics (via ψt, as above) on the smooth
hypersurfaces ∂Et and setting ψ0 = ψ = Id, we have

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ψt
∂xi

∣∣∣∣ ∂ψt∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣ ∂ψ∂xj
〉

+

〈
∂X

∂xj

∣∣∣∣ ∂ψ∂xi
〉

=
∂

∂xi

〈
X

∣∣∣∣ ∂ψ∂xj
〉

+
∂

∂xj

〈
X

∣∣∣∣ ∂ψ∂xi
〉
− 2

〈
X

∣∣∣∣ ∂2ψ

∂xi∂xj

〉
=

∂

∂xi

〈
Xτ

∣∣∣∣ ∂ψ∂xj
〉

+
∂

∂xj

〈
Xτ

∣∣∣∣ ∂ψ∂xi
〉
− 2Γkij

〈
Xτ

∣∣∣∣ ∂ψ∂xk
〉

+ 2hij〈X | νE〉 ,

where we used the Gauss–Weingarten relations (A.2) in the last step and we
denoted with Xτ = X − 〈X|νE〉νE the “tangential part” of the vector field X

along the hypersurface ∂E.
Letting ω be the 1–form defined by ω(Y ) = g(Xτ ,Y ), this formula can be
rewritten as

∂

∂t
gij

∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj

+ 2Γkijωk + 2hij〈X|νE〉 = ∇iωj +∇jωi + 2hij〈X|νE〉 ,

being ψ : ∂E → Tn the inclusion (identity) map of ∂E.
Hence, by formula (1.7), we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij) gij

∂
∂tgij

∣∣
t=0

2

=

√
det(gij) gij

(
∇iωj +∇jωi + 2hij〈X | νE〉

)
2

=
√

det(gij)
(
divXτ + H〈X | νE〉

)
. (1.12)
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and we can conclude
∂

∂t
ATn(ϕt(∂E))

∣∣∣∣
t=0

=
∂

∂t

ˆ
∂E

dµt

∣∣∣∣
t=0

=
∂

∂t

ˆ
∂E

√
det(gij) dx

∣∣∣∣
t=0

=

ˆ
∂E

∂

∂t

√
det(gij)

∣∣∣∣
t=0

dx

=

ˆ
∂E

(
divXτ + H〈X | νE〉

)√
det(gij) dx

=

ˆ
∂E

(
divXτ + H〈X | νE〉

)
dµ

=

ˆ
∂E

H〈X | νE〉 dµ (1.13)

where in the last step we applied the divergence theorem (see equation (A.1))
In order to compute the derivative of the nonlocal term, in the notations and

definitions of Section 1.1, we set

v(t,x) = vEt(x) =

ˆ
Tn
G(x, y)uEt(x) dy =

ˆ
Et

G(x, y) dy−
ˆ
Ect

G(x, y) dy,

where Ect = Tn \Et. Then,
d

dt

(ˆ
Tn
|∇vEt(x)|2 dx

)∣∣∣
t=0

=
d

dt

(ˆ
Tn
|∇v(t,x)|2 dx

)∣∣∣
t=0

= 2

ˆ
Tn
∇vE(x)

∂

∂t
∇v(t,x)

∣∣∣
t=0

dx

= 2

ˆ
Tn

(uE(x)−m)
∂

∂t
v(t,x)

∣∣∣
t=0

dx,

where in the last equality we used the fact that −∆vE = uE −m and we
integrated by parts. Now we note that

∂

∂t
v(t,x) =

∂

∂t

(ˆ
Et

G(x, y) dy
)
− ∂

∂t

(ˆ
Ect

G(x, y) dy
)

, (1.14)

and, by a change of variable,

∂

∂t

(ˆ
Et

G(x, y) dy
)∣∣∣
t=0

=
∂

∂t

(ˆ
E
G(x, Φ(t, z))JΦ(t, z) dz

)∣∣∣
t=0

,

where JΦ(t, ·) is Jacobian of Φ(t, ·). Thus, by definition of Φ and formula (1.8),
we obtain
∂

∂t

(ˆ
Et

G(x, y) dy
)∣∣∣
t=0

=

ˆ
E

[
〈∇yG(x, Φ(t, z))|X(Φ(t, z))〉

+G(x, Φ(t, z)) divX(Φ(t, z))
]
JΦ(t, z) dz

∣∣∣
t=0

=

ˆ
E

(
〈∇yG(x, y)|X(y)〉+G(x, y) divX(y)

)
dy

=

ˆ
E

divy
(
G(x, y)X(y)

)
dy

=

ˆ
∂E
G(x, y)〈X(y)|νE(y)〉 dµ(y),
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By an analogous computation we get

− ∂

∂t

(ˆ
Ect

G(x, y) dy
)∣∣∣
t=0

=

ˆ
∂E
G(x, y)〈X(y)|νE(y)〉 dµ(y), (1.15)

then, using equalities (1.1) and (1.2), we conclude

d

dt

ˆ
Tn
|∇vEt(x)|2 dx

∣∣∣∣
t=0

= 4

ˆ
Tn

(uE(x)−m)
(ˆ

∂E
G(x, y)〈X(y)|νE(y)〉 dµ(y)

)
dx

= 4

ˆ
∂E

(ˆ
Tn
G(x, y)(uE(x)−m) dx

)
〈X(y)|νE(y)〉 dµ(y)

= 4

ˆ
∂E
vE(y)〈X(y)|νE(y)〉 dµ(y) . (1.16)

Combining formulas (1.13) and (1.16), we finally obtain the conclusion.

By Lemma 1.4, it follows that if a smooth set E satisfies
ˆ
∂E

(H + 4γvE)〈X|νE〉 dµ = 0, (1.17)

for all admissible vector field X ∈ C∞(Tn; Rn), then
ˆ
∂E

(H + 4γvE)ϕdµ = 0

for all ϕ ∈ C∞(∂E) such that
´
∂E ϕdµ = 0, which is equivalent to say that

there exists a constant λ ∈ R such that

H + 4γvE = λ on ∂E.

Remark 1.6. The above property, for instance, is clearly satisfied by a smooth
set E which is a “minimum” of J under a volume constraint. Then, the
parameter λ may be interpreted as a Lagrange multiplier associated with such
constraint. Notice that when γ = 0, we recover the classical constant mean
curvature condition for hypersurfaces in Rn.

Definition 1.7. We say that a smooth set E ⊆ Tn is a (volume–constrained)
critical set of J if H + 4γvE is constant on ∂E.

We now compute the second variation of the functional J . Given a smooth
set E ⊆ Tn and an admissible vector field X , the second variation of J at E with
respect to the associated flow Φ is

d2

dt2
J(Et)

∣∣∣
t=0

.

In the following proposition we calculate the second variation of the Area
functional. Then, we do the same for the nonlocal term and we conclude with
the second variation of the functional J .



1.2 first and second variation of the nonlocal area functional 13

Proposition 1.8 (Second variation of ATn). Let E ⊆ Tn, X and Φ as in Theo-
rem 1.5. Then,

d2

dt2
ATn(∂Et)

∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|2 − 〈X|νE〉2|B|2

)
dµ

+

ˆ
∂E

H
(

H〈X|νE〉2 + 〈Z|νE〉 − 2〈Xτ |∇〈X|νE〉〉+B(Xτ ,Xτ )
)
dµ ,

where Xτ = X − 〈X|νE〉νE is the tangential part of X on ∂E, B is the second
fundamental form of ∂E and

Z :=
∂2

∂t2
Φ(0, ·) =

∂

∂t
X(Φ(0, ·)) = dX(X).

Proof. We let ψt = Φ(t, ·)|∂E as in Theorem 1.5 where we showed that

d

dt

ˆ
∂Et

√
det gij dx =

ˆ
∂Et

H〈X|νEt〉 dµ,

where H is the mean curvature of ∂Et. Consequently, we have

d2

dt2
A(∂Et)

∣∣∣∣
t=0

=
d

dt

ˆ
∂Et

H〈X|νEt〉
√

det gij dx

∣∣∣∣
t=0

In order to simplify the notation we put ν = νEt and ϕ = 〈X|νEt〉, moreover
we drop the subscript t in ψt, that is, we write simply ψ. To conclude we need
to calculate the following derivatives

∂H

∂t

∣∣∣∣
t=0

(1.18)

∂ϕ

∂t

∣∣∣∣
t=0

(1.19)

∂

∂t

√
det gij

∣∣∣
t=0

(1.20)

We start calculating the derivative (1.20). Note that (arguing as in Theorem 1.5),

∂

∂t

√
det gij

∣∣∣
t=0

= [divXτ + Hϕ]
√

det gij

∣∣∣
t=0

,

hence, the contribution of the term (1.20) to the second variation is given by
ˆ
∂E

(ϕH divXτ + ϕ2H2) dµ

Now we can calculate

∂ϕ

∂t

∣∣∣∣
t=0

=
∂〈X|ν〉
∂t

∣∣∣∣
t=0

=

〈
∂X

∂t

∣∣∣∣ν〉∣∣∣∣
t=0

+

〈
X

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

and using the fact that ∂ν
∂t

∣∣
t=0

is tangent to ∂E, we obtain〈
X

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=

〈
Xτ

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Xp
τ

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

,
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where in the last inequality we use the notation Xτ = Xp
τ
∂ψ
∂xp

. Note that,〈 ∂ψ
∂xp

∣∣ν〉 = 0 for every p ∈ {1, . . . ,n− 1} and t ∈ (−ε, ε), hence,

0 =
∂

∂t

〈
∂ψ

∂xp

∣∣∣∣ν〉∣∣∣∣
t=0

=

〈
∂X

∂xp

∣∣∣∣ν〉+

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂

∂xp
〈X|ν〉 −

〈
X

∣∣∣∣ ∂ν∂xp
〉

+

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ϕ

∂xp
−
〈
Xτ

∣∣∣∣ ∂ν∂xp
〉

+

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ϕ

∂xp
−Xq

τ

〈
∂ψ

∂xq

∣∣∣∣ ∂ν∂xp
〉

+

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ϕ

∂xp
−Xq

τ

〈
∂ψ

∂xq

∣∣∣∣hplgli ∂ψ∂xi
〉

+

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

=
∂ϕ

∂xp
−Xq

τhplg
ligqi +

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

and we can conclude that〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= − ∂ϕ
∂xp

+Xq
τhpq.

So we obtain the following identity

∂ϕ

∂t

∣∣∣∣
t=0

=

〈
∂X

∂t

∣∣∣∣ν〉∣∣∣∣
t=0

+Xp
τ

〈
∂ψ

∂xp

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= 〈Z|ν〉 − ∂ϕ

∂xp
Xp
τ +Xp

τX
q
τhpq

= 〈Z|ν〉 − 〈Xτ |∇〈X|ν〉〉+B(Xτ ,Xτ )

and the contribution of the term (1.19) is
ˆ
∂E

H
(
〈Z|ν〉 − 〈Xτ |∇〈X|ν〉〉+B(Xτ ,Xτ )

)
dµ.

Now we conclude calculating the term (1.18). To this aim, note that

H = −
〈

∂2ψ

∂xi∂xj

∣∣∣∣ν〉 gij
hence, we need to calculate the following terms

∂gij

∂t

∣∣∣∣
t=0

(1.21)

〈
∂2ψ

∂xi∂xj

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

(1.22)〈
∂

∂t

∂2ψ

∂xi∂xj

∣∣∣∣ν〉∣∣∣∣
t=0

(1.23)
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We start with the term (1.21).

∂gij
∂t

∣∣∣∣
t=0

= ∇iωj +∇jωi + 2hij〈X|ν〉

where ω = X[
τ . Using the fact that gijgjk = 0, we obtain

0 =
∂gij
∂t

∣∣∣∣
t=0

gjk + gij
∂gjk

∂t

∣∣∣∣
t=0

= gjk
(
∇iωj +∇jωi + 2hij〈X|ν〉

)
+gij

∂gjk

∂t

∣∣∣∣
t=0

then,

∂gpk

∂t

∣∣∣∣
t=0

= −gjpgik
(
∇iωj +∇jωi + 2hij〈X|ν〉

)
= −∇pXk

τ −∇kXp
τ − 2hpkϕ.

We proceed with the calculation of the term (1.22)〈
∂2ψ

∂xi∂xj

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Γkij

〈
∂ψ

∂xk

∣∣∣∣∂ν∂t
〉∣∣∣∣

t=0

= Γkij
(
− ∂ϕ

∂xk
+Xq

τhqk
)

and we conclude by calculating the term (1.23),〈
∂

∂t

∂2ψ

∂xi∂xj

∣∣∣∣ν〉 =

〈
∂2X

∂xi∂xj

∣∣∣∣ν〉∣∣∣∣
t=0

=

〈
∂2(ϕν)

∂xi∂xj

∣∣∣∣ν〉+

〈
∂2Xτ

∂xi∂xj

∣∣∣∣ν〉 .

Then, 〈
∂2(ϕν)

∂xi∂xj

∣∣∣∣ν〉 =
∂2ϕ

∂xi∂xj
+

〈
∂2ν

∂xi∂xj

∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂xj
+

〈
∂

∂xi

(
hjlg

lp ∂ψ

∂xp

)∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂xj
+ hjlg

lp

〈
∂2ψ

∂xi∂xj

∣∣∣∣ν〉ϕ
=

∂2ϕ

∂xi∂xj
+ ϕhjlg

lphip

and〈
∂2Xτ

∂xi∂xj

∣∣∣∣ν〉 =
∂

∂xi

〈
∂Xτ

∂xj

∣∣∣∣ν〉−〈∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

=
∂

∂xi

〈
∂

∂xj

(
Xp
τ

∂ψ

∂xp

)∣∣∣∣ν〉−〈∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

=
∂

∂xi

[
Xp
τ

〈
∂2ψ

∂xj∂xp

∣∣∣∣ν〉]−〈∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τhpj

)
−
〈
∂Xτ

∂xj

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τhpj

)
−
〈

∂

∂xj

(
Xp
τ

∂ψ

∂xp

)∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τhpj

)
−Xp

τ

〈
∂2ψ

∂xj∂xp

∣∣∣∣ ∂ν∂xi
〉
− ∂Xp

τ

∂xj

〈
∂ψ

∂xp

∣∣∣∣ ∂ν∂xi
〉

= − ∂

∂xi

(
Xp
τhpj

)
−Xp

τ Γkjp

〈
∂ψ

∂xk

∣∣∣∣ ∂ν∂xi
〉
− ∂Xp

τ

∂xj

〈
∂ψ

∂xp

∣∣∣∣ ∂ν∂xi
〉
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= − ∂

∂xi

(
Xp
τhpj

)
−Xp

τ Γkjphilg
lqgkq −

∂Xp

∂xj
hilg

lqgpq

= − ∂

∂xi

(
Xp
τhpj

)
−Xp

τ Γkjphik −
∂Xk

∂xj
hik.

Hence,

∂H

∂t

∣∣∣∣
t=0

= − 2hij∇iXj
τ − 2〈X|ν〉|B|2 − gij ∂2ϕ

∂xi∂xj
+ gijΓkij

∂ϕ

∂xk

+ |B|2〈X|ν〉 − gijΓkijhkqXq
τ + gij

∂

∂xi
(Xp

τhpj) + hij∇iXj
j

= − |B|2〈X|ν〉 − hij∇iXj
τ − ∆ϕ+ gij

[ ∂

∂xi

(
Xp
τhpj

)
−Γkij

(
Xp
τhpk

)]
= −ϕ|B|2 − ∆ϕ− hij∇iXj

τ + gij∇i(Xp
τhpj)

= −ϕ|B|2 − ∆ϕ− hij∇iXj
τ + div(Xp

τhpj)

= −ϕ|B|2 − ∆ϕ+ 〈Xτ |divB〉
= −ϕ|B|2 − ∆ϕ+ 〈Xτ |∇H〉.

(1.24)

where in the last equality we used the Codazzi equations (A.3). We conclude
that the contribution of the term (1.18) is then

ˆ
∂E
ϕ
(
−ϕ|B|2 − ∆ϕ+ 〈Xτ |∇H〉

)
dµ.

Putting all these computations together, we can finally get the second variation
of the Area functional,

d2

dt2
ATn(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

[
−ϕ∆ϕ−ϕ2|B|2 + ϕ〈Xτ |∇H〉+ ϕH divXτ + ϕ2H2

+ H
(
〈Z|ν〉 − 〈Xτ |∇ϕ〉+B(Xτ ,Xτ )

)]
dµ

Integrating by parts we obtain
ˆ
∂E
ϕ〈Xτ |∇H〉 dµ = −

ˆ
∂E

[
H〈Xτ |∇ϕ〉+ HϕdivXτ

]
dµ

and we can conclude

d2

dt2
ATn(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

[
|∇ϕ|2 −ϕ2|B|2 + ϕ2H2

+ H(〈Z|ν〉 − 2〈Xτ |∇ϕ〉+B(Xτ ,Xτ ))
]
dµ

which is the formula we wanted to get.

Proposition 1.9 (Second variation of the nonlocal term of J). Let E ⊆ Tn, X
and Φ as in Theorem 1.5. Then, defining

N(t) =

ˆ
Tn
|∇vEt(x)|2 dx .
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where vEt : Tn → R is the function defined by formulas (1.1)–(1.3), the following
identity holds

N ′′(0) = 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X|ν(x)〉〈X|ν(y)〉dµ(x) dµ(y)

+ 4

ˆ
∂E

divTn(vEX)〈X|ν〉 dµ ,

which gives the second variation of the nonlocal term of J .

Proof. We start noticing that, recalling the notations and definitions of Sec-
tion 1.1, the function N(t) can be written as

N(t) =

ˆ
Tn
v(t,x)u(t,x) dx

with v(t,x) = vEt(x) and u(t,x) = uEt(x) = χ
Et
− χ

Ec
t
. Hence,

N(t) =
( ˆ

Et

−
ˆ
Ect

)
v(t,x) dx =

( ˆ
E
−
ˆ
Ec

)
v(t, Φ(t, z))JΦ(t, z) dz

where we used (here and in the rest of the proof) the symbol
( ´

A−
´
Ac

)
f dx to

denote the difference of the integrals of a common function f : Tn → R on a
set A ⊆ Tn and on its complement Ac = Tn \A.
The first derivative of N , by definition of Φ and formula (1.8), is given by

N ′(t) =
(ˆ

E
−
ˆ
Ec

)[
〈∇v(t, Φ(t, z))|X(Φ(t, z))〉JΦ(t, z)

+ vt(t, Φ(t, z))JΦ(t, z) + v(t, Φ(t, z))
∂

∂t
JΦ(t, z)

]
dz

=
(ˆ

E
−
ˆ
Ec

)[
〈∇v(t, Φ(t, z))|X(Φ(t, z))〉+ vt(t, Φ(t, z))

+ v(t, Φ(t, z)) divX(Φ(t, z))
]
JΦ(t, z) dz

=
( ˆ

Et

−
ˆ
Ect

)[
〈∇v(t,x)|X(x)〉+ vt(t,x) + v(t,x) divX(x)

]
dx

where vt = ∂v
∂t . Then, letting vi = ∂v

∂xi
, vti = ∂2v

∂t∂xi
and vij = ∂2v

∂xixj
, we have

N ′′(t) =
(ˆ

E
−
ˆ
Ec

)[
vij(t, Φ(t, z))Xi(Φ(t, z))Xj(Φ(t, z)) + vtt(t, Φ(t, z))

+ 2vti(t, Φ(t, z))Xi(Φ(t, z))

+ vi(t, Φ(t, z))
∂Xi

∂xj
(Φ(t, z))Xj(Φ(t, z))

+ 2vt(t, Φ(t, z)) divX(Φ(t, z))

+ v(t, Φ(t, z))[divX(Φ(t, z))]2

+ 2vi(t, Φ(t, z))Xi(Φ(t, z)) divX(Φ(t, z))

+ v(t, Φ(t, z))〈∇divX(Φ(t, z))|X(Φ(t, z))〉
]
JΦ(t, z) dz



1.2 first and second variation of the nonlocal area functional 18

hence,

N ′′(0) =
(ˆ

E
−
ˆ
Ec

)[
vij(0,x)Xi(x)Xj(x) + vtt(0,x) + 2vti(0,x)Xi(x)

+ vi(0,x)
∂Xi

∂xj
(x)Xj(x) + 2vt(0,x) divX(x)

+ v(0,x)[divX(x)]2

+ 2vi(0,x)Xi(x) divX(x) + v(0,x)〈∇divX(x)|X(x)〉
]
dx

(1.25)

Now, by equations (1.14)–(1.15), there holds

vt(0,x) = 2

ˆ
∂E
G(x, y) 〈X(y)|νE(y)〉 dµ(y). (1.26)

By means of this equality, the third and fifth term of equation (1.25) become

2
( ˆ

E
−
ˆ
Ec

) [
vti(0,x)Xi(x) + vt(0,x) divX(x)

]
dx

= 2
( ˆ

E
−
ˆ
Ec

)
div(vt(0,x)X(x)) dx

= 4

ˆ
∂E
vt(0,x)〈X(x)|νE(x)〉 dµ(x)

= 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X(x)|νE(x)〉〈X(y)|νE(y)〉 dµ(x)dµ(y),

where we applied the divergence theorem.
We then notice that

div
[
〈∇v(0,x)|X(x)〉X(x)

]
= vij(0,x)Xi(x)Xj(x) + vi(0,x)

∂Xi

∂xj
(x)Xj(x)

+ vi(0,x)Xi(x) divX(x)

hence, the sum of the first, fourth and half of the seventh term of equation (1.25)
is given by

2

ˆ
∂E
〈∇TnvE(x)|X(x)〉〈X(x)|νE(x)〉 dµ(x),

by the divergence theorem.
From the equality

div
[
v(0,x)

(
divX(x)

)
X(x)

]
= vi(0,x)Xi(x) divX(x) + v(0,x)〈∇divX(x)|X(x)〉

+ v(0,x)[divX(x)]2,

we see that the sixth, the other half of the seventh and the last term of equa-
tion (1.25) add up to

2

ˆ
∂E
vE(x) divTnX(x)〈X(x)|νE(x)〉 dµ(x),
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by the divergence theorem again.
Putting all these terms together, we can write

N ′′(0) = 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X(x)|νE(x)〉〈X(y)|νE(y)〉 dµ(x)dµ(y)

+ 2

ˆ
∂E
〈∇TnvE(x)|X(x)〉〈X(x)|νE(x)〉 dµ(x)

+ 2

ˆ
∂E
vE(x) divTnX(x)〈X(x)|νE(x)〉 dµ(x)

+
(ˆ

E
−
ˆ
Ec

)
vtt(0,x) dx,

so, it remains to deal with the term
( ´

E −
´
Ec

)
vtt(x, 0) dx. To this aim, by

equation (1.14), it follows

vt(t,x) =
(ˆ

E
−
ˆ
Ec

)[
〈∇yG(x, Φ(t, z))|X(Φ(t, z))〉

+G(x, Φ(t, z)) divX(Φ(t, z))
]
JΦ(t, z) dz,

changing variables as before. Then, writing simply Φ for Φ(t, z) in the next
formulas,(ˆ

E
−
ˆ
Ec

)
vtt(x, 0) dx

=
d

dt

(ˆ
E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)[
〈∇yG(x, Φ)|X(Φ)〉+G(x, Φ) divX(Φ)

]
JΦ dzdx

∣∣∣
t=0

=
d

dt

(ˆ
E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
divy[G(x, ·)X ](Φ)JΦ dzdx

∣∣∣
t=0

=
( ˆ

E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
〈∇y divy[G(x, ·)X ](Φ)|X(Φ)〉JΦ dzdx

∣∣∣
t=0

+
( ˆ

E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
divy[G(x, ·)X ](Φ) divX(Φ)JΦ dzdx

∣∣∣
t=0

=
(ˆ

E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
〈∇y divy[G(x, y)X(y)]|X(y)〉 dydx

+
(ˆ

E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
divy[G(x, y)X(y)] divX(y) dydx

=
(ˆ

E
−
ˆ
Ec

)( ˆ
E
−
ˆ
Ec

)
divy

(
divy[G(x, y)X(y)]X(y)

)
dydx .

Using the divergence theorem and interchanging the order of integration, we
get(ˆ

E
−
ˆ
Ec

)
vtt(x, 0) dx

= 2
(ˆ

E
−
ˆ
Ec

)ˆ
∂E

divTn

y [G(x, y)X(y)]〈X(y)|νE(y)〉 dµ(y)dx

= 2

ˆ
∂E
〈X(y)|νE(y)〉 divTn

y

[
X(y)

(ˆ
E
−
ˆ
Ec

)
G(x, y) dx

]
dµ(y)

= 2

ˆ
∂E
〈X(y)|νE(y)〉divTn [vE(y)X(y)] dµ(y) ,
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by the symmetry of the Green function.
Hence, we conclude

N ′′(0) = 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X(x)|νE(x)〉〈X(y)|νE(y)〉 dµ(x)dµ(y)

+ 2

ˆ
∂E
〈∇TnvE(x)|X(x)〉〈X(x)|νE(x)〉 dµ(x)

+ 2

ˆ
∂E
vE(x) divTnX(x)〈X(x)|νE(x)〉 dµ(x)

+ 2

ˆ
∂E

divTn [vE(x)X(x)]〈X(x)|νE(x)〉 dµ(x)

= 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X(x)|νE(x)〉〈X(y)|νE(y)〉 dµ(x)dµ(y)

+ 4

ˆ
∂E

divTn [vE(x)X(x)]〈X(x)|νE(x)〉 dµ(x)

and we are done.

Putting together Propositions 1.8 and 1.9, we then obtain the second variation
of the nonlocal Area functional J .

Theorem 1.10 (Second variation of J). Let E ⊆ Tn, X , Xτ , Φ and vE as in
Theorem 1.5 and Propositions 1.8, 1.9. Then,

d2

dt2
J(Et)

∣∣∣∣
t=0

=
d2

dt2
J(Φ(t,E)

∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|2 − 〈X|νE〉2|B|2

)
dµ

+ 8γ

ˆ
∂E

ˆ
∂E
G(x, y)〈X|νE(x)〉〈X|νE(y)〉 dµ(x) dµ(y)

+ 4γ

ˆ
∂E
∂νEvE〈X|νE〉

2 dµ+R ,

where the “remainder term” R is defined as

R =

ˆ
∂E

(H + 4γvE)〈X|νE〉divTnX dµ−
ˆ
∂E

(H + 4γvE) div
(
〈X|νE〉Xτ

)
dµ.

(1.27)
Moreover, if E is a smooth volume–constrained critical set for J , then the remainder
termR is zero and the second variation of J at E only depends on the normal component
of X on ∂E, that is, on 〈X|νE〉.

Proof. In Propositions 1.8 and 1.9 we showed that

d2

dt2
ATn(∂Et)

∣∣∣∣
t=0

=

ˆ
∂E

(
|∇〈X|νE〉|2 − 〈X|νE〉2|B|2

)
dµ

+

ˆ
∂E

H

(
H〈X|νE〉2 + 〈Z|νE〉 − 2〈Xτ |∇〈X|νE〉〉+B(Xτ ,Xτ )

)
dµ

(1.28)

and

d2

dt2

ˆ
Tn
|∇vEt |2 dx

∣∣∣
t=0

= 8

ˆ
∂E

ˆ
∂E
G(x, y)〈X|νE(x)〉〈X|νE(y)〉dµ(x) dµ(y)

+ 4

ˆ
∂E

divTn(vEX)〈X|νE〉 dµ . (1.29)
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We now claim that

H〈X| νE〉2 + 〈Z|νE〉 − 2〈Xτ |∇〈X|νE〉〉+B(Xτ ,Xτ )

= 〈X|νE〉divTnX − div(〈X|νE〉Xτ ) . (1.30)

We notice that, being every derivative of νE a tangent vector field,

〈Xτ |∇〈X|νE〉〉 = 〈νE |dX(Xτ )〉+ 〈X|〈Xτ |∇νE〉〉
= 〈νE |dX(Xτ )〉+ 〈Xτ |〈Xτ |∇νE〉〉
= 〈νE |dX(Xτ )〉+B(Xτ ,Xτ ) .

Therefore, recalling that Z = dX(X), we have

H〈X|νE〉2 + 〈Z|νE〉 − 2〈Xτ |∇〈X|νE〉〉+B(Xτ |Xτ )

= H〈X|νE〉2 + 〈νE |dX(X)〉 − 〈Xτ |∇〈X|νE〉〉 − 〈νE |dX(Xτ )〉
= H〈X|νE〉2 + 〈νE |dX(〈X|νE〉νE)〉 − 〈Xτ |∇〈X|νE〉〉
= H〈X|νE〉2 + 〈X|νE〉〈νE |dX(νE)〉+ 〈X|νE〉 divXτ − div(〈X|νE〉Xτ ) .

Now we notice that, choosing an orthonormal basis e1, . . . , en−1, en = νE of Rn

at a point x ∈ ∂E and letting X = Xiei, we have

〈ei|∇>Xi〉 = 〈ei|∇Xi − 〈∇Xi|νE〉νE〉 = divTnX − 〈νE |dX(νE)〉

where the symbol>denotes the projection on the tangent space to ∂E. Moreover,
if we choose a local parametrizazion of ∂E such that ∂ψ

∂xi
(x) = ei, for i ∈

{1, . . . ,n− 1}, at x ∈ ∂E we have eji = ∂ψj

∂xi
= gij = δij and

〈ei|∇>Xi〉 = 〈ei|∇>Xi
τ 〉+ 〈ei|∇>(〈X|νE〉νiE)〉

= 〈e>i |∇Xi
τ 〉+ 〈X|νE〉〈e>i |∇νiE〉

= 〈e>i |∇Xi
τ 〉+ 〈X|νE〉

∂ψj

∂xi
hjlg

ls∂ψ
i

∂xs

=∇eiXi
τ + 〈X|νE〉hii

= divXτ + 〈X|νE〉H

where we used the Gauss–Weingarten relations (A.2) and the fact that the
covariant derivative of a vector field along a hypersurface of Rn can be obtained
by differentiating in Euclidean coordinates (a local extension of) the vector field
and projecting the result on the tangent space to the hypersurface (see [16], for
instance). Hence, we get

〈νE |dX(νE)〉 = divTnX − 〈ei|∇>Xi〉 = divTnX − divXτ − 〈X|νE〉H

and it follows

H〈X| νE〉2 + 〈Z|νE〉 − 2〈Xτ |∇〈X|νE〉〉+B(Xτ ,Xτ )

= 〈X|νE〉divTnX − div(〈X|νE〉Xτ )



1.2 first and second variation of the nonlocal area functional 22

which is equation (1.30).
We then see that
ˆ
∂E

divTn(vEX)〈X|νE〉 dµ =

ˆ
∂E
〈∇TnvE |X〉〈X|νE〉 dµ+

ˆ
∂E
vE divTnX〈X|νE〉 dµ

=

ˆ
∂E
∂νEvE〈X|νE〉

2 dµ+

ˆ
∂E
〈∇vE |Xτ 〉〈X|νE〉 dµ+

ˆ
∂E
vE divTnX〈X|νE〉 dµ

=

ˆ
∂E
∂νEvE〈X|νE〉

2 dµ−
ˆ
∂E
vE div

(
〈X|νE〉Xτ

)
dµ+

ˆ
∂E
vE divTnX〈X|νE〉 dµ

where in the last equality we integrated by parts. Thus, the formula in the state-
ment of the theorem follows from this computation and equations (1.28), (1.29)
and (1.30).

Now we prove that the remainder R in formula (1.27) is zero when the
smooth set E is a volume–constrained critical set for J .
By the criticality condition (1.17), the remainder R is equal to

R = λ

ˆ
∂E
〈X|νE〉 divTnX dµ− λ

ˆ
∂E

div
(
〈X|νE〉Xτ

)
dµ.

for some constant λ ∈ R. Then, the first integral is zero by equation (1.11), as
the vector field X is admissible for E and the second one is also zero by the
divergence theorem (A.1).

Remark 1.11. We note that if we have a critical set E for the unconstrained
functional J , hence H + 4γvE = 0 on ∂E, the remainder term is clearly zero
and the second variation of J has the same form as in the constrained case.

By Theorem 1.10, the second variation of J at a critical smooth set E is a
quadratic form depending only on the normal component of X ∈ C∞(Tn; Rn)

on ∂E, that is, on ϕ = 〈X|νE〉. This and the fact that the admissible vector
fields X ∈ C∞(Tn; Rn) are in a way “characterized” by having zero integral of
such normal component (see the discussion at the beginning of this section and
Lemma 1.4), motivate the following definition.

Definition 1.12. Given any smooth open set E ⊆ Tn we define the space of
(Sobolev) functions (see [5])

H̃1(∂E) =

{
ϕ : ∂E → R : ϕ ∈ H1(∂E) and

ˆ
∂E
ϕdµ = 0

}
,

and the quadratic form ΠE : H̃1(∂E)→ R as

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 −ϕ2|B|2

)
dµ

+ 8γ

ˆ
∂E

ˆ
∂E
G(x, y)ϕ(x)ϕ(y) dµ(x) dµ(y)

+ 4γ

ˆ
∂E
∂νEvEϕ

2 dµ . (1.31)
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Remark 1.13. Letting for ϕ ∈ H̃1(∂E),

vϕ(x) =

ˆ
∂E
G(x, y)ϕ(y) dµ(y) ,

it follows (from the properties of the Green’s function) that vϕ satisfies distribu-
tionally −∆vϕ = ϕµ in Tn, indeed,

ˆ
Tn
〈∇vϕ(x)|∇ψ(x)〉 dx = −

ˆ
Tn
vϕ(x)∆ψ(x) dx

= −
ˆ

Tn

ˆ
∂E
G(x, y)ϕ(y)∆ψ(x) dµ(y)dx

= −
ˆ
∂E
ϕ(y)

ˆ
Tn
G(x, y)∆ψ(x) dx dµ(y)

= −
ˆ
∂E
ϕ(y)

ˆ
Tn

∆G(x, y)ψ(x) dx dµ(y)

=

ˆ
∂E
ϕ(y)

[
ψ(y)−

ˆ
Tn
ψ(x) dx

]
dµ(y)

=

ˆ
∂E
ϕ(y)ψ(y) dµ(y) ,

for all ψ ∈ C∞(Tn), as
´
∂E ϕ(y) dµ(y) = 0. Therefore, taking ψ = vϕ, we have

ˆ
Tn
|∇vϕ(x)|2 dx =

ˆ
∂E
ϕ(y)vϕ(y) dµ(y) ,

hence, the following identity holds
ˆ
∂E

ˆ
∂E
G(x, y)ϕ(x)ϕ(y) dµ(x)dµ(y) =

ˆ
∂E
ϕ(y) vϕ(y) dµ(y) =

ˆ
Tn
|∇vϕ(x)|2 dx ,

and we can write

ΠE(ϕ) =

ˆ
∂E

(
|∇ϕ|2 −ϕ2|B|2

)
dµ+ 8γ

ˆ
Tn
|∇vϕ|2 dx+ 4γ

ˆ
∂E
∂νEvEϕ

2 dµ ,

(1.32)
for every ϕ ∈ H̃1(∂E).

Remark 1.14. If E is a smooth critical set and X is an admissible vector field
for E with associate flow Φ, then

d

dt
J(Et)

∣∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 dµ = 0

and
d2

dt2
J(Et)

∣∣∣∣
t=0

= ΠE(〈X|νE〉).

We observe that, by the translation invariance of the functional J , the constant
vector field X = η ∈ Rn is clearly admissible, as the associated flow is given by
Φ(t,x) = x+ tη, then J(Et) = J(E) and

0 =
d2

dt2
J(Et)

∣∣∣∣
t=0

= ΠE(〈η, νE〉) ,
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that is, the form ΠE is zero on the vector subspace

T (∂E) =
{
〈η|νE〉 : η ∈ Rn

}
⊆ H̃1(∂E) .

of dimension less or equal than n. We can then split

H̃1(∂E) = T (∂E)⊕ T⊥(∂E) , (1.33)

where T⊥(∂E) ⊆ H̃1(∂E) is the vector subspace L2–orthogonal to T (∂E) (with
respect to the measure µ on ∂E), that is,

T⊥(∂E) =
{
ϕ ∈ H̃1(∂E) :

ˆ
∂E
ϕνE dµ = 0

}
=
{
ϕ ∈ H1(∂E) :

ˆ
∂E
ϕdµ = 0 and

ˆ
∂E
ϕνE dµ = 0

}
and define the following “stability” conditions.

Definition 1.15 (Stability). We say that a critical set E ⊆ Tn is stable if

ΠE(ϕ) ≥ 0 for all ϕ ∈ H̃1(∂E)

and strictly stable if

ΠE(ϕ) > 0 for all ϕ ∈ T⊥(∂E) \ {0}.

Remark 1.16. We observe that there exists an orthonormal frame {e1, . . . , en}
of Rn such that ˆ

∂E
〈νE |ei〉〈νE |ej〉 dµ = 0, (1.34)

for all i 6= j, indeed, considering the symmetric n× n–matrix A = (aij) with
components aij =

´
∂E ν

i
Eν

j
E dµ, where νiE = 〈νE |εi〉 for some basis {ε1, . . . , εn}

of Rn, we have ˆ
∂E

(OνE)i(OνE)j dµ = (OAO−1)ij ,

for every O ∈ SO(n). Choosing O such that OAO−1 is diagonal and setting
ei = O−1εi, relations (1.34) are clearly satisfied.
Hence, the functions 〈νE |ei〉 which are not identically zero are an orthogonal
basis of T (∂E). We set

IE =
{
i ∈ {1, . . . ,n} : 〈νE |ei〉 is not identically zero

}
and

OE = Span{ei : i ∈ IE}, (1.35)

then, given any ϕ ∈ H̃1(∂E), its projection on T⊥(∂E) is

π(ϕ) = ϕ−
∑
i∈IE

´
∂E ϕ〈νE |ei〉 dµ
‖〈νE |ei〉‖2L2(∂E)

〈νE |ei〉 . (1.36)
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1.3 stability and W 2,p–local minimality

From now on we will make a large use of Sobolev spaces on smooth hypersurfaces. Most
of their properties hold as in Rn, standard references are [3] in the Euclidean space and
the book [5] when the ambient is a manifold.

Given a smooth set E ⊆ Tn, for ε > 0 small enough, we let (d is the
“Euclidean” distance on Tn)

Nε = {x ∈ Tn : d(x, ∂E) < ε} (1.37)

to be a tubular neighborhood of ∂E such that the orthogonal projection map πE :
Nε → ∂E giving the (unique) closest point on ∂E and the signed distance function
dE : Nε → R from ∂E

dE(x) =

{
d(x, ∂E) if x /∈ E
−d(x, ∂E) if x ∈ E

(1.38)

are well defined and smooth in Nε. Moreover, for every x ∈ Nε, the projection
map is given explicitly by

πF (x) = x−∇d2F (x)/2 = x− dF (x)∇dF (x) (1.39)

and the unit vector∇dE(x) is orthogonal to ∂E at the point πE(x) ∈ ∂E, indeed
actually ∇dE(x) = ∇dE(πE(x)) = νE(πE(x)), which means that the integral
curves of the vector field ∇dE are straight segments orthogonal to ∂E.
This clearly implies that the map

∂E × (−ε, ε) 3 (y, t) 7→ L(y, t) = y + t∇dE(y) = y + tνE(y) ∈ Nε (1.40)

is a smooth diffeomorphism with inverse

Nε 3 x 7→ L−1(x) = (πE(x), dE(x)) ∈ ∂E × (−ε, ε) ,

moreover, denoting with JL its (partial and relative to the hypersurface ∂E)
Jacobian, there holds

0 < C1 ≤ JL(y, t) ≤ C2

on ∂E × (−ε, ε), for a couple of constants C1,C2, depending on E and ε (for a
proof of the existence of such tubular neighborhood and of these properties,
see [27] for instance).

By means of such tubular neighborhood of a smooth set E ⊆ Tn and the
map L, we can speak of “W k,p–closedness” (or “Ck,α–closedness”) to E of
another smooth set F ⊆ Tn, asking that for some δ > 0 “small enough”, we
have Vol(E4F ) < δ and that ∂F is contained in a tubular neighbourhood Nε

of E, as above, described by

∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ : ∂E → R with ‖ψ‖Wk,p(∂E) < δ (resp. ‖ψ‖Ck,α(∂E) < δ).
That is, we are asking that the two sets E and F differ by a set of small measure
and that their boundaries are “close” in W k,p (or Ck,α).
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Notice that clearly

ψ(y) = π2 ◦L−1
(
∂E ∩ {y + λνE(y) : λ ∈ R}

)
,

where π2 : ∂E × (−ε, ε)→ R is the projection on the second factor.
Moreover, given a sequence of smooth sets Fi ⊆ Tn, we will write Fi → E in
W k,p (resp. Ck,α) if for every δ > 0, there hold Vol(Fi4E) < δ, the smooth
boundary ∂Fi is contained in Nε and it is described by

∂Fi = {y + ψi(y)νE(y) : y ∈ ∂E},

for a smooth function ψi : ∂E → R with ‖ψi‖Wk,p(∂E) < δ (resp. ‖ψi‖Ck,α(∂E) <

δ), for every i ∈N large enough.

From now on, in all the rest of the thesis, we will refer to the volume–constrained
nonlocal Area functional J , sometimes without underlining the presence of such
constraint, by simplicity. Morever, with Nε we will always denote a suitable tubular
neighbourhood of a smooth set, with the above properties.

Definition 1.17. We say that a smooth set E ⊆ Tn is a local minimizer for the
functional J if there exists δ > 0 such that

J(F ) ≥ J(E)

for all smooth sets F ⊆ Tn with Vol(E) = Vol(F ) and Vol(E4F ) < δ.
We say that a smooth set E ⊆ Tn is a W 2,p–local minimizer if there exists δ > 0

such that
J(F ) ≥ J(E)

for all F ⊆ Tn with Vol(E) = Vol(F ), Vol(E4F ) < δ, moreover ∂F is con-
tained in a tubular neighbourhood Nε of E, as above and it is described by

∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth function ψ : ∂E → R with ‖ψ‖W 2,p(∂E) < δ.

We immediately see a necessary condition for local minimizers. Notice that a
local minimizer is clearly also a W 2,p–local minimizer.

Proposition 1.18. Let the smooth set E ⊆ Tn be a local minimizer of J , then E is a
critical set and

ΠE(ϕ) ≥ 0 for all ϕ ∈ H̃1(∂E),

in particular E is stable.

Proof. If E is a local minimizer of J , for any admissible vector field X ∈
C∞(Tn; Rn) with associated flow Φ, we have Vol(Et) = Vol(Φ(t,E)) = Vol(E)

and for every δ > 0, there clearly exists ε > 0 such that for t ∈ (−ε, ε) we have

Vol(E4Et) < δ.

and
∂Et = {y + ψ(y)νE(y) : y ∈ ∂E} ⊆ Nε
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for a smooth function ψ : ∂E → R with ‖ψ‖W 2,p(∂E) < δ. Hence, the W 2,p–local
minimality of E implies

J(E) ≤ J(Et),

for every t ∈ (−ε, ε). Thus,

0 =
d

dt
J(Et)

∣∣∣∣
t=0

=

ˆ
∂E

(H + 4γvE)〈X|νE〉 dµ,

by Theorem 1.5, which implies that E is a critical set, by the subsequent
discussion and

0 ≤ d2

dt2
J(Et)

∣∣∣∣
t=0

= ΠE(〈X|νE〉),

by Theorem 1.10 and Remark 1.14.
Since by Lemma 1.4, for every smooth function ϕ : ∂E → R with zero integral
there exists an admissible vector field X ∈ C∞(Tn; Rn) such that ϕ = 〈X|νE〉,
we conclude that ΠE(ϕ) ≥ 0 for every ϕ ∈ C∞(∂E) ∩ H̃1(∂E), then the thesis
follows by the density of this space in H̃1(∂E) (see [5]).

The rest of this section will be devoted to show that the strict stability (see
Definition 1.15) is a sufficient condition for the W 2,p–local minimality. Precisely,
we will prove the following main theorem of this chapter.

Theorem 1.19 (W 2,p–local minimality). Let p > max{2,n− 1} and E ⊆ Tn a
smooth strictly stable critical set for the nonlocal Area functional J (under a vol-
ume constraint), as in Definition 1.15, with Nε a tubular neighbourhood of E as in
formula (1.37). Then there exist constants δ,C > 0 such that

J(F ) ≥ J(E) +C[α(E,F )]2,

for all smooth sets F ⊆ Tn such that Vol(F ) = Vol(E), Vol(F4E) < δ, ∂F ⊆ Nε

and
∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth ψ with ‖ψ‖W 2,p(∂E) < δ, where the “distance” α(E,F ) is defined as

α(E,F ) = min
η∈Rn

Vol(E4(F + η)).

As a consequence, E is a W 2,p–local minimizer of J . Moreover, if F is W 2,p–close
enough to E and J(F ) = J(E), then F is a translate of E, that is E is locally the
unique W 2,p–local minimizer, up to translations.

Remark 1.20. We could have introduced the definitions of strict local minimizer
or strict W 2,p–local minimizer for the nonlocal Area functional, by asking that
the inequalities J(F ) ≤ J(E) in Definition 1.17 are equalities if and only if F is
a translate of E. With such notion, the conclusion of this theorem is that E is
actually a strict W 2,p–local minimizer.

Remark 1.21. With some extra effort, it can be proved that in the same hypothe-
ses of Theorem 1.19, the set F is actually a local minimizer (see [2]). Since in
the analysis of the modified Mullins–Sekerka flow in the next chapter we do
not need such stronger result, we omitted its proof.
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We postpone the proof of this result after showing some technical lemmas. We
underline that most of the difficulties are due to the presence of the degeneracy
subspace T (∂E) of the form ΠE (that is, where it is zero), related to the
translation invariance of the nonlocal Area functional (recall the discussion
after Definition 1.12).

In the next key lemma we are going to show how to construct admissible
smooth vector fields for a smooth setE, “related” to smooth sets which areW 2,p–
close to it. By the same technique we then also prove Lemma 1.4 immediately
after, whose proof was postponed from Section 1.2.

Lemma 1.22. Let E ⊆ Tn be a smooth set and Nε a tubular neighborhood of ∂E as
above, in formula (1.37). For all p > n− 1, there exist constants δ,C > 0 such that if
ψ ∈ C∞(∂E) and ‖ψ‖W 2,p(∂E) ≤ δ, then there exists a vector field X ∈ C∞(Tn; Rn)

with divX = 0 in Nε and the associated flow Φ satisfies

Φ(1, y) = y + ψ(y)νE(y) , for all y ∈ ∂E. (1.41)

Moreover, for every t ∈ [0, 1]

‖Φ(t, ·)− Id‖W 2,p(∂E) ≤ C‖ψ‖W 2,p(∂E) . (1.42)

Finally, if Vol(E1) = Vol(E), then Vol(Et) = Vol(E) for all t ∈ [−1, 1], that is, the
vector field X is admissible.

Proof. We start considering the vector field X̃ ∈ C∞(Nε; Rn) defined as

X̃(x) = ξ(x)∇dE(x) (1.43)

for every x ∈ Nε, where dE : Nε → R is the signed distance and ξ : Nε → R is
the function defined as follows: for all y ∈ ∂E, we let fy : (−ε, ε)→ R to be the
unique solution of the ODE{

f ′y(t) + fy(t)∆dE(y + tνE(y)) = 0

fy(0) = 1

and we set

ξ(x) = ξ(y + tνE(y)) = fy(t) = exp
(
−
ˆ t

0
∆dE(y + sνE(y)) ds

)
,

recalling that the map (y, t) 7→ x = y + tνE(y) is a smooth diffeomorphism
between ∂E × (−ε, ε) and Nε. Notice that the function f is always positive,
thus the same holds for ξ and ξ = 1, ∇dE = νE , hence X̃ = νE on ∂E.

Our aim is then to prove that the smooth vector field X defined by

X(x) =

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))
X̃(x) (1.44)

for every x ∈ Nε and extended smoothly to all Tn, satisfies all the properties of
the statement of the lemma.
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Step 1. We saw that X̃
∣∣
∂E

= νE , now we show that divX̃ = 0 and analogously
divX = 0 in Nε.
Given any x = y + tνE(y) ∈ Nε, with y ∈ ∂E, we have

divX̃(x) = div[ξ(x)∇dE(x)]

= 〈∇ξ(x)|∇dE(x)〉+ ξ(x)∆dE(x)

=
∂

∂t
[ξ(y + tνE(y))] + ξ(y + tνE(y))∆dE(y + tνE(y))

= f ′y(t) + fy(t)∆dE(y + tνE(y))

= 0,

where we used the fact that f ′y(t) = 〈∇ξ(y + tνE(y))|νE(y)〉 and that we have
∇dE(y + tνE(y)) = νE(y).
Since the function

x 7→
ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sν(πE(x))
= θ(x)

is constant along the segments t 7→ x+ t∇dE(x), for every x ∈ Nε, it follows
that

0 =
∂

∂t

[
θ(x+ t∇dE(x))

] ∣∣∣
t=0

= 〈∇θ(x)|∇dE(x)〉,

hence,
divX = 〈∇θ|∇dE〉ξ + θ divX̃ = 0.

Step 2. Recalling that ψ ∈ C∞(∂E) and p > n− 1, we have

‖ψ‖L∞(∂E) ≤ ‖ψ‖C1(∂E) ≤ CE‖ψ‖W 2,p(∂E),

by Sobolev embeddings (see [5]). Then, we can choose δ < ε/CE such that for
all x ∈ ∂E we have that x±ψ(x)νE(x) ∈ Nε.
To check that equation (1.41) holds, we observe that the integral

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))
= θ(x)

represents the time needed to go from πE(x) to πE(x) + ψ(πE(x))νE(πE(x))

along the trajectory of the vector field X̃ , which is the segment connecting
πE(x) and πE(x) + ψ(πE(x))νE(πE(x)), of length ψ(πE(x)), parametrized as

s 7→ πE(x) + sψ(πE(x))νE(πE(x)),

for s ∈ [0, 1] and which is traveled with velocity ξ(πE(x) + sνE(πE(x))) =

fπE(x)(s). Therefore, by the above definition of X = θX̃ and the fact that the
function θ is constant along such segments, we conclude that

Φ(1, y)−Φ(0, y) = ψ(y)νE(y)

and, equivalently,
Φ(1, y) = y + ψ(y)νE(y)
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for all y ∈ ∂E.

Step 3. To establish inequality (1.42), we first show that

‖X‖W 2,p(Nε) ≤ C‖ψ‖W 2,p(∂E) (1.45)

for a constant C > 0 depending only on E and ε. This estimate will follow
from the definition of X in equation (1.44) and the definition of W 2,p–norm,
that is,

‖X‖W 2,p(Nε) = ‖X‖Lp(Nε) + ‖∇X‖Lp(Nε) + ‖∇2X‖Lp(Nε) .

As |∇dE | = 1 everywhere and the positive function ξ, by its definition at the
beginning of the proof, satisfies 0 < C1 ≤ ξ ≤ C2 in Nε, for a pair of constants
C1 and C2, we have

‖X‖p
Lp(Nε)

=

ˆ
Nε

∣∣∣∣ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))
ξ(x)∇dE(x)

∣∣∣∣p dx
≤ ‖ξ‖p

L∞(Nε)

ˆ
Nε

∣∣∣∣ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))

∣∣∣∣p dx
≤ Cp1
Cp2

ˆ
Nε

|ψ(πE(x))|p dx

=
Cp1
Cp2

ˆ
∂E

ˆ ε

−ε
|ψ(πE(y + tνE(y)))|pJL(y, t) dtdµ(y)

=
Cp1
Cp2

ˆ
∂E
|ψ(y)|p

ˆ ε

−ε
JL(y, t) dtdµ(y)

≤ C
ˆ
∂E
|ψ(y)|p dµ(y)

= C‖ψ‖p
Lp(∂E)

.

where L : ∂E × (−ε, ε) → Nε the smooth diffeomorphism defined in for-
mula (1.40) and JL its Jacobian. Notice that the constant C depends only on E
and ε.

Now we estimate the Lp–norm of ∇X . We compute

∇X =
∇ψ(πE(x))dπE(x)

ξ(πE(x) + ψ(πE(x))νE(πE(x)))
ξ(x)∇dE(x)

−
[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))

ξ2(πE(x) + sνE(πE(x)))
dπE(x)Id ds

]
ξ(x)∇dE(x)

−
[ˆ ψ(πE(x))

0

∇ξ(πE(x) + sνE(πE(x)))

ξ2(πE(x) + sνE(πE(x)))
dπE(x)sdνE(πE(x)) ds

]
ξ(x)∇dE(x)

+

ˆ ψ(πE(x))

0

ds

ξ(πE(x) + sνE(πE(x)))

(
∇ξ(x)∇dE(x) + ξ(x)∇2dE(x)

)
and we deal with the integrals in the three terms as before, changing variable
by means of the function L. That is, since all the functions dπE , dνE , ∇2dE , ξ,



1.3 stability and W 2,p–local minimality 31

1/ξ, ∇ξ are bounded by some constants depending only on E and ε, we easily
get (the constant C could vary from line to line)

‖∇X‖p
Lp(Nε)

≤C
ˆ
Nε

|∇ψ(πE(x))|p dx+C

ˆ
Nε

|ψ(πE(x))|p dx

=C

ˆ
∂E

ˆ ε

−ε
|∇ψ(πE(y + tνE(y)))|p JL(y, t) dtdµ(y)

+C

ˆ
∂E

ˆ ε

−ε
|ψ(πE(y + tνE(y)))|p JL(y, t) dtdµ(y)

=C

ˆ
∂E

(
|ψ(y)|p + |∇ψ(y)|p

) ˆ ε

−ε
JL(y, t) dtdµ(y)

≤ C‖ψ‖p
Lp(∂E)

+C‖∇ψ‖p
Lp(∂E)

≤ C‖ψ‖p
W 1,p(∂E)

.

A very analogous estimate works for ‖∇2X‖p
Lp(Nε)

and we obtain also

‖∇2X‖p
Lp(Nε)

≤ C‖ψ‖p
W 2,p(∂E)

,

hence, inequality (1.45) follows with C = C(E, ε).
Applying now Lagrange theorem to every component of Φ(·, y) for any

y ∈ ∂E and t ∈ [0, 1], we have

Φi(t, y)− yi = Φi(t, y)−Φi(0, y) = tXi(Φ(s, y)) ,

for every i ∈ {1, . . . ,n}, where s = s(y, t) is a suitable value in (0, 1). Then, it
clearly follows

‖Φ(t, ·)− Id‖L∞(∂E) ≤ C‖X‖L∞(Nε) ≤ C‖X‖W 2,p(Nε) ≤ C‖ψ‖W 2,p(∂E) (1.46)

by estimate (1.45), with C = C(E, ε) (notice that we used Sobolev embeddings,
being p > n− 1, the dimension of ∂E).
Differentiating the equations in system (1.3), we have (recall that we use the
convention of summing over the repeated indices){

∂
∂t∇

iΦj(t, y) = ∇kXj(Φ(t, y))∇iΦk(t, y)

∇iΦj(0, y) = δij
(1.47)

for every i, j ∈ {1, . . . ,n}. It follows,

∂

∂t

∣∣∇iΦj(t, y)− δij
∣∣2≤ 2

∣∣(∇iΦj(t, y)− δij)∇kXj(Φ(t, y))∇iΦk(t, y)
∣∣∣

≤ 2‖∇X‖L∞(Nε)

∣∣∇iΦj(t, y)− δij
∣∣2

+ 2‖∇X‖L∞(Nε)

∣∣∇iΦj(t, y)− δij
∣∣

hence, for almost every t ∈ [0, 1] where the following derivative exists,

∂

∂t

∣∣∇iΦj(t, y)− δij
∣∣≤C‖∇X‖L∞(Nε)

(∣∣∇iΦj(t, y)− δij
∣∣+1

)
.
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Integrating this differential inequality, we get∣∣∇iΦj(t, y)− δij
∣∣≤ etC‖∇X‖L∞(Nε) − 1 ≤ eC‖X‖W2,p(Nε) − 1,

as t ∈ [0, 1] and where we used Sobolev embeddings again. Then, by inequal-
ity (1.45), we estimate∑
1≤i,j≤n

‖∇iΦj(t, ·)− δij‖L∞(∂E) ≤ C
(
e
C‖ψ‖W2,p(∂E) − 1

)
≤ C‖ψ‖W 2,p(∂E), (1.48)

as ‖ψ‖W 2,p(∂E) ≤ δ, for any t ∈ [0, 1] and y ∈ ∂E, with C = C(E, ε, δ).
Differentiating equations (1.47), we obtain

∂
∂t∇

`∇iΦj(t, y) = ∇s∇kXj(Φ(t, y))∇iΦk(t, y)∇`Φs(t, y)

+∇kXj(Φ(t, y))∇`∇iΦk(t, y)

∇`∇iΦ(0, y) = 0

(where we sum over s and k), for every t ∈ [0, 1], y ∈ ∂E and i, j, ` ∈ {1, . . . ,n}.
This is a linear non–homogeneous system of ODEs such that, if we control
C‖ψ‖W 2,p(∂E), the smooth coefficients in the right side multiplying the solutions
∇`∇iΦj(·, y) are uniformly bounded (as in estimate (1.48), Sobolev embeddings
imply that ∇X is bounded in L∞ by C‖ψ‖W 2,p(∂E)). Then, arguing as before,
for almost every t ∈ [0, 1] where the following derivative exists, there holds

∂

∂t

∣∣∇2Φ(t, y)
∣∣≤C‖∇X‖L∞(Nε)

∣∣∇2Φ(t, y)
∣∣+C|∇2X(Φ(t, y))|

≤Cδ
∣∣∇2Φ(t, y)

∣∣+C|∇2X(Φ(t, y))| ,

by inequality (1.45) (notice that inequality (1.48) gives an L∞–bound on ∇Φ,
not only in Lp, which is crucial). Thus, by means of Gronwall’s lemma (see [35],
for instance), we obtain the estimate∣∣∇2Φ(t, y)

∣∣≤ C ˆ t

0
|∇2X(Φ(s, y))|eCδ(t−s) ds ≤ C

ˆ t

0
|∇2X(Φ(s, y))| ds ,

hence,

‖∇2Φ(t, ·)‖p
Lp(∂E)

≤C
ˆ
∂E

(ˆ t

0
|∇2X(Φ(s, y))| ds

)p
dµ(y)

≤C
ˆ t

0

ˆ
∂E
|∇2X(Φ(s, y))|p dµ(y)ds

=C

ˆ
Nε

|∇2X(x)|pJL−1(x) dx

≤C‖∇2X‖p
Lp(Nε)

≤C‖X‖p
W 2,p(Nε)

≤C‖ψ‖p
W 2,p(∂E)

, (1.49)

by estimate (1.45), for every t ∈ [0, 1], with C = C(E, ε, δ).
Clearly, putting together inequalities (1.46), (1.48) and (1.49), we get the esti-
mate (1.42) in the statement of the lemma.
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Step 4. Finally, we remind that, by equation (1.10), we have

d2

dt2
Vol(Et) =

ˆ
∂Et

〈X|νEt〉 divTnX dµt,

hence, since by Step 1 we know that divX = 0, we conclude d2

dt2
Vol(Et) = 0 for

all t ∈ [−1, 1], that is, the function t 7→ Vol(Et) is linear. If Vol(E1) = Vol(E) =

Vol(E0), it follows that Vol(Et) = Vol(E), for all t ∈ [−1, 1].

With an argument similar to the one of Step 4 in this proof, we can now
prove Lemma 1.4.

Proof of Lemma 1.4. Let ϕ : ∂E → R a C∞ function with zero integral, then we
define the following smooth vector field in Nε,

X(x) = ϕ(πE(x))X̃(x),

where X̃ is the smooth vector field defined by formula (1.43) and we extend
it to a smooth vector field X ∈ C∞(Tn; Rn) on the whole Tn. Clearly, by the
properties of X̃ seen above,

〈X(y)|νE(y)〉 = ϕ(y)〈X̃(y)|νE(y)〉 = ϕ(y)

for every y ∈ ∂E.
As the function x 7→ ϕ(πE(x)) is constant along the segments t 7→ x+ t∇dE(x),
for every x ∈ Nε, it follows, as in Step 1 of the previous proof, that divX = 0 in
Nε. Then, arguing as in Step 4, the function t 7→ Vol(Et) is linear, for t in some
interval (−δ, δ). Since, by equation (1.9), there holds

d

dt
Vol(Et)

∣∣∣
t=0

=

ˆ
∂E
〈X|νE〉 dµ =

ˆ
∂E
ϕdµ = 0,

such function t 7→ Vol(Et) must actually be constant.
Hence, Vol(Et) = Vol(E), for all t ∈ (−δ, δ) and X is admissible.

The next lemma gives a technical estimate needed in the proof of Theo-
rem 1.19.

Lemma 1.23. Let p > max{2,n− 1} and E ⊆ Tn a strictly stable critical set for the
(volume–constrained) functional J . Then, in the hypoteses and notation of Lemma 1.22
there exist constants δ, C > 0 such that if ‖ψ‖W 2,p(∂E) ≤ δ then |X| ≤ C|〈X|νEt〉|
on ∂Et and

‖∇X‖L2(∂Et) ≤ C‖〈X|νEt〉‖H1(∂Et) (1.50)

(here∇ is the covariant derivative along Et), for all t ∈ [0, 1], where X ∈ C∞(Tn; Rn)

is the smooth vector field defined in formula (1.44).

Proof. Fixed ε > 0, from inequality (1.42) it follows that there exist δ > 0 such
that if ‖ψ‖W 2,p(∂E) ≤ δ there holds

|νEt(Φ(t, y))− νE(y)| ≤ ε
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for every y ∈ ∂E, hence, as ∇dE = νE on ∂E, we have

|∇dE(Φ−1(t,x))− νEt(x)| = |νE(Φ−1(t,x))− νEt(x)| ≤ ε

for every x ∈ ∂Et. Then, if ‖ψ‖W 2,p(∂E) is small enough, Φ−1(t, ·) is close to the
identity, thus

|∇dE(Φ−1(t,x))−∇dE(x)| ≤ ε
on ∂Et and we conclude

‖∇dE − νEt‖L∞(∂Et) ≤ 2ε .

We estimate Xτt = X − 〈X|νEt〉νEt (recall that X = 〈X|∇dE〉∇dE),

|Xτt | = |X − 〈X|νEt〉νEt |
= |〈X|∇dE〉∇dE − 〈X|νEt〉νEt |
= |〈X|∇dE〉∇dE − 〈X|νEt〉∇dE + 〈X|νEt〉∇dE − 〈X|νEt〉νEt |
≤ |〈X|(∇dE − νEt)〉∇dE |+ |〈X|νEt〉(∇dE − νEt)|
≤ 2|X| |∇dE − νEt |
≤ 4ε|X| ,

then
|Xτt | ≤ 4ε|Xτt + 〈X|νEt〉νEt | ≤ 4ε|Xτt |+ |〈X|νEt〉| ,

hence,
|Xτt | ≤ C|〈X|νEt〉| . (1.51)

We now estimate its covariant derivative ∇ along Et, that is,

|∇Xτt | = |∇X −∇(〈X|νEt〉νEt)|
= |∇(〈X|∇dE〉∇dE)−∇(〈X|νEt〉νEt)|
= |∇(〈X|∇dE〉∇dE)−∇(〈X|νEt〉∇dE)

+∇(〈X|νEt〉∇dE)−∇(〈X|νEt〉νEt)|
≤ |∇(〈X|(∇dE − νEt)〉∇dE)|+ |∇(〈X|νEt〉(∇dE − νEt))|
≤Cε

[
|∇X|+ |∇〈X|νEt〉|

]
+C|X|

[
|∇(∇dE)|+ |∇νEt |

]
≤Cε

[
|∇(〈X|νEt〉νEt +Xτt)|+ |∇〈X|νEt〉|

]
+C

(
|〈X|νEt〉|+ |Xτt |

) [
|∇2dE |+ |∇νEt |

]
hence, using inequality (1.51) and arguing as above, there holds

|∇Xτt | ≤ C|∇〈X|νEt〉|+C|〈X|νEt〉|
[
|∇2dE |+ |∇νEt |

]
.

Then, we get

‖∇Xτt‖2L2(∂Et)
≤C‖∇〈X|νEt〉‖2L2(∂Et)

+C

ˆ
∂Et

|〈X|νEt〉|2
[
|∇2dE |+ |∇νEt |

]2
dµ

≤C‖〈X|νEt〉‖2H1(∂Et)

+C‖〈X|νEt〉‖2
L

2p
p−2 (∂Et)

∥∥|∇2dE |+ |∇νEt |
∥∥2
Lp(∂Et)

≤C ‖〈X|νEt〉‖2H1(∂Et)
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where in the last inequality we used as usual Sobolev embeddings, as p >
max{2,n− 1}.
Considering the covariant derivative of X = Xτt + 〈X|νEt〉νEt , by means of this
estimate, the trivial one

‖∇〈X|νEt〉‖L2(∂Et) ≤ ‖〈X|νEt〉‖H1(∂Et)

and inequality (1.51), we obtain estimate (1.50).

We now show that any smooth set E sufficiently W 2,p–close to another
smooth set F , can be “translated” by a vector η ∈ Rn such that ∂E − η =

{y + ϕ(y)νF (y) : y ∈ ∂F}, for a function ϕ ∈ C∞(∂F ) having a suitable small
“projection” on T (∂F ) (see the definitions and the discussion at the end of the
previous section).

Lemma 1.24. Let p > n− 1 and F ⊆ Tn a smooth set with a tubular neighbourhood
Nε as above, in formula (1.37). For any τ > 0 there exist constants δ,C > 0 such that
if another smooth set E ⊆ Tn satisfies Vol(E4F ) < δ and ∂E = {y + ψ(y)νF (y) :
y ∈ ∂F} ⊆ Nε for a function ψ ∈ C∞(R) with ‖ψ‖W 2,p(∂F ) < δ, then there exist
η ∈ Rn and ϕ ∈ C∞(∂F ) with the following properties:

∂E − η = {y + ϕ(y)νF (y) : y ∈ ∂F} ,

|η| ≤ C‖ψ‖W 2,p(∂F ), ‖ϕ‖W 2,p(∂F ) ≤ C‖ψ‖W 2,p(∂F )

and ∣∣∣ˆ
∂F
ϕνF dµ

∣∣∣ ≤ τ‖ϕ‖L2(∂F ) .

Proof. We let dF to be the signed distance function from ∂F . We underline
that, throughout all the proof, the various constants will be all independent of
ψ : ∂F → R.

We recall that in Remark 1.16 we saw that there exists an orthonormal basis
{e1, . . . , en} of Rn such that the functions 〈νF , ei〉 are orthogonal in L2(∂F ),
that is, ˆ

∂F
〈νF , ei〉〈νF , ej〉 dµ = 0, (1.52)

for all i 6= j and we let IF to be the set of the indices i ∈ {1, . . . ,n} such
that ‖〈νF , ei〉‖L2(∂F ) > 0. Given a smooth function ψ : ∂F → R, we set
η =

∑n
i=1 ηiei, where

ηi =


1

‖〈νF ,ei〉‖2L2(∂F )

´
∂F ψ(x)〈νF (x), ei〉 dµ if i ∈ IF ,

ηi = 0 otherwise.
(1.53)

Note that, from Hölder inequality, it follows

|η| ≤ C1‖ψ‖L2(∂F ) . (1.54)

Step 1. Let Tψ : ∂F → ∂F be the map

Tψ(y) = πF (y + ψ(y)νF (y)− η) .
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It is easily checked that there exists ε0 > 0 such that if

‖ψ‖W 2,p(∂F ) + |η| ≤ ε0 ≤ 1 , (1.55)

then Tψ is a smooth diffeomorphism, moreover,

‖JTψ − 1‖L∞(∂F ) ≤ C‖ψ‖C1(∂F ) (1.56)

and

‖Tψ − Id‖W 2,p(∂F ) + ‖T−1ψ − Id‖W 2,p(∂F ) ≤ C(‖ψ‖W 2,p(∂F ) + |η|) . (1.57)

Therefore, setting Ê = E − η, we have

∂Ê = {z + ϕ(z)νF (z) : z ∈ ∂F}

for some function ϕ, which is linked to ψ by the following relation: for all
y ∈ ∂F we let z = z(y) ∈ ∂F such that

y + ψ(y)νF (y)− η = z + ϕ(z)νF (z) ,

then
Tψ(y) = πF (y + ψ(y)νF (y)− η) = πF (z + ϕ(z)νF (z)) = z,

that is, y = T−1ψ (z) and

ϕ(z) =ϕ(Tψ(y))

= dF (z + ϕ(z)νF (z))

= dF (y + ψ(y)νF (y)− η)

= dF (T−1ψ (z) + ψ(T−1ψ (z))νF (Tψ(y))− η).

Thus, using inequality (1.57), we have

‖ϕ‖W 2,p(∂F ) ≤ C2

(
‖ψ‖W 2,p(∂F ) + |η|

)
, (1.58)

for some constant C2 > 1. We now estimate
ˆ
∂F
ϕ(z)νF (z) dµ(z) =

ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y))JTψ(y) dµ(y)

=

ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y)) dµ(y) +R1 ,

(1.59)

where

|R1| =
∣∣∣∣ˆ
∂F
ϕ(Tψ(y))νF (Tψ(y)) [Jn−1∇Tψ(y)− 1] dµ(y)

∣∣∣∣
≤ C3‖ψ‖C1(∂F )‖ϕ‖L2(∂F ) ,

(1.60)
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by inequality (1.56).
On the other hand,ˆ

∂F
ϕ(Tψ(y))νF (Tψ(y)) dµ(y)

=

ˆ
∂F

[
y + ψ(y)νF (y)− η− Tψ(y)

]
dµ(y)

=

ˆ
∂F

[
y + ψ(y)νF (y)− η− πF (y + ψ(y)νF (y)− η)

]
dµ(y)

=

ˆ
∂F

{
ψ(y)νF (y)− η +

[
πF (y)− πF (y + ψ(y)νF (y)− η)

]}
dµ(y)

=

ˆ
∂F

(ψ(y)νF (y)− η) dµ(y) +R2 ,

(1.61)

where

R2 =

ˆ
∂F

[
πF (y)− πF (y + ψ(y)νF (y)− η)

]
dµ(y)

= −
ˆ
∂F
dµ(y)

ˆ 1

0
∇πF (y + t(ψ(y)ν(y)− η))(ψ(y)νF (y)− η) dt

= −
ˆ
∂F
∇πF (y)(ψ(y)νF (y)− η) dµ(y) +R3 .

(1.62)

In turn, recalling inequality (1.54), we get

|R3| ≤
ˆ
∂F
dµ(y)

ˆ 1

0
|∇πF (y + t(ψ(y)νF (y)− η))−∇πF (y)| |ψ(y)νF (y)− η| dt

≤ C4‖ψ‖2L2(∂F ) .

(1.63)
Since in Nε, by equation (1.39), we have πF (x) = x− dF (x)∇dF (x), it follows

∂πiF
∂xj

(x) = δij −
∂dF
∂xi

(x)
∂dF
∂xj

(x)− dF (x)
∂2dF
∂xi∂xj

(x),

thus, for all y ∈ ∂F

∂πiF
∂xj

(y) = δij −
∂dF
∂xi

(y)
∂dF
∂xj

(y) .

From this identity and equalities (1.59), (1.61) and (1.62), we conclude
ˆ
∂F
ϕ(z)νF (z) dµ(z) =

ˆ
∂F

[
ψ(x)νF (x)− 〈η | νF (x)〉νF (x)

]
dµ(x) +R1 +R3 .

As the integral at the right–hand side vanishes by relations (1.52) and (1.53),
estimates (1.60) and (1.63) imply∣∣∣ˆ

∂F
ϕ(y)νF (y) dµ(y)

∣∣∣ ≤ C3‖ψ‖C1(∂F )‖ϕ‖L2(∂F ) +C4‖ψ‖2L2(∂F )

≤ C‖ψ‖C1(∂F )

(
‖ϕ‖L2(∂F ) + ‖ψ‖L2(∂F )

)
≤ C5‖ψ‖1−ϑW 2,p(∂F )

‖ψ‖ϑL2(∂F )

(
‖ϕ‖L2(∂F ) + ‖ψ‖L2(∂F )

)
,

(1.64)
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where in the last passage we used a well–known interpolation inequality, with
ϑ ∈ (0, 1) depending only on p > n− 1 (see [5, Theorem 3.70]).

Step 2. The previous estimate does not allow to conclude directly, but we have
to rely on the following iteration procedure. Fix any number K > 1 and assume
that δ ∈ (0, 1) is such that (possibly considering a smaller τ )

τ + δ < ε0/2, C2δ(1 + 2C1) ≤ τ , 2C5δ
ϑK ≤ δ . (1.65)

Given ψ, we set ϕ0 = ψ and we denote by η1 the vector defined as in (1.53).
We set E1 = E − η1 and denote by ϕ1 the function such that ∂E1 = {x +

ϕ1(x)νF (x) : x ∈ ∂F}. As before, ϕ1 satsfies

y + ϕ0(y)νF (y)− η1 = z + ϕ1(z)νF (z) .

Since ‖ψ‖W 2,p(∂F ) ≤ δ and |η| ≤ C1‖ψ‖L2(∂F ), by inequalities (1.54), (1.58)
and (1.65) we have

‖ϕ1‖W 2,p(∂F ) ≤ C2δ(1 +C1) ≤ τ . (1.66)

Using again that ‖ψ‖W 2,p(∂F ) < δ < 1, by estimate (1.64) we obtain∣∣∣ˆ
∂F
ϕ1(y)νF (y) dµ(y))

∣∣∣ ≤ C5‖ϕ0‖ϑL2(∂F )

(
‖ϕ1‖L2(∂F ) + ‖ϕ0‖L2(∂F )

)
,

where we have ‖ϕ0‖L2(∂F ) ≤ δ.
We now distinguish two cases.
If ‖ϕ0‖L2(∂F ) ≤ K‖ϕ1‖L2(∂F ), from the previous inequality and (1.65), we get∣∣∣ˆ

∂F
ϕ1(y)νF (y) dµ(y)

∣∣∣ ≤ C5δ
ϑ
(
‖ϕ1‖L2(∂F ) + ‖ϕ0‖L2(∂F )

)
≤ 2C5δ

ϑK‖ϕ1‖L2(∂F )

≤ δ‖ϕ1‖L2(∂F ) ,

thus, the conclusion follows with η = η1.
In the other case,

‖ϕ1‖L2(∂F ) ≤
‖ϕ0‖L2(∂F )

K
≤ δ

K
≤ δ . (1.67)

We then repeat the whole procedure: we denote by η2 the vector defined as in
formula (1.53) with ψ replaced by ϕ1, we set E2 = E1 − η2 = E − η1 − η2 and
we consider the corresponding ϕ2 which satisfies

w+ ϕ2(w)νF (w) = z + ϕ1(z)νF (z)− η2 = y + ϕ0(y)νF (y)− η1 − η2 .

Since

‖ϕ0‖W 2,p(∂F ) + |η1 + η2| ≤ δ +C1δ +C1‖ϕ1‖L2(∂F )

≤ δ +C1δ
(

1 +
1

K

)
≤ C2δ(1 + 2C1) ≤ τ ,
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the map Tϕ0(y) = πF (y + ϕ0(y)νF (y)− (η1 + η2)) is a diffeomorphism thanks
to formula (1.55) (having chosen τ and δ small enough).

Thus, by applying inequalities (1.58) (with η = η1 + η2), (1.54), (1.65) and (1.67),
we get

‖ϕ2‖W 2,p(∂F ) ≤ C2

(
‖ϕ0‖W 2,p(∂F ) + |η1 + η2|

)
≤ C2δ

(
1 +C1 +

C1

K

)
≤ τ ,

as K > 1, analogously to conclusion (1.66). On the other hand, by esti-
mates (1.54), (1.66) and (1.67),

‖ϕ1‖W 2,p(∂F ) + η2 ≤ C2δ(1 +C1) +C1
δ

K
≤ C2δ(1 + 2C1) ≤ τ ,

hence, also the map Tϕ1(x) = πF (x+ ϕ1(x)νF (x)− η2) is a diffeomorphism
satisfying inequalities (1.55) and (1.56). Therefore, arguing as before, we obtain∣∣∣ˆ

∂F
ϕ2(y)νF (y) dµ(y)

∣∣∣ ≤ C5‖ϕ1‖ϑL2(∂F )

(
‖ϕ2‖L2(∂F ) + ‖ϕ1‖L2(∂F )

)
.

Since ‖ϕ1‖L2(∂F ) ≤ δ by inequality (1.67), if ‖ϕ1‖L2(∂F ) ≤ K‖ϕ2‖L2(∂F ) the
conclusion follows with η = η1 + η2. Otherwise, we iterate the procedure
observing that

‖ϕ2‖L2(∂F ) ≤
‖ϕ1‖L2(∂F )

K
≤
‖ϕ0‖L2(∂F )

K2
≤ δ

K2
.

This construction leads to three (possibly finite) sequences ηn, En and ϕn such
that

En = E − η1 − · · · − ηn, |ηn| ≤ C1δ
Kn−1

‖ϕn‖W 2,p(∂F ) ≤ C2

(
‖ϕ0‖W 2,p(∂F ) + |η1 + · · ·+ ηn|

)
≤ C2δ(1 + 2C1)

‖ϕn‖L2(∂F ) ≤ δ
Kn

∂En = {x+ ϕn(x)νF (x) : x ∈ ∂F}

If for some n ∈N we have ‖ϕn−1‖L2(∂F ) ≤ K‖ϕn‖L2(∂F ), the construction stops,
since, arguing as before,∣∣∣ˆ

∂F
ϕn(y)νF (y) dµ(y)

∣∣∣ ≤ δ‖ϕn‖L2(∂F )

and conclusion follows with η = η1 + · · ·+ ηn and ϕ = ϕn. Otherwise, the
iteration continues indefinitely and we reach the conclusion with

η =
∞∑
n=1

ηn, ϕ = 0 ,

(notice that the series is converging) which actually means that E = η + F ,
hence the thesis is obvious.

We are now ready to prove the main theorem of this chapter.
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Proof of Theorem 1.19.
Step 1. We first want to show that

m0 = inf
{

ΠE(ϕ) : ϕ ∈ T⊥(∂E), ‖ϕ‖H1(∂E) = 1
}
> 0. (1.68)

To this aim, we consider a minimizing sequence ϕi for the above infimum and
we assume that ϕi ⇀ ϕ0 weakly in H1(∂E), then ϕ0 ∈ T⊥(∂E) (since it is a
closed subspace of H1(∂E)) and if ϕ0 6= 0, there holds

m0 = lim
i→+∞

ΠE(ϕi) ≥ ΠE(ϕ0) > 0

due to the strict stability of E and the lower semicontinuity of ΠE (recall
formula (1.31) and the fact that the weak convergence in H1(∂E) implies strong
convergence in L2(∂E) by Sobolev embeddings). On the other hand, if instead
ϕ0 = 0, again by the strong convergence of ϕi → ϕ0 in L2(∂E), by looking at
formula (1.31), we have

m0 = lim
i→∞

ΠE(ϕi) = lim
i→∞

ˆ
∂E
|∇ϕi|2 dµ = lim

i→∞
‖ϕi‖2H1(∂E) = 1

since ‖ϕi‖L2(∂E) → 0.

Step 2. Now we show that there exists a constant δ1 > 0 such that if E is like
in the statement and ∂F = {y + ψ(y)νE(y) : y ∈ ∂E}, with ‖ψ‖W 2,p(∂E) ≤ δ1,
and Vol(F ) = Vol(E), then

inf

{
ΠF (ϕ) : ϕ ∈ H̃1(∂F ), ‖ϕ‖H1(∂F ) = 1,

∣∣∣ˆ
∂F
ϕνF dµ

∣∣∣ ≤ δ1} ≥ m0

2
. (1.69)

We argue by contradiction assuming that there exists a sequence of sets Fi
with ∂Fi = {y + ψi(y)νE(y) : y ∈ ∂E} with ‖ψi‖W 2,p(∂E) → 0 and Vol(Fi) =

Vol(E), and a sequence of functions ϕi ∈ H̃1(∂Fi) with ‖ϕi‖H1(∂Fi) = 1 and´
∂Fi

ϕiνFi dµi → 0, such that

ΠFi(ϕi) <
m0

2
.

We then define the following sequence of smooth functions

ϕ̃i(y) = ϕi(y + ψi(y)νE(y))−
 
∂E
ϕi(y + ψi(y)νE(y)) dµ(y) (1.70)

which clearly belong to H̃1(∂E). Setting θi(y) = y + ψi(y)νE(y), as p >

max{2,n− 1}, by the Sobolev embeddings, θi → Id in C1,α and νFi ◦ θi → νE
in C0,α(∂E), hence, the sequence ϕ̃i is bounded in H1(∂E) and if {ek} is the
special orthonormal basis found in Remark 1.16, we have 〈νFi ◦ θi|ek〉 → 〈νE , ek〉
uniformly for all k ∈ {1, . . . ,n}. Thus,

ˆ
∂E
ϕ̃i〈νE |εi〉 dµ→ 0,

as i→∞, indeed,ˆ
∂E
ϕ̃i〈νE |ek〉 dµ−

ˆ
∂E
ϕ̃i〈νFi ◦ θi|ek〉 dµ→ 0
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and ˆ
∂E
ϕ̃i〈νFi ◦ θi|ek〉 dµ =

ˆ
∂Fi

ϕi〈νFi |ek〉 Jθ
−1
i dµi → 0,

as the Jacobians (notice that Jθi are Jacobians “relative” to the hypersurface
∂E) Jθ−1i → 1 uniformly and we assumed

´
∂Fi

ϕiνFi dµi → 0.
Hence, using expression (1.36), for the projection map π on T⊥(∂E), it follows

‖π(ϕ̃i)− ϕ̃i‖H1(∂E) → 0

as i→∞ and

lim
i→∞
‖π(ϕ̃i)‖H1(∂E) = lim

i→∞
‖ϕ̃i‖H1(∂E) = lim

i→∞
‖ϕi‖H1(∂Fi) = 1, (1.71)

since ‖ϕi‖W 2,p(∂E) → 0, thus ‖ϕi‖C1,α(∂E) → 0, by looking at the definition of
the functions ϕ̃i in formula (1.70).
Note now that the W 2,p– convergence of Fi to E (computing similarly to
Remark (A.2) in Appendix A, the second fundamental form B∂Fi of ∂Fi is
“morally” the Hessian of ϕi) implies

B∂Fi ◦ θi → B∂E in Lp(∂E) ,

as i→∞, then, by Sobolev embeddings again (in particular H1(∂E) ↪→ Lq(∂E)

for any q ∈ [1, 2∗), with 2∗ = 2(n− 1)/(n− 3) which is larger than 2) and the
W 2,p–convergence of Fi to E, we get

ˆ
∂Fi

|B∂Fi |
2ϕ2

i dµi −
ˆ
∂E
|B∂E |2ϕ̃2

i dµ→ 0 .

Standard elliptic estimates for the problem (1.3) (see [13], for instance) imply
the convergence of the potentials

vFi → vE in C1,β(Tn) for all β ∈ (0, 1),

for i→∞, hence arguing as before,
ˆ
∂Fi

∂νFivFiϕ
2
i dµi −

ˆ
∂E
∂νEvEϕ̃

2
i dµ→ 0 .

Setting, as in Remark 1.13,

vE,ϕ̃i(x) =

ˆ
∂E
G(x, y)ϕ̃i(y) dµ(y)

=

ˆ
∂E
G(x, y)ϕi(θi(y)) dµ(y)−mi

ˆ
∂E
G(x, y) dµ(y) ,

where mi =
ffl
∂E ϕi(y + ψi(y)νE(y)) dµ(y)→ 0, as i→∞, and

vFi,ϕi(x) =

ˆ
∂Fi

G(x, z)ϕi(z) dµi(z) =

ˆ
∂E
G(x, θi(y))ϕi(θi(y))Jθi(y) dµ(y) ,

it is easy to check (see [2, pages 537–538], for details) that
ˆ

Tn
|∇vFi,ϕi |2 dx−

ˆ
Tn
|∇vE,ϕ̃i |

2 dx→ 0 .
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Finally, recalling expression (1.32), we conclude

ΠFi(ϕi)−ΠE(ϕ̃i)→ 0 ,

since we have
‖ϕi‖L2(∂Fi) − ‖ϕ̃i‖L2(∂E) → 0 ,

which easily follows again by looking at the definition of the functions ϕ̃i in
formula (1.70) and taking into account that ‖ϕi‖C1,α(∂E) → 0, hence limits (1.71)
imply

‖∇ϕi‖L2(∂Fi) − ‖∇ϕ̃i‖L2(∂E) → 0 .

By the previous conclusion ‖π(ϕ̃i)− ϕ̃i‖H1(∂E) → 0 and Sobolev embeddings,
it this then straightforward, arguing as above, to get also

ΠE(ϕ̃i)−ΠE(π(ϕ̃i))→ 0,

hence,
ΠFi(ϕi)−ΠE(π(ϕ̃i))→ 0.

Since we assumed that ΠFi(ϕi) < m0/2, we conclude that for i ∈ N, large
enough there holds

ΠE(π(ϕ̃i)) ≤
m0

2
< m0,

which is a contraddiction to Step 1, as π(ϕ̃i) ∈ T⊥(∂E).
Step 3. Let us fix F such that Vol(F ) = Vol(E), Vol(F4E) < δ and

∂F = {y + ψ(y)νE(y) : y ∈ ∂E} ⊆ Nε,

with ‖ψ‖W 2,p(∂E) ≤ δ where δ > 0 is smaller than δ1 given by Step 2.
Taking a possibly smaller δ > 0, we consider the field X and the associated flow
Φ found in Lemma 1.22. Hence, divX = 0 in Nε and Φ(1, y) = y + ψ(y)νE(y),
for all y ∈ ∂E, that is, Φ(1, ∂E) = ∂F ⊆ Nε which implies E1 = Φ(1,E) = F .
Then X is an admissible smooth vector field, as Vol(E1) = Vol(E) = Vol(F ),
by the last part of such lemma.
By Lemma 1.24, choosing an even smaller δ > 0 if necessary, possibly replacing
F with a translate F − σ for some η ∈ Rn if needed, we can assume that∣∣∣∣ˆ

∂E
ψ νE dµ

∣∣∣∣ ≤ δ1
2
‖ψ‖L2(∂E). (1.72)

Letting Et = Φt(E), we now claim that∣∣∣∣ˆ
∂Et

〈X|νEt〉νEt dµ
∣∣∣∣ ≤ δ1‖〈X|νEt〉‖L2(∂Et) ∀t ∈ [0, 1]. (1.73)

To this aim, we writeˆ
∂Et

〈X|νEt〉νEt dµ =

ˆ
∂E
〈X ◦Φt|νEt ◦Φt〉(νEt ◦Φt) JΦt dµ

=

ˆ
∂E
〈X ◦Φt|νE〉νE dµ+R1

=

ˆ
∂E
〈X(x)|νE〉νE dµ+R1 +R2

=

ˆ
∂E
ψνE dµ+R1 +R2 +R3
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with R1,R2 and R3 appropriate.
By the definition of X in formula (1.44) (in the proof of Lemma 1.22), the bounds
0 < C1 ≤ ξ ≤ C2 and ‖J(πE ◦Φt)−1‖L∞(∂E) ≤ C3 (by inequality (1.42) and
Sobolev embeddings, as p > max{2,n− 1}, we have ‖Φ(t, ·)− Id‖C1,α(∂E) ≤
C‖ψ‖W 2,p(∂E) ≤ Cδ), the following inequality holds
ˆ
∂E
|X(Φ(t,x))| dµ =

=

ˆ
∂E

∣∣∣∣ˆ ψ(πE(Φ(t,x)))

0

ξ(Φ(t,x))∇dE(Φ(t,x))

ξ(Φ(t,x) + sν(πE(Φ(t,x))))
ds

∣∣∣∣ dµ
≤ C

ˆ
∂E
|ψ(πE(Φ(t,x)))| dµ

=

ˆ
∂E
|ψ(z)|J(πE ◦Φt)

−1(z) dµ(z)

≤ C‖ψ‖L2(∂E). (1.74)

for every t ∈ [0, 1].
We want now to prove that for every ε > 0, choosing a suitably small δ > 0 we
have the estimate

|R1|+ |R2|+ |R3| ≤ ε‖ψ‖L2(∂E). (1.75)

First,

R1 =

ˆ
∂E
〈X ◦Φt|νEt ◦Φ〉νEt ◦Φt[JΦt − 1] dµ

+

ˆ
∂E
〈X ◦Φt|νEt ◦Φt〉νEt ◦Φt dµ−

ˆ
∂E
〈X ◦Φt, νE〉νE dµ

=

ˆ
∂E
〈X ◦Φt|νEt ◦Φt〉νEt ◦Φt [JΦt − 1] dµ

+

ˆ
∂E
〈X ◦Φt|νEt ◦Φt − νE〉νE dµ

+

ˆ
∂E
〈X ◦Φt|νEt ◦Φt〉(νEt ◦Φt − νE) dµ

≤
ˆ
∂E
|X ◦Φt| ‖JΦt − 1‖L∞(∂E) dµ

+

ˆ
∂E
|X ◦Φt| ‖νE − νEt ◦Φt‖L∞(∂E) dµ ,

then, since by equality (1.41), it follow that for every t ∈ [0, 1] the two terms

‖νE − νEt ◦Φ(t,x)‖L∞(∂E) and ‖JΦt − 1‖L∞(∂E)

can be made (uniformly in t ∈ [0, 1]) small as we want, if δ > 0 is small enough,
by using inequality (1.74), we obtain

|R1| ≤ ε‖ψ‖L2(∂E)/3.
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Then we estimate, by means of inequality (1.41) and where s = s(t, y) ∈ [t, 1],

|R2| ≤
ˆ
∂E
|X(Φ(t,x))−X(Φ(1,x))|+ |X(Φ(1,x))−X(x)| dµ

≤
ˆ
∂E
|X(Φ(t,x))−X(Φ(1,x))|+ ‖∇X‖L2(Nε)‖ψ‖L2(∂E)

=

ˆ
∂E

(1− t)|∇X(Φs(y))|
∣∣∣∣∂Φs

∂t
(y)

∣∣∣∣ dµ(y) + ‖∇X‖L2(Nε)‖ψ‖L2(∂E)

≤
ˆ
∂E
|∇X(Φ(s,x))||Φ(t,x)−Φ(1,x)|+ ‖∇X‖L2(Nε)‖ψ‖L2(∂E)

≤ C‖∇X‖L∞(Nε)C‖ψ‖L2(∂E) + ‖∇X‖L2(Nε)‖ψ‖L2(∂E),

where in the last inequality we use equation (1.74). Hence, using equality (1.45)
and Sobolev embeddings, as p > max{2,n− 1}, we get

|R2| ≤ C‖ψ‖W 2,p(∂E)‖ψ‖L2(∂E),

then, since ‖ψ‖W 2,p(∂E) < δ, we obtain

|R2| < ε‖ψ‖L2(∂E)/3,

if δ2 is small enough.
Arguing similarly, recalling the definition of X given by formula (1.44), we also
obtain |R3| ≤ ε‖ψ‖L2(∂E), hence estimate (1.75) follows. We can then conclude
that, for δ > 0 small enough, we have∣∣∣∣ˆ

∂Et

〈X|νEt〉νEt dµt
∣∣∣∣ ≤ ∣∣∣∣ˆ

∂E
ψνE dµ

∣∣∣∣+ ε‖ψ‖L2(∂E)

≤
(δ1

2
+ ε
)
‖ψ‖L2(∂E)

for any t ∈ [0, 1], where in the last inequality we used the assumption (1.72),
thus choosing ε = δ1/4 we get∣∣∣∣ˆ

∂Et

〈X|νEt〉νEt dµt
∣∣∣∣ ≤ 3δ1

4
‖ψ‖L2(∂E).

Along the same line, it is then easy to prove that

‖〈X|νEt〉‖L2(∂Et) ≥ (1− ε)‖ψ‖L2(∂E), (1.76)

for any t ∈ [0, 1], hence claim (1.73) follows.
As a consequence, since 〈X|νEt〉 ∈ H̃1(∂Et), being X admissible for Et (re-
calling computation 1.9) and ∂Et can be described as a graph over ∂E with a
function with small norm in W 2,p(∂E) (by estimate (1.42) of Lemma 1.22 and
arguing as in Remark (A.2) in Appendix A), we can apply Step 2 with F = Et
to the function 〈X|νEt〉/‖〈X|νEt〉‖H1(∂Et), concluding

ΠEt(〈X|νEt〉) ≥
m0

2
‖〈X|νEt〉‖H1(∂Et). (1.77)
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By means of Lemma 1.23, for δ > 0 small enough, we now show the fol-
lowing inequality on ∂Et (here div is the divergence operator and Xτt =

X − 〈X|νEt〉νEt is a tangent vector field on ∂Et), for any t ∈ [0, 1],

‖div(Xτt〈X|νEt〉)‖
L

p
p−1 (∂Et)

= ‖divXτt〈X|νEt〉+ 〈Xτt |∇〈X, νEt〉〉‖
L

p
p−1 (∂Et)

≤C‖∇Xτt‖L2(∂Et)‖〈X|νEt〉‖
L

2p
p−2 (∂Et)

+C‖Xτt‖
L

2p
p−2 (∂Et)

‖∇〈X|νEt〉‖L2(∂Et)

≤C‖X‖H1(∂Et)‖X‖
L

2p
p−2 (∂Et)

≤C‖X‖2H1(∂Et)

≤C‖〈X|νEt〉‖2H1(∂Et)
,

(1.78)
where we used the Sobolev embeddingH1(∂Et) ↪→ L

2p
p−2 (∂Et), as p > max{2,n−

1}.
Then, we compute (here Ht is the mean curvature of ∂Et and vEt is the potential
relative to Et, defined by formula (1.1))

J(F )− J(E) = J(E1)− J(E)

=

ˆ 1

0
(1− t) d

2

dt2
J(Et) dt

=

ˆ 1

0
(1− t)ΠEt(〈X|νEt〉) dt

−
ˆ 1

0
(1− t)

ˆ
∂Et

(4γvEt + Ht) div∂Et(Xτt〈X|νEt〉) dµ
)
dt.

by Theorem 1.10, the definition of ΠEt in formula (1.31) and taking into account
that divX = 0 in Nε.
Hence, by estimate (1.77), we have (recall that 4γvE + H = 4γvE0 + H0 = λ

constant, as E is a critical set)

J(F )− J(E) ≥ m0

2

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Et

(Ht + 4γvEt) div(Xτt〈X|νEt〉) dµt dt

=
m0

2

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt

−
ˆ 1

0
(1− t)

ˆ
∂Et

(Ht + 4γvEt − λ) div(Xτt〈X|νEt〉) dµt dt

≥ m0

2

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt

−
ˆ 1

0
(1− t)‖Ht + 4γvEt − λ‖Lp(∂Et)‖div(Xτt〈X|νEt〉)‖

L
p
p−1 (∂Et)

dt
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≥ m0

2

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt

−C
ˆ 1

0
(1− t)‖Ht + 4γvEt − λ‖Lp(∂Et)‖〈X|νEt〉‖

2
H1(∂Et)

dt,

by estimate (1.78). If δ > 0 is sufficiently small, as Et is W 2,p–close to E (recall
again Remark (A.2) in Appendix A and the definition of vEt in formula (1.1)),
we have ‖Ht + 4γvEt − λ‖Lp(∂Et) < m0/4C, hence

J(F )− J(E) ≥ m0

4

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt.

Then, we can conclude the proof of the theorem with the following series of
inequalities, holding for a suitably small δ > 0 as in the statement,

J(F ) ≥ J(E) +
m0

2

ˆ 1

0
(1− t)‖〈X|νEt〉‖2H1(∂Et)

dt

≥ J(E) +C‖〈X|νE〉‖2L2(∂E)

≥ J(E) +C‖ψ‖2L2(∂E)

≥ J(E) +C[Vol(E4F )]2

≥ J(E) +C[α(E,F )]2,

where the first inequality is due to the W 2,p–closedness of Et to E, the second
one by the very expression (1.44) of the vector field X on ∂E,

|〈X(y)|νE(y)〉| =
∣∣∣ˆ ψ(y)

0

ds

ξ(y + sνE(y))

∣∣∣ ≤ C|ψ(y)|,

the third follows by a straighfoward computation (involving the map L defined
by formula (1.40) and its Jacobian), as ∂E is a “normal graph” over ∂F with
ψ as “height function”, finally the last one simply by the definition of the
“distance” α, recalling that we possibly translated the “original” set F by a
vector η ∈ Rn, at the beginning of this step.

We conclude this chapter by proving two propositions that will be used later.
The first one says that when a set is sufficiently W 2,p–close to a strictly stable
critical set of the functional J , then the quadratic form (1.31) remains uniformly
positive definite (on the orthogonal complement of its degeneracy subspace,
see the discussion at the end of the previous section).

Proposition 1.25. Let p > max{2,n− 1} and E ⊆ Tn be a smooth strictly stable
critical set with Nε a tubular neighbourhood of E, as in formula (1.37). Then, for every
θ ∈ (0, 1] there exist σθ, δ > 0 such that if a smooth set F ⊆ Tn is W 2,p–close to E,
that is, Vol(F4E) < δ and ∂F ⊆ Nε with

∂F = {y + ψ(y)νE(y) : y ∈ ∂E}

for a smooth ψ with ‖ψ‖W 2,p(∂E) < δ, there holds

ΠF (ϕ) ≥ σθ‖ϕ‖2H1(∂F ), (1.79)
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for all ϕ ∈ H̃1(∂F ) satisfying

min
η∈OE

‖ϕ− 〈η|νF 〉‖L2(∂F ) ≥ θ‖ϕ‖L2(∂F ),

where OE is defined by formula (1.35).

Proof.
Step 1. We first claim that the strict stability of E implies

ΠE(ϕ) > 0 for all ϕ ∈ H̃(∂E) \ T (∂E). (1.80)

To this aim we observe that from formula (1.1) and the properties of the Green
function, we get

∇vE(x) =

ˆ
Tn
∇xG(x, y)uE(x) dy

=

ˆ
E
∇xG(x, y) dy−

ˆ
Ec
∇xG(x, y) dy

= −
ˆ
E
∇yG(x, y) dy +

ˆ
Ec
∇yG(x, y) dy

= −2

ˆ
∂E
G(x, y)νE(y) dµ(y) , (1.81)

where in the last passage we applied the divergence theorem.
By means of formula (A.4)

∆νE = ∇H− |B|2νE ,

since E (being critical) satisfies H + 4γvE = λ for some constant λ ∈ R, we have

−∆νE − |B|2νE = ∇(4γvE − λ)

= ∇Tn(4γvE − λ)− ∂νE (4γvE − λ)

= −4γ(∂νEvE)νE − 8γ

ˆ
∂E
G(x, y)νE(y) dµ(y)

on ∂E, by formula (1.81).
This equation can be written as L(νi) = 0, for every i ∈ {1, . . . ,n}, where L is
the self–adjoint, linear operator defined as

L(ϕ) = −∆ϕ− |B|2ϕ+ 4γ∂νEvEϕ+ 8γ

ˆ
∂E
G(x, y)ϕ(y) dµ(y) ,

then, if we “decompose” a smooth function ϕ ∈ H̃(∂E) \ T (∂E) as ϕ =

ψ + 〈η|νE〉, for some η ∈ Rn and ψ ∈ T⊥(∂E) \ {0}, we have (recalling for-
mula (1.31))

ΠE(ϕ) =

ˆ
∂E
〈L(ϕ)|ϕ〉 dµ

=

ˆ
∂E
〈L(ψ)|ψ〉 dµ+ 2

ˆ
∂E
〈L(〈η|νE〉),ψ〉 dµ+

ˆ
∂E
〈L(〈η|νE〉)|〈η|νE〉〉 dµ

= ΠE(ψ) .
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By approximation with smooth functions, we conclude that this equality holds
for every function in H̃(∂E) \ T (∂E), hence ΠE(ϕ) = ΠE(ψ) > 0 for every
ϕ ∈ H̃(∂E) \ T (∂E), by the strict stability assumption on E.

We now show that for every θ ∈ (0, 1] there holds

mθ = inf
{

ΠE(ϕ) : ϕ ∈ H̃1(∂E) , ‖ϕ‖H1(∂E) = 1

and min
η∈OE

‖ϕ− 〈η|νE〉‖L2(∂E) ≥ θ‖ϕ‖L2(∂E)

}
> 0 . (1.82)

Indeed, let ϕi be a minimizing sequence for this infimum and assume that
ϕi ⇀ ϕ0 ∈ H̃1(∂E) weakly in H1(∂E).
If ϕ0 6= 0, as the weak convergence in H1(∂E) implies strong convergence in
L2(∂E) by Sobolev embeddings, for every η ∈ OE we have

‖ϕ0−〈η|νE〉‖L2(∂E) = lim
i→∞
‖ϕi−〈η|νE〉‖L2(∂E) ≥ lim

i→∞
θ‖ϕi‖L2(∂E) = θ‖ϕ0‖L2(∂E),

hence,
min
η∈OE

‖ϕ0 − 〈η|νE〉‖L2(∂E) ≥ θ‖ϕ0‖L2(∂E) > 0,

thus, we conclude ϕ0 ∈ H̃1(∂E) \ T (∂E) and

mθ = lim
i→∞

ΠE(ϕi) ≥ ΠE(ϕ0) > 0 ,

where the last inequality follows from estimate (1.80).
If ϕ0 = 0, then again by the strong convergence of ϕi → ϕ0 in L2(∂E), by
looking at formula (1.31), we have

mθ = lim
i→∞

ΠE(ϕi) = lim
i→∞

ˆ
∂E
|∇ϕi|2 dµ = lim

i→∞
‖ϕi‖2H1(∂E) = 1

since ‖ϕi‖L2(∂E) → 0.

Step 2. In order to finish the proof it is enough to show the existence of some
δ > 0 such that if Vol(F4E) < δ and ∂F =

{
y + ψ(y)νE(y) : y ∈ ∂E

}
with

‖ψ‖W 2,p(∂E) < δ, then

inf
{

ΠF (ϕ) : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1

and min
η∈OE

‖ϕ− 〈η|νF 〉‖L2(∂F ) ≥ θ‖ϕ‖L2(∂F )

}
≥ σθ =

1

2
min{mθ/2, 1} ,

(1.83)
where mθ/2 is defined by formula (1.82), with θ/2 in place of θ.
Assume by contradiction that there exist a sequence of smooth sets Fi ⊆ Tn,
with ∂Fi = {y + ψi(y)νE(y) : y ∈ ∂E} and ‖ψi‖W 2,p(∂E) → 0, and a se-
quence ϕi ∈ H̃1(∂Fi), with ‖ϕi‖H1(∂Fi) = 1 and minη∈OE ‖ϕi−〈η|νFi〉‖L2(∂Fi) ≥
θ‖ϕi‖L2(∂Fi), such that

ΠFi(ϕi) < σθ ≤ mθ/2/2 . (1.84)

Let us suppose first that limi→∞ ‖ϕi‖L2(∂Fi) = 0 and observe that by Sobolev
embeddings ‖ϕi‖Lq(∂Fi) → 0 for some q > 2, thus, since the functions ψi are
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uniformly bounded in W 2,p(∂E) for p > max{2,n− 1}, recalling formula (1.31),
it is easy to see that

lim
i→∞

ΠFi(ϕi) = lim
i→∞

ˆ
∂Fi

|∇ϕi|2 dµi = lim
i→∞
‖ϕi‖2H1(∂Fi)

= 1 ,

which is a contradiction with assumption (1.84).
Hence, we may assume that

lim
i→∞
‖ϕi‖L2(∂Fi) > 0. (1.85)

The idea now is to write every ϕi as a function on ∂E. We define the functions
ϕ̃i(∂E)→ R, given by

ϕ̃i(y) = ϕi
(
y + ψi(y)νE(y)

)
−
 
∂E
ϕi(y + ψi(y)νE(y)) dµ(y) ,

for every y ∈ ∂E.
As ψi → 0 in W 2,p(∂E), we have in particular that

ϕ̃i ∈ H̃1(∂E) , ‖ϕ̃i‖H1(∂E) → 1 and
‖ϕ̃i‖L2(∂E)

‖ϕi‖L2(∂Fi)
→ 1 ,

moreover, note also that νFi(·+ ψi(·)νE(·)) → νE in W 1,p(∂E) and thus in
C0,α(∂E) for a suitable α ∈ (0, 1), depending on p, by Sobolev embeddings. Us-
ing this fact and taking into account the third limit above and inequality (1.85),
one can easily show that

lim inf
i→∞

minη∈OE ‖ϕ̃i − 〈η|νE〉‖L2(∂E)

‖ϕ̃i‖L2(∂E)
≥ lim inf

i→∞

minη∈OE ‖ϕi − 〈η|νFi〉‖L2(∂Fi)

‖ϕi‖L2(∂Ei)
≥ θ .

Hence, for i ∈N large enough, we have

‖ϕ̃i‖H1(∂E) ≥ 3/4 and min
η∈OE

‖ϕ̃i − 〈η|νE〉‖L2(∂E) ≥
θ

2
‖ϕ̃i‖L2(∂E) ,

then, in turn, by Step 1, we infer

ΠE(ϕ̃i) ≥
9

16
mθ/2 . (1.86)

Arguing now exactly like in the final part of Step 2 in the proof of Theo-
rem 1.19, we have that all the terms of ΠFi(ϕi) are asymptotically close to the
corresponding terms of ΠE(ϕ̃i), thus

ΠFi(ϕi)−ΠE(ϕ̃i)→ 0 ,

which is a contradiction, by inequalities (1.84) and (1.86). This establishes
inequality (1.83) and concludes the proof.

The following final result of this chapter states the fact that close to a strictly
stable critical set there are no other critical sets (up to translations).
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Proposition 1.26. Let p and E ⊆ Tn be as in Proposition 1.25. Then, there exists δ >
0 such that if E′ ⊆ Tn is a smooth critical set with Vol(E′) = Vol(E), Vol(E4E′) <
δ, ∂E′ ⊆ Nε and

∂E′ = {y + ψ(y)νE(y) : y ∈ ∂E}

for a smooth ψ with ‖ψ‖W 2,p(∂E) < δ, then E′ is a translate of E.

Proof. In Step 3 of the proof of Theorem 1.19, it is shown that under these
hypotheses on E and E′, if δ > 0 is small enough, we may find a small vector
η ∈ Rn and an admissible smooth vector field X such that the associated flow
Φ satisfies Φ(0,E) = E, Φ(1,E) = E′ − η and

d2

dt2
J(Φ(t,E)) ≥ C[Vol(E4(E′ − η))]2 ,

for all t ∈ [0, 1], where C is a positive constant independent of E′.
Assume that E′ is a smooth critical set as in the statement, which is not a
translate of E, then d

dtJ(Φ(t,E))
∣∣
t=0

= 0, but from the above formula it follows
d
dtJ(Φ(t,E))

∣∣
t=1

> 0, which implies that E′ − η cannot be critical, hence neither
E′, which is a contradiction. Indeed, −X is an admissible vector field for
E′ − η with an associate flow Ψ satisfying Ψ(s,E′ − η) = Φ(1− s,E), for every
s ∈ [0, 1], hence

d

ds
J(Ψ(s,E′ − η))

∣∣∣∣
s=0

=
d

ds
J(Φ(1− s,E))

∣∣∣∣
s=0

= − d

dt
J(Φ(t,E))

∣∣∣∣
t=1

< 0 ,

showing that E′ − η is not critical.



2
T H E M O D I F I E D M U L L I N S – S E K E R K A F L O W

In this chapter we introduce the modified Mullins–Sekerka flow and we describe its
properties, leading to a long time existence result stating that the flow starting
from a smooth subset of T3 “close enough” to a strictly stable set, exists smooth
for all times.

We will make use several times of fractional Sobolev spaces, about which we refer
to Appendix B, for the basic facts. As for the “standard” Sobolev spaces (with integer
order) they can be defined on smooth hypersurfaces (by standard localization/partition
of unity technique), keeping most of their properties, in particular all the propositions
of Appendix B hold for them.

2.1 definition and basic properties

We start with the notion of smooth flow.

Definition 2.1 (Smooth flows of sets). Let Et ⊆ Tn for t ∈ [0,T ) be a one-
parameter family of sets, we say that it is a smooth flow if there exists a smooth
reference set F ⊆ Tn and a map Ψ ∈ C∞(Tn × (0,T ); Tn) such that Ψt = Ψ(·, t)
is a smooth diffeomorphism from Tn to Tn and Et = Ψt(F ) for all t ∈ [0,T ).

The velocity of the motion of any point x = Ψt(y) of the set Et, with y ∈ F , is
then given by

Xt(x) =
∂Ψt

∂t
(y),

hence,
∂Ψt

∂t
(y) = Xt(Ψt(y)),

for every y ∈ F . Notice that, in general, the smooth vector field Xt is not
independent of t, so it is not the infinitesimal generator of the flow Ψ, but
we will see, in the computations in the sequel, that it will behave similarly to
the (time–independent) vector fields X used to compute the first and second
variation in the previous chapter.
When x ∈ ∂Et, we define the outer normal velocity of the flow of the boundaries,
which are smooth hypersurfaces of Tn, as

Vt(x) = 〈Xt(x)|νEt(x)〉,

for every t ∈ [0,T ), where νEt is the outer normal vector to Et.
Before giving the definition of the modified Mullins–Sekerka flow we need

some notations. Given a smooth set E ⊆ Tn and γ ≥ 0, we denote by wE the
unique solution in H1(Tn) of the following problem{

∆wE = 0 in Tn \ ∂E
wE = H + 4γvE on ∂E,

(2.1)

51
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where vE is the potential introduced in (1.3) and H is the mean curvature of
∂E. Moreover, we denote by w+

E and w−E the restrictions wE |Ec and wE |E ,
respectively. Finally, denoting as usual by νE the outer unit normal to E, we set

[∂νEwE ] = ∂νEw
+
E − ∂νEw

−
E = −(∂νEcw

+
E + ∂νEw

−
E) .

that is the jump of the normal derivative of wE on ∂E.

Definition 2.2 (Modified Mullins–Sekerka flow). Let E ⊆ Tn be a smooth set.
We say that a smooth flow Et such that E0 = E, is a modified Mullins–Sekerka
flow with parameter γ ≥ 0, on the time interval [0,T ) and with initial datum E,
if the outer normal velocity Vt of the moving boundaries ∂Et is given by

Vt = [∂νtwt] on ∂Et for all t ∈ [0,T ), (2.2)

where wt = wEt (with the above definitions) and we used the simplified
notation ∂νtwt in place of ∂νEtwEt .

Remark 2.3. The adjective “modified” comes from the introduction of the
parameter γ ≥ 0 in the problem, while considering γ = 0, we have the original
flow proposed by Mullins and Sekerka in [30].

Parametrizing the smooth hypersurfaces Mt = ∂Et of Tn by some smooth
embeddings ψt : M → Tn such that ψt(M ) = ∂Et (here M is a fixed smooth
differentiable (n− 1)–dimensional manifold and the map (t, p) 7→ ψ(t, p) =

ψt(p) is smooth), the geometric evolution law (2.2) can be expressed equivalently
as 〈∂ψt

∂t

∣∣∣ νt〉 = [∂νtwt], (2.3)

where we denoted with νt the outer unit normal to Mt = ∂Et.
Moreover, as the moving hypersurfaces Mt = ∂Et are compact, it is always
possible to smoothly reparametrize them with maps (that we still call) ψt such
that

∂ψt
∂t

= [∂νtwt]νt , (2.4)

describing such flow. This follows by the invariance by tangential perturbations of
the velocity, shared by the flow due to its geometric nature and can be proved
following the line in Section 1.3 of [26], where the analogous property is shown
in full detail for the (more famous) mean curvature flow. Roughly speaking, the
tangential component of the velocity of the points of the moving hypersurfaces,
does not affect the global “shape” during the motion.

Like the nonlocal Area functional J (see Definition 1.2), the flow is obviously
invariant by rotations and translations, or more generally under any isometry
of Tn (or Rn). Moreover, if ψ : [0,T )×M → Tn is a modified Mullins–Sekerka
flow of hypersurfaces, in the sense of equation (2.3) and Φ : [0,T )×M →M

is a time–dependent family of smooth diffeomorphisms of M , then it is easy
to check that the reparametrization ψ̃ : [0,T )×M → Tn defined as ψ̃(t, p) =

ψ(t, Φ(t, p)) is still a modified Mullins–Sekerka flow (again in the sense of
equation (2.3)). This property can be reread as “the flow is invariant under
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reparametrization”, suggesting that the really relevant objects are actually the
subsets Mt = ψt(M) of Tn.

We show now that the volume of the sets Et is preserved during the evolution.
We remark that instead, other geometric properties shared for instance by the
mean curvature flow (see [26, Chapter 2]), like convexity are not necessarily
maintained (see [10]), neither there holds the so–called “comparison property”
asserting that if two initial sets are one contained in the other, they stay so
during the two respective flows.

This volume–preserving property can be easily proved, arguing as in com-
putation (1.9), indeed, if Et = Ψt(F ) is a modified Mullins–Sekerka flow,
described by Ψ ∈ C∞([0,T )×Tn; Tn), with an associated smooth vector field
Xt satisfying

∂Ψt

∂t
(y) = Xt(Ψt(y)) ,

we have

0 =
d

dt
Vol(Et) =

ˆ
F

∂

∂t
JΨt(y) dy =

ˆ
F

divXt(Ψ(t, y))JΨ(t, y) dy

=

ˆ
Et

divXt(x) dx =

ˆ
∂Et

〈X|νt〉 dµt =

ˆ
∂Et

Vt dµt

=

ˆ
∂Et

[∂νtwt] dµt =

ˆ
∂Et

(
∂νtw

+
t − ∂νtw−t

)
dµt = 0

where µt is in the canonical measure induced on ∂Et by the flat metric of Tn

and the last equality follows from the divergence theorem A.1 and the fact that
wt is harmonic in Tn \ ∂Et.

Another important property of the modified Mullins–Sekerka flow is that
it can be regarded as the H−1/2–gradient flow of the functional J under the
constraint that the volume is fixed, that is, the outer normal velocity Vt is
minus such H−1/2–gradient of the functional J (see [25]). For a smooth set
E ⊆ Tn, we let the space H̃−1/2(∂E) ⊆ L2(∂E) to be the dual of H̃1/2(∂E) (the
functions in H1/2(∂E) with zero integral, see Appendix B) with the Gagliardo
H1/2–seminorm

‖u‖2
H̃1/2(∂E)

= [u]2H1/2(∂E) =

ˆ
∂E

ˆ
∂E

|u(x)− u(y)|2

|x− y|n+1
dµ(x)dµ(y)

(it is a norm for H̃1/2(∂E) since the functions in it have zero integral) and the
pairing between H̃1/2(∂E) and H̃−1/2(∂E) simply being the integral of the
product of the functions on ∂E.
We define the linear operator ∆∂E on the smooth functions u with zero integral
on ∂E as follows: we consider the unique smooth solution w of the problem{

∆w = 0 in Tn \ ∂E
w = u on ∂E

and we denote by w+ and w− the restrictions w|Ec and w|E , respectively, then
we set

∆∂Eu = ∂νw
+ − ∂νw− = [∂νw] ,
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which is another smooth function on ∂E with zero integral. Then, we have
ˆ

Tn
|∇w|2 dx =

ˆ
E∪Ec

div(w∇w) dx = −
ˆ
∂E
u∆∂Eu dµ

and such quantity turns out to be a norm equivalent to the one given by the
Gagliardo seminorm on H̃1/2(∂E) above (this is related to the theory of trace
spaces, mentioned at the end of Appendix B, for which we refer to [3, 14]),
see [25]. Hence, it induces the dual norm

‖v‖2
H̃−1/2(∂E)

=

ˆ
∂E
v(−∆∂E)−1v dµ

for every smooth function v ∈ H̃−1/2(∂E). By polarization, we have the
H̃−1/2(∂E)–scalar product between a pair of smooth functions u, v : ∂E → R

with zero integral,

〈u|v〉
H̃−1/2(∂E) =

ˆ
∂E
u(−∆∂E)−1v dµ .

This scalar product, extended to the whole space H̃−1/2(∂E), make it a Hilbert
space (see [17]), hence, by Riesz representation theorem, there exists a function
∇H̃−1/2

∂E J ∈ H̃−1/2(∂E) such that, for every smooth function v ∈ H̃−1/2(∂E),
there holds

ˆ
∂E
v(H + 4γvE) dµ = δJ∂E(v) = 〈v, |∇H̃−1/2

∂E J〉
H̃−1/2(∂E)

=

ˆ
∂E
v(−∆∂E)−1∇H̃−1/2

∂E J dµ ,

by Theorem 1.5, where vE is the potential introduced in (1.3) and H is the mean
curvature of ∂E.
Then, by the fundamental lemma of calculus of variations, we conclude

(−∆∂E)−1∇H̃−1/2

∂E J = H + 4γvE + c ,

for a constant c ∈ R, that is, recalling the definition of wE in problem (2.1) and
of ∆∂E ,

∇H̃−1/2

∂E J = −∆∂E(H + 4γvE) = −[∂νEwE ] .

It clearly follows that the outer normal velocity of the moving boundaries
of a surface diffusion flow Vt = [∂νtwt] is minus the H̃−1/2–gradient of the
volume–constrained functional J .

Remark 2.4. In the case γ = 0, the functional J is simply the Area functional on
the boundary of the sets. It is then interesting to note that the (classical, unmodi-
fied) Mullins–Sekerka flow is its H−1/2–gradient flow (under the constraint that
the volume is fixed), while it is easy to see that the mean curvature flow, where
Vt = −Ht, is its L2–gradient flow (without constraints). Moreover, considering
its H−1–gradient flow under a volume constraint, we get the so–called surface
diffusion flow (see [11], for instance), where Vt = ∆tHt, see [17].
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We now state a short time existence and uniqueness result of the modified
Mullins–Sekerka flow starting from a smooth hypersurface, proved by Escher
and Nishiura in [12]. It deals with the flow in the whole space Rn, but it is
straightforward to adapt the same arguments to our case when the ambient is
the flat torus Tn.

Given a smooth set F ⊆ Tn and a tubular neighborhood Nε of ∂F , as in
formula (1.37), for any M ∈ (0, ε/2) (recall the discussion at the beginning of
Section 1.3 about our notion of “closedness” of sets), we denote by C1

M (F ), the
class of all smooth sets E ⊆ F ∪Nε such that Vol(E4F ) ≤M and

∂E = {x+ ψE(x)νF (x) : x ∈ ∂F} , (2.5)

for some ψE ∈ C∞(∂F ), with ‖ψE‖C1(∂F ) ≤ M (hence, ∂E ⊆ Nε). For every
k ∈ N and α ∈ (0, 1), we also denote by Ck,αM (F ) the collection of sets E ∈
C1
M (F ) such that ‖ψE‖Ck,α(∂F ) ≤M .

Theorem 2.5 (Short time existence and uniqueness). Let F ⊆ Tn be a smooth set
and Nε a tubular neighborhood of ∂F , as in formula (1.37), Then, for every α ∈ (0, 1)

and M ∈ (0, ε/2) small enough, there exists T = T (F ,M ,α) > 0 such that if
E0 ∈ C2,α

M (F ) there exists a unique smooth modified Mullins–Sekerka flow with
parameter γ ≥ 0, starting from E0, in the time interval [0,T ).

In the next chapter we will show that for special “initial” sets, the flow exists
for all times and we will study its long time behavior.

2.2 technical lemmas

In this section we prove some technical lemmas necessary for the proof of the
global existence result. In the following, in order to simplify the notation, for
a smooth set Et ⊆ Tn we will write νt for νEt , ∂νt in place of ∂νEt and wt for
the function wEt ∈ H1(Tn) uniquely defined by problem (2.1). Moreover, we
will also denote with vt the smooth potential function vEt associated to Et by
formula (1.3).

We start with the following lemma holding in all dimensions.

Lemma 2.6 (Energy identities). Let Et ⊆ Tn be a modified Mullins–Sekerka flow as
in Definition (2.2). Then, the following identities hold:

d

dt
J(Et) = −

ˆ
Tn
|∇wt|2 dx , (2.6)

and

d

dt

1

2

ˆ
Tn
|∇wt|2 dx = −ΠEt

(
[∂νtwt]

)
+

1

2

ˆ
∂Et

(
∂νtw

+
t + ∂νtw

−
t

)
[∂νtwt]

2 dµt ,

(2.7)
where ΠEt is the quadratic form defined in formula (1.31).

Proof. Let ψt the smooth family of maps describing the flow as in formula (2.4).
By formula (1.12), where X is the smooth (velocity) vector field Xt = ∂ψt

∂t =
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[∂νtwt]νt along ∂Et, hence Xτ = Xt−〈Xt, νt〉νt = 0 (as usual νt is the outer nor-
mal unit vector of ∂Et), following the computation in the proof of Theorem (1.5),
we have

d

dt
J(Et) =

ˆ
∂Et

(Ht + 4γvt)〈Xt|νt〉 dµt =

ˆ
∂Et

wt[∂νtwt] dµt = −
ˆ

Tn
|∇wt|2 dx ,

where the last equality follows integrating by parts, as wt is harmonic in
Tn \ ∂Et. This establishes relation (2.6).

In order to get identity (2.7), we compute

d

dt

1

2

ˆ
Et

|∇w−t |2 dx =
1

2

ˆ
∂Et

|∇Tnw−t |2 〈Xt|νt〉 dµt +
1

2

ˆ
Et

d

dt
|∇w−t |2 dx

=
1

2

ˆ
∂Et

|∇Tnw−t |2[∂νtwt] dµ+

ˆ
Et

∇∂tw−t ∇w
−
t dµt

=
1

2

ˆ
∂Et

|∇Tnw−t |2[∂νtwt] dµ+

ˆ
∂Et

∂tw
−
t ∂νtw

−
t dµt,(2.8)

where we interchanged time and space derivatives and we applied the diver-
gence theorem, taking into account that w−t is harmonic in Et.
Then, we need to compute ∂tw−t on ∂Et. We know that

w−t = Ht + 4γvt .

on ∂Et, hence, (totally) differentiating in time this equality, we get

∂tw
−
t +

〈
∇Tnw−t

∣∣Xt

〉
= ∂tHt + 4γ∂tvt + 4γ

〈
∇Tnvt

∣∣Xt

〉
,

that is,

∂tw
−
t + [∂νtwt]∂νtw

−
t = ∂tHt + 4γ∂tvt + 4γ[∂νtwt]∂νtvt

= − |Bt|2[∂νtwt]− ∆t[∂νtwt] + 4γ∂tvt + 4γ[∂νtwt]∂νtvt ,

where we used computation (1.24).
Therefore from equations (2.8) and (1.26) we get

d

dt

1

2

ˆ
Et

|∇w−t |2 dx = −
ˆ
∂Et

∂νtw
−
t ∆t[∂νtwt] dµt −

ˆ
∂Et

∂νtw
−
t |Bt|2 [∂νtwt] dµt

+ 8γ

ˆ
∂Et

ˆ
∂Et

G(x, y) ∂νtw
−
t (x) [∂νtwt](y) dµt(x)dµt(y)

+ 4γ

ˆ
∂Et

∂νtvt ∂νtw
−
t [∂νtwt] dµt

+
1

2

ˆ
∂Et

|∇Tnw−t |2[∂νtwt] dµt −
ˆ
∂Et

(∂νtw
−
t )2[∂νtwt] dµt .
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Computing analogously for w+
t in Ec and adding the two results, we get

d

dt

1

2

ˆ
Tn
|∇wt|2 dx =

ˆ
∂Et

[∂νtwt] ∆t[∂νtwt] dµt +

ˆ
∂Et

|Bt|2 [∂νtwt]
2 dµt

− 8γ

ˆ
∂Et

ˆ
∂Et

G(x, y) [∂νtwt](x) [∂νtwt](y) dµt(x)dµt(y)

− 4γ

ˆ
∂Et

∂νtvt [∂νtwt]
2 dµt

+

ˆ
∂Et

(
(∂νtw

+
t )2 − (∂νtw

−
t )2
)
[∂νtwt] dµt

− 1

2

ˆ
∂Et

(
|∇Tnw+

t |2 − |∇Tnw−t |2
)
[∂νtwt] dµt

= −ΠEt

(
[∂νtwt]

)
+

1

2

ˆ
∂Et

(
∂νtw

+
t + ∂νtw

−
t

)
[∂νtwt]

2 dµt ,

where we integrated by parts the very first term of the right hand side, recalled
Definition (1.31) and in the last step we used the identity

|∇Tnw+
t |2 − |∇Tnw−t |2 = (∂νtw

+
t )2 − (∂νtw

−
t )2 = (∂νtw

+
t + ∂νtw

−
t )[∂νtwt] .

Hence, also equation (2.7) is proved.

From now on, we restrict ourselves to the three–dimensional case, that is, we will
consider smooth subsets of T3 with boundaries which then are smooth embedded
(2–dimensional) surfaces.

In the estimates in the following series of lemmas, we will be interested in having
uniform constants for the families C1,α

M (F ), given a smooth set F ⊆ Tn and a tubular
neighborhood Nε of ∂F as in formula (1.37), for any M ∈ (0, ε/2) and α ∈ (0, 1).
This is guaranteed if the constants in the Sobolev, Gagliardo–Nirenberg interpolation
and Calderón–Zygmung inequalities, relative to all the smooth hypersurfaces ∂E
boundaries of the sets E ∈ C1,α

M (F ), are uniform, as it is proved in detail in [8].

We remind that in all the inequalities, the constants C may vary from one line to
another.

The next lemma provides some boundary estimates for harmonic functions.

Lemma 2.7 (Boundary estimates for harmonic functions). Let F ⊆ T3 be a
smooth set and E ∈ C1,α

M (F ). Let f ∈ Cα(∂E) with zero integral on ∂E and let
u ∈ H1(T3) be the (distributional) solution of

−∆u = fµ
∣∣
∂E

with zero integral on T3. Let u− = u|E and u+ = u|Ec and assume that u− and u+

are of class C1 up to the boundary ∂E. Then, for every 1 < p < +∞ there exists a
constant C = C(F ,M ,α, p) > 0, such that:

(i) ‖u‖Lp(∂E) ≤ C‖f‖Lp(∂E)

(ii) ‖∂νEu
+‖L2(∂E) + ‖∂νEu

−‖L2(∂E) ≤ C‖u‖H1(∂E)
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(iii) ‖∂νEu
+‖Lp(∂E) + ‖∂νEu

−‖Lp(∂E) ≤ C‖f‖Lp(∂E)

(iv) ‖u‖C0,β(∂E) ≤ C‖f‖Lp(∂E)

for all β ∈ (0, p−2p ), with C depending also on β.

Moreover, if f ∈ H1(∂E), then for every 2 ≤ p < +∞ there exists a constant
C = C(F ,M ,α, p) > 0, such that

‖f‖Lp(∂E) ≤ C‖f‖
(p−1)/p
H1(∂E)

‖u‖1/p
L2(∂E)

.

Proof. We are not going to underline it every time, but it is easy to check that
all the constants that will appear in the proof will depend with only on F ,
M , α and sometimes p, recalling the previous discussion about the “uniform”
inequalities holding for the families of sets C1,α

M (F ).

(i) Recalling Remark 1.13, we have

u(x) =

ˆ
∂E
G(x, y)f(y) dµ(y).

It is well known that it is always possible to write G(x, y) = h(x− y) + r(x− y)

where h : R → R is smooth away from 0, one–periodic and h(t) = 1
4π|t| in

a neighborhood of 0, while r : R → R is smooth and one–periodic. The
conclusion then follows since for v(x) =

´
∂E

f (y)
|x−y| dµ(y) there holds

‖v‖Lp(∂E) ≤ C‖f‖Lp(∂E) ,

with C = C(F ,M ,α, p) > 0.

(ii) We are going to adapt the proof of [22] to the periodic setting. First observe
that since u is harmonic in E ⊆ T3 we have

div
(
2〈∇u|x〉∇u− |∇u|2x+ u∇u

)
= 0. (2.9)

Moreover, there exist constants r > 0, C0 and N ∈N, depending only on F , M ,
α, such that we may cover ∂E with N balls Br(xk), with every xk ∈ F and

1

C0
≤ 〈x|νE(x)〉 ≤ C0 for x ∈ ∂E ∩B2r(xk) . (2.10)

for every that E ∈ C1,α
M (F ).

If then 0 ≤ ϕk ≤ 1 is a smooth function with compact support in B2r(xk) such
that ϕk ≡ 1 in Br(xk) and |∇ϕk| ≤ C/r, by integrating the function

div
(
ϕk
(
2〈∇u|x〉∇u− |∇u|2x+ u∇u

))
in E and using equality (2.9), we get

ˆ
E

〈
∇ϕk| 2 〈∇u|x〉∇u− |∇u|2x+ u∇u

〉
dx

=

ˆ
E

div
(
ϕk(2 〈∇u|x〉∇u− |∇u|2x+ u∇u)

)
dx

=

ˆ
∂E

(
2ϕk〈∇T3

u|x〉∂νEu−ϕk|∇
T3
u|2〈x|νE〉+ ϕku∂νEu

)
dµ,
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hence,
ˆ
E

〈
∇ϕk|2

〈
∇T3

u|x
〉
∇u− |∇u|2x+ u∇u

〉
dx−

ˆ
∂E
ϕku∂νEu

− dµ

− 2

ˆ
∂E
ϕk〈∇u|x〉∂νEu

− dµ

= −
ˆ
∂E
ϕk|∇T3

u−|2〈x|νE〉 dµ+ 2

ˆ
∂E
ϕk|∂νEu

−|2〈x|νE〉 dµ

=

ˆ
∂E
ϕk|∂νEu

−|2〈x|νE〉 dµ−
ˆ
∂E
ϕk|∇u|2〈x|νE〉 dµ .

Using the Poincaré inequality on the torus T3 (recall that u has zero integral)
and estimate (2.10), this inequality implies

ˆ
∂E∩Br(xk)

|∂νEu|
2 dµ ≤ C

ˆ
∂E

(u2 + |∇u|2) dµ+C

ˆ
T3

(u2 + |∇u|2) dx

≤ C
ˆ
∂E

(u2 + |∇u|2) dµ+C

ˆ
T3

|∇u|2 dx .

Putting together all the above estimates and repeating the argument on Ec, we
get

ˆ
∂E

(|∂νEu
−|2 + |∂νEu

+|2) dµ ≤ C
ˆ
∂E

(u2 + |∇u|2) dµ+C

ˆ
T3

|∇u|2 dx .

The thesis then follows by observing that
ˆ

T3

|∇u|2 dx =

ˆ
∂E
u(∂νEu

− − ∂νEu
+) dµ .

(iii) Let us define

Kf(x) =

ˆ
∂E

〈
∇T3

x G(x, y)|νE(x)
〉
f(y) dµ(y) .

We want to show that

‖Kf‖Lp(∂E) ≤ C‖f‖Lp(∂E). (2.11)

By the decomposition recalled at the point (i), we have ∇T3

x G(x, y) = ∇T3

x [h(x−
y)] +∇T3

x [r(x− y)], where ∇T3

x [h(x− y)] = − 1
4π

x−y
|x−y|3 , for |x− y| small enough

and ∇T3

x [r(x− y)] is smooth. Thus, by a standard partition of unity argument
we may localize the estimate and reduce to show that if ϕ ∈ C1,α

c (R2) and
U ⊆ R2 is a bounded domain setting Γ = {(x′,ϕ(x′)) : x′ ∈ U} ⊆ R3 and

Tf(x) =

ˆ
Γ

〈x− y|νE(x)〉
|x− y|3

f(y) dµ(y)

for every x ∈ Γ, where νE is the “upper” normal to the graph Γ, then Tf(x) is
well defined at every x ∈ Γ and

‖Tf‖Lp(Γ) ≤ C‖f‖Lp(Γ) .
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In order to show this we observe that we may write

Tf(x) =

ˆ
U

ϕ(x′)−ϕ(y′)− 〈∇ϕ(x′)|x′ − y′〉
(|x′ − y′|2 + [ϕ(x′)−ϕ(y′)]2)3/2 f(y′,ϕ(y′)) dy′.

where we used the fact that

Γ = {(x′, y′) : y′ −ϕ(x′) = F (x′, y′) = 0}

and then that

νE =
∇F
|∇F |

=
(−∇ϕ(x′), 1)√
1 + |∇ϕ(x′)|2

.

Therefore,

|Tf(x)| ≤ C
ˆ
U

|x′ − y′|1+α

(|x′ − y′|2 + [ϕ(x′)−ϕ(y′)]2)3/2 |f(y′,ϕ(y′))| dy′

≤ C
ˆ
U

|f(y′,ϕ(y′))|
|x′ − y′|2−α

dy′.

Thus, inequality (2.11) follows from a standard convolution estimate.
For x ∈ E we have

∇u(x) =

ˆ
∂E
∇T3

x G(x, y)f(y) dµ(y),

hence, for x ∈ ∂E there holds

〈∇u(x− tνE(x))| νE(x)〉 =

ˆ
∂E

〈
∇T3

x G(x− tνE(x), y)| νE(x)
〉
f(y) dµ(y).

We claim that

∂νEu
−(x) = lim

t→0+
〈∇u(x− tνE(x))| νE(x)〉 = Kf(x) +

1

2
f(x), (2.12)

for every x ∈ ∂E, then the result follows from inequality (2.11) and this limit,
together with the analogous identity for ∂νEu

+(x).
To show equality (2.12) we first observe that

ˆ
∂E

〈
∇T3

x G(x, y)| νE(y)
〉
dµ(y) = 1−Vol(E) if x ∈ E \ ∂E (2.13)

ˆ
∂E

〈
∇T3

x G(x, y)| νE(y)
〉
dµ(y) = 1/2−Vol(E) if x ∈ ∂E. (2.14)

Indeed, using Definition (1.3), we have

∆vE(x) =

ˆ
E

∆xG(x, y) dy−
ˆ
Ec

∆xG(x, y) dy

= − 2

ˆ
∂E

〈
∇T3

x G(x, y)| νE(y)
〉
dµ(y)

= 2Vol(E)− 1− uE(x),

then, ˆ
∂E

〈
∇T3

x G(x, y)| νE(y)
〉
dµ(y) = 1/2−Vol(E) + uE(x)/2,
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which clearly implies equation (2.13). Equality (2.14) instead follows by an
approximation argument, after decomposing the Green function as at the
beginning of the proof of point (i), G(x, y) = h(x− y) + r(x− y), with h(t) =
1

4π|t| in a neighborhood of 0 and r : R→ R a smooth function.
Therefore, we may write, for x ∈ ∂E and t > 0 (remind that νE is the outer unit
normal vector, hence x− tνE(x) ∈ E),

〈∇u(x− tνE(x))| νE(x)〉 =

ˆ
∂E

〈
∇T3

x G(x− tνE(x), y)|νE(x)
〉
(f(y)− f(x)) dµ(y)

+ f(x)

ˆ
∂E

〈
∇T3

x G(x− tνE(x), y)|νE(x)− νE(y)
〉
dµ(y)

+ f(x)(1−Vol(E)) ,
(2.15)

by equality (2.13).
Let us now prove that

lim
t→0+

ˆ
∂E

〈
∇T3

x G(x− tνE(x), y) | νE(x)
〉
(f(y)− f(x)) dµ(y)

=

ˆ
∂E

〈
∇T3

x G(x, y) | νE(x)
〉
(f(y)− f(x)) dµ(y),

observing that since ∂E is of class C1,α then for |t| sufficiently small we have

|x− y− tνE(x)| ≥ 1

2
|x− y| for all y ∈ ∂E . (2.16)

Then, in view of the decomposition of ∇xG above, it is enough show that

lim
t→0+

ˆ
∂E

〈x− y− tνE(x) | νE(x)〉
|x− y− tνE(x)|3

(f(y)− f(x)) dµ(y)

=

ˆ
∂E

〈x− y | νE(x)〉
|x− y|3

(f(y)− f(x)) dµ(y) ,

which follows from the dominated convergence theorem, after observing that
due to the α–Hölder continuity of f and to inequality (2.16), the absolute value
of both integrands can be estimated from above by C/|x− y|2−α for some
constant C > 0.
Arguing analogously, we also get

lim
t→0+

ˆ
∂E

〈
∇T3

x G(x− tνE(x), y)|νE(x)− νE(y)
〉
dµ(y)

=

ˆ
∂E

〈
∇T3

x G(x, y)|νE(x)− νE(y)
〉
dµ(y) .

Then, letting t→ 0+ in equality (2.15), for every x ∈ ∂E, we obtain

lim
t→0+
〈∇u(x− tνE(x))|νE(x)〉 =

ˆ
∂E

〈
∇T3

x G(x, y)|νE(x)
〉
(f(y)− f(x)) dµ(y)

+ f(x)

ˆ
∂E

〈
∇T3

x G(x, y)|νE(x)− νE(y)
〉
dµ(y)

+ f(x)(1−Vol(E))
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=

ˆ
∂E

〈
∇T3

x G(x, y)|νE(x)
〉
f(y) dµ(y)

− f(x)

ˆ
∂E

〈
∇T3

x G(x, y)|νE(y)
〉
dµ(y)

+ f(x)(1−Vol(E))

=Kf(x) + f(x)(Vol(E)− 1/2) + f(x)(1−Vol(E))

=Kf(x) +
1

2
f(x),

where we used equality (2.14), then limit (2.12) holds and the thesis follows.

(iv) Fixed p > 2 and β ∈ (0, p−2p ), as before, due to the properties of the Green’s
function, it is sufficient to establish the statement for the function

v(x) =

ˆ
∂E

f(y)

|x− y|
dµ(y) .

For x1, x2 ∈ ∂E we have

|v(x1)− v(x2)| ≤
ˆ
∂E
|f(y)|

∣∣|x1 − y| − |x2 − y|∣∣
|x1 − y| |x2 − y|

dµ(y) .

In turn, by an elementary inequality, we have∣∣|x1 − y| − |x2 − y|∣∣
|x1 − y| |x2 − y|

≤ C(β)

∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣

|x1 − y| |x2 − y|
|x1 − x2|β ,

thus, by Hölder inequality we have

|v(x1)− v(x2)| ≤ C(β)

ˆ
∂E
|f(y)|

∣∣|x1 − y|1−β + |x2 − y|1−β
∣∣

|x1 − y| |x2 − y|
dµ(y) |x1 − x2|β

≤ C ′(β)‖f‖Lp |x1 − x2|β ,

where we set

C ′(β) = 2C(β)

(
sup

z1, z2∈∂E

ˆ
∂E

1

|z1 − y|βp′ |z2 − y|p′
dµ(y)

)1/p′

,

with p′ = p/(p− 1).

For the second part of the lemma, we start by observing that

‖f‖L2(∂E) ≤ C‖f‖1/2
H1(∂E)

‖f‖1/2
H−1(∂E)

.

If p > 2 we have, by Gagliardo–Nirenberg interpolation inequalities (see [5,
Theorem 3.70]),

‖f‖Lp(∂E) ≤ C‖f‖
(p−2)/p

H1(∂E)‖f‖
2/p
L2(∂E)

.

Therefore, by combining the two previous inequalities we get that, for p ≥ 2,
there holds

‖f‖Lp(∂E) ≤ C‖f‖
(p−1)/p

H1(∂E)‖f‖
1/p
H−1(∂E)

.

Hence, the thesis follows once we show

‖f‖H−1(∂E) ≤ C‖u‖L2(∂E).
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To this aim, let us fix ϕ ∈ H1(∂E) and with a little abuse of notation denote its
harmonic extension to T3 still by ϕ. Then, by integrating by parts twice and by
point (ii), we get

ˆ
∂E
ϕf dµ = −

ˆ
∂E
ϕ∆u dµ

= −
ˆ
∂E
u[∂νEϕ] dµ

≤‖u‖L2(∂E)

∥∥[∂νEϕ]
∥∥
L2(∂E)

≤‖u‖L2(∂E)

(
‖∂νEϕ

+‖L2(∂E) + ‖∂νEϕ
−‖L2(∂E)

)
≤C‖u‖L2(∂E)‖ϕ‖H1(∂E).

Therefore,

‖f‖H−1(∂E) = sup
‖ϕ‖H1(∂E)≤1

ˆ
∂E
ϕf dµ ≤ C‖u‖L2(∂E)

and we are done.

For any smooth set E ⊆ T3, the fractional Sobolev space W s,p(∂E), usually
obtained via local charts and partitions of unity, has an equivalent definition
considering directly the Gagliardo W s,p–seminorm of a function f ∈ Lp(∂E), for
s ∈ (0, 1), as follows

[f ]p
W s,p(∂E)

=

ˆ
∂E

ˆ
∂E

|f(x)− f(y)|p

|x− y|2+sp
dµ(x)dµ(y)

and setting ‖f‖W s,p(∂E) = ‖f‖Lp(∂E) + [f ]W s,p(∂E) (see Appendix B). As it is
customary, we set [f ]Hs(∂E) = [f ]W s,2(∂E) and Hs(∂E) = W s,2(∂E).

Then, it can be shown that for all the sets E ∈ C1,α
M (F ), given a smooth set

F ⊆ T3 and a tubular neighborhood Nε of ∂F as in formula (1.37), for any
M ∈ (0, ε/2) and α ∈ (0, 1), the constants giving the equivalence between this
norm above and the “standard” norm of W s,p(∂E) can be chosen to be uniform,
independent of E. Moreover, as for the “usual” (with integer order) Sobolev
spaces, all the constants in the embeddings of the fractional Sobolev spaces
(in particular the ones in the propositions of Appendix B) are also uniform for
this family. This is related to the possibility, due to the closedness in C1,α and
the graph representation, of “localizing” and using partitions of unity “in a
single common way” for all the smooth hypersurfaces ∂E boundaries of the
sets E ∈ C1,α

M (F ), see [8] for details.
Then, we have the following technical lemma.

Lemma 2.8. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F ). For every β ∈ [0, 1/2),

there exists a constant C = C(F ,M ,α,β) such that if f ∈ H
1
2 (∂E) and g ∈

W 1,4(∂E), then

[fg]
H

1
2 (∂E)

≤ C[f ]
H

1
2 (∂E)

‖g‖L∞(∂E) +C‖f‖
L

4
1+β (∂E)

‖g‖β
L∞(∂E)

‖∇g‖1−β
L4(∂E)

.
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Proof. We estimate with Hölder inequality, noticing that 6β/(1 + β) < 2, as
β ∈ [0, 1/2), hence there exists δ > 0 such that (6β + δ)/(1 + β) < 2,

[fg]2
H

1
2 (∂E)

≤ 2[f ]2
H

1
2 (∂E)

‖g‖2L∞(∂E) + 2

ˆ
∂E

ˆ
∂E
|f(y)|2 |g(x)− g(y)|2

|x− y|3
dµ(x)dµ(y)

≤ 2[f ]2
H

1
2 (∂E)

‖g‖2L∞(∂E)

+C

ˆ
∂E

ˆ
∂E

|f(y)|2

|x− y|3β+δ/2
|g(x)− g(y)|2(1−β)

|x− y|3(1−β)−δ/2
‖g‖2β

L∞(∂E)
dµ(x)dµ(y)

≤ 2[f ]2
H

1
2 (∂E)

‖g‖2L∞(∂E)

+C
(ˆ

∂E
|f(y)|

4
1+β

ˆ
∂E

1

|x− y|
6β+δ
1+β

dµ(x)dµ(y)
)(1+β)/2

‖g‖2β
L∞(∂E)

·
(ˆ

∂E

ˆ
∂E

|g(x)− g(y)|4

|x− y|6−
δ

1−β
dµ(x)dµ(y)

)(1−β)/2

≤ 2[f ]2
H

1
2 (∂E)

‖g‖2L∞(∂E)

+C
(ˆ

∂E
|f(y)|

4
1+β dµ(y)

)(1+β)/2
‖g‖2β

L∞(∂E)
[g]

2(1−β)

W
1− δ

4(1−β)
,4

(∂E)

≤ 2[f ]2
H

1
2 (∂E)

‖g‖2L∞(∂E) +C‖f‖2
L

4
1+β (∂E)

‖g‖2β
L∞(∂E)

‖∇g‖2(1−β)
L4(∂E)

,

where in the last inequality we applied Proposition B.1 (extended to the frac-
tional Sobolev spaces on ∂E). Hence the thesis follows noticing that all the
constants C above depend only on F , M , α and β, by the previous discussion,
before the lemma.

As a corollary we have the following estimate.

Lemma 2.9. Let F ⊆ T3 be a smooth set and E ∈ C1,α
M (F ). Then, for M small

enough, there holds

‖ψE‖
W

5
2 ,2(∂F )

≤ C(F ,M ,α)
(
1 + ‖H‖2

H
1
2 (∂E)

)
,

where H is the mean curvature of ∂E and the function ψE is defined by formula (2.5).

Proof. By a standard localization/partition of unity/straightening argument,
we may reduce ourselves to the case where the function ψE is defined in a
disk D ⊆ R2 and ‖ψE‖C1,α(D) ≤ M . Fixed a smooth cut–off function ϕ with
compact support in D and equal to one on a smaller disk D′ ⊆ D, we have (see
Remark A.2)

∆(ϕψE)− ∇
2(ϕψE)∇ψE∇ψE

1 + |∇ψE |2
= ϕH

√
1 + |∇ψE |2 +R(x,ψE ,∇ψE) ,
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where the remainder term R(x,ψE ,∇ψE) is a smooth Lipschitz function. Then,
using Lemma 2.8 with β = 0 and recalling that ‖ψE‖C1,α(D) ≤M , we estimate

[∆(ϕψE)]
H

1
2 (D)

≤ C(F ,M ,α)
(
M2[∇2(ϕψE)]

H
1
2 (D)

+ [H]
H

1
2 (∂E)

(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W 2,4(D))

+ 1 + ‖ψE‖W 2,4(D)

)
.

We now use the fact that, by a simple integration by part argument, if u is a
smooth function with compact support in R2, there holds

[∆u]
H

1
2 (R2)

= [∇2u]
H

1
2 (R2)

,

hence,

[∇2(ϕψE)]
H

1
2 (D)

= [∆(ϕψE)]
H

1
2 (D)

≤ C(F ,M ,α)
(
M2[∇2(ϕψE)]

H
1
2 (D)

+ [H]
H

1
2 (∂E)

(1 + ‖∇ψE‖L∞(D))

+ ‖H‖L4(∂E)(1 + ‖ψE‖W 2,4(D))

+ 1 + ‖ψE‖W 2,4(D)

)
,

then, if M is small enough, we have

[∇2(ϕψE)]
H

1
2 (D)

≤ C(F ,M ,α)(1 + ‖H‖
H

1
2 (∂E)

)(1 + ‖HessψE‖L4(D)), (2.17)

as
‖H‖L4(∂E) ≤ C(F ,M ,α)‖H‖

H
1
2 (∂E)

, (2.18)

by Proposition B.2 with q = 4, s = 1/2 and p = 2.
By the Calderón–Zygmund estimates (holding uniformly for every hypersurface
∂E, with E ∈ C1,α

M (F ), see [8]),

‖HessψE‖L4(D) ≤ C(F ,M ,α)(‖ψE‖L4(D) + ‖∆ψE‖L4(D)) (2.19)

and the expression of the mean curvature (Remark A.2)

H =
∆ψE√

1 + |∇ψE |2
− HessψE(∇ψE∇ψE)

(
√

1 + |∇ψE |)3
.

we obtain

‖∆ψE‖L4(D) ≤ 2M‖H‖L4(∂E) +M2‖HessψE‖L4(D)

≤ 2M‖H‖L4(∂E) +C(F ,M ,α)M2(‖ψE‖L4(D) + ‖∆ψE‖L4(D))

hence, possibly choosing a smaller M , we conclude

‖∆ψE‖L4(D) ≤ C(F ,M ,α)(1 + ‖H‖L4(∂E)) ≤ C(F ,M ,α)(1 + ‖H‖
H

1
2 (∂E)

),
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again by inequality (2.18).
Thus, by estimate (2.19), we get

‖HessψE‖L4(D) ≤ C(F ,M ,α)(1 + ‖H‖
H

1
2 (∂E)

), (2.20)

and using this inequality in estimate (2.17),

[∇2(ϕψE)]
H

1
2 (D)

≤ C(F ,M ,α)(1 + ‖H‖
H

1
2 (∂E)

)2,

hence,

[∇2ψE ]
H

1
2 (D′)

≤ C(F ,M ,α)(1 + ‖H‖
H

1
2 (∂E)

)2 ≤ C(F ,M ,α)(1 + ‖H‖2
H

1
2 (∂E)

).

The inequality in the statement of the lemma then easily follows by this in-
equality, estimate (2.20) and ‖ψE‖C1,α(D) ≤M , with a standard covering argu-
ment.

We are now ready to prove the last lemma of this section.

Lemma 2.10 (Compactness). Let F ⊆ T3 be a smooth set and En ⊆ C1,α
M (F ) a

sequence of smooth sets such that

sup
n∈N

ˆ
T3

|∇wEn |2 dx < +∞ ,

where wEn are the functions associated to En by problem (2.1).
Then, if α ∈ (0, 1/2) and M is small enough, there exists a smooth set F ′ ∈ C1

M (F )

such that, up to a (non relabeled) subsequence, En → F ′ in W 2,p for all 1 ≤ p < 4

(recall the definition of convergence of sets at the beginning of Section 1.3).
Moreover, if ˆ

T3

|∇wEn |2 dx→ 0 ,

then F ′ is critical for the volume–constrained nonlocal Area functional J and the
convergence En → F ′ is in W

5
2
,2.

Proof. Throughout all the proof we write wn, Hn, and vn instead of wEn , H∂En ,
and vEn , respectively. Moreover, we denote by ŵn =

ffl
T3 wn dx and we set

w̃n =
ffl
∂En

wn dµn and H̃n =
ffl
∂En

Hn dµn.
First, we recall that

wn = Hn + 4γvn on ∂En and sup
n∈N

‖vn‖C1,α(T3) < +∞ , (2.21)

by standard elliptic estimates. We want to show that

‖wn − w̃n‖2
H

1
2 (∂En)

≤ ‖wn − ŵn‖2
H

1
2 (∂En)

. (2.22)

To this aim, we recall that for every constant a

‖wn − a‖2L2(∂En) = ‖wn‖2L2(∂En) + a2AT3(∂En)− 2a

ˆ
∂En

wn dµn
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then,
d

dt
‖wn − a‖2L2(∂En) = 2aAT3(∂En)− 2

ˆ
∂En

wn dµn.

The above equality vanishes if and only if a =
ffl
∂En

wn dµn, hence,

‖wn − w̃n‖L2(∂En) = min
a∈R
‖wn − a‖L2(∂En)

and inequality (2.22) follows by the definition of ‖ · ‖
H

1
2 (∂En)

(see Appendix B)

and the observation on the Gagliardo seminorms just before Lemma 2.8.
Then, from the trace inequality (see [13]), which holds with a “uniform” constant
C = C(F ,M ,α), for all the sets E ∈ C1,α

M (F ) (see [8]), we obtain

‖wn − w̃n‖2
H

1
2 (∂En)

≤ ‖wn − ŵn‖2
H

1
2 (∂En)

≤ C
ˆ

T3

|∇wn|2 dx < C < +∞ (2.23)

with a constant C independent of n ∈N.
We claim now that

sup
n∈N

‖Hn‖
H

1
2 (∂En)

< +∞. (2.24)

To see this note that by the uniform C1,α–bounds on ∂En, we may find a fixed
solid cylinder of the form C = D× (−L,L), with D ⊆ R2 a ball centered at the
origin and functions fn, with

sup
n∈N

‖fn‖C1,α(D) < +∞ , (2.25)

such that ∂En ∩C = {(x′,xn) ∈ D× (−L,L) : xn = fn(x′)} with respect to a
suitable coordinate frame (depending on n ∈N).

ˆ
D

(Hn − H̃n) dx′ + H̃nArea(D) =

ˆ
D

div
( ∇x′fn√

1 + |∇x′fn|2
)
dx′

=

ˆ
∂D

∇x′fn√
1 + |∇x′fn|2

· x
′

|x′|
dσ .

where σ is the canonical (standard) measure on the circle ∂D.
Hence, recalling the uniform bound (2.25) and the fact that ‖Hn − H̃n‖

H
1
2 (∂En)

are equibounded thanks to inequalities (2.21) and (2.23), we get that H̃n are
also equibounded (by a standard “localization” argument, “uniformly” applied
to all the hypersurfaces ∂En). Therefore, the claim (2.24) follows.
By applying the Sobolev embedding theorem on each connected component of
∂F , we have that

‖Hn‖Lp(∂En) ≤ C‖Hn‖
H

1
2 (∂En)

< C < +∞ for all p ∈ [1, 4].

for a constant C independent of n ∈N.
Now, by means of Calderón–Zygmund estimates, it is possible to show (see [8])
that there exists a constant C > 0 depending only on F , M , α and p > 1 such
that for every E ∈ C1,α

M (F ), there holds

‖B‖Lp(∂E) ≤ C(1 + ‖H‖Lp(∂E)) . (2.26)
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Then, if we write

∂En = {y + ψn(y)νF (y) : y ∈ ∂F} ,

we have supn∈N ‖ψn‖W 2,p(∂F ) < +∞, for all p ∈ [1, 4] (taking into account
Remark A.2). Thus, by the Sobolev compact embedding W 2,p(∂F ) ↪→ C1,α(∂F ),
up to a subsequence (not relabeled), there exists a set F ′ ∈ C1,α

M (F ) such that

ψn → ψF ′ in C1,α(∂F ) and vn → vF ′ in C1,β(T3)

for all α ∈ (0, 1/2) and β ∈ (0, 1).
From estimate (2.24) and Lemma 2.9 (possibly choosing a smaller M ), we have
then that the functions ψn are bounded in W

5
2
,2(∂F ). Hence, possibly passing

to another subsequence (again not relabeled), we conclude that En → F ′ in
W 2,p for every p ∈ [1, 4), by the Sobolev compact embedding in Proposition B.2
with q ∈ [1, 4), s = 1/2 and p = 2 there, applied to Hessψn.

If moreover we have ˆ
T3

|∇wn|2 dx→ 0

then the above arguments yield the existence of λ ∈ R and a subsequence (not
relabeled) such that wn

(
·+ψn(·)νF (·)

)
→ λ in H

1
2 (∂F ). In turn,

Hn

(
·+ψn(·)νF (·)

)
→ λ− 4γvF ′

(
·+ψF ′(·)νF (·)

)
= H

(
·+ψF ′(·)νF (·)

)
in H

1
2 (∂F ), where H is the mean curvature of F ′. Hence F ′ is critical.

To conclude the proof we then only need to show that ψn converge to ψ = ψF ′

in W
5
2
,2(∂F ).

Fixed δ > 0, arguing as in the proof of Lemma 2.9, we reduce ourselves to the
case where the functions ψn are defined on a disk D ⊆ R2, are bounded
in W

5
2
,2(D), converge in W 2,p(D) for all p ∈ [1, 4) to ψ ∈ W

5
2
,2(D) and

‖∇ψ‖L∞(D) ≤ δ. Then, fixed a smooth cut–off function ϕ with compact support
in D and equal to one on a smaller disk D′ ⊆ D, we have

∆(ϕψn)√
1 + |∇ψn|2

− ∆(ϕψ)√
1 + |∇ψ|2

= (∇2(ϕψn)−∇2(ϕψ))
∇ψ∇ψ

(1 + |∇ψ|2)3/2

+∇2(ϕψn)
( ∇ψn∇ψn

(1 + |∇ψn|2)3/2 −
∇ψ∇ψ

(1 + |∇ψ|2)3/2

)
+ ϕ(Hn −H) +R(x,ψn,∇ψn)−R(x,ψ,∇ψ) ,

where R is a smooth Lipschitz function. Then, using Lemma 2.8 with β ∈
(0, 1/2), an argument similar to the one in the proof of Lemma 2.9 shows that[

∆(ϕψn)√
1 + |∇ψn|2

− ∆(ϕψ)√
1 + |∇ψ|2

]
H

1
2 (D)

≤ C(M)
(
δ2[∇2(ϕψn)−∇2(ϕψ)]

H
1
2 (D)

+ ‖∇2(ϕψn)−∇2(ϕψ)‖
L

4
1+β (D)

‖∇ψ‖β
L∞(D)

‖∇2ψ‖1−β
L4(D)

+

+ [∇2(ϕψn)]
H

1
2 (D)
‖∇ψn −∇ψ‖L∞(D)

+ ‖∇2(ϕψn)‖
L

4
1+β (D)

‖∇ψn −∇ψ‖βL∞(D)
(‖∇2ψn‖L4(D) + ‖∇2ψ‖L4(D))

1−β

+ ‖Hn −H‖
H

1
2 (D)

+ ‖ψn −ψ‖W 2,2(D)

)
.
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Using Lemma 2.8 again to estimate [∆(ϕψn)−∆(ϕψ)]
H

1
2 (D)

with the seminorm

on the left hand side of the previous inequality and arguing again as in the
proof of Lemma 2.9, we finally get

[∇2(ϕψn)−∇2(ϕψ)]
H

1
2 (D)

≤ C(M)
(
‖ψn −ψ‖

W
2, 4

1+β (D)
+ ‖∇ψn −∇ψ‖βL∞(D)

+ ‖Hn −H‖
H

1
2 (D)

)
,

hence,

[∇2ψn −∇2ψ]
H

1
2 (D′)

≤ C(M)
(
‖ψn −ψ‖

W
2, 4

1+β (D′)
+ ‖∇ψn −∇ψ‖βL∞(D′)

+ ‖Hn −H‖
H

1
2 (D′)

)
,

from which the conclusion follows, by the first part of the lemma with p =

4/(1 + β) < 4 and a standard covering argument.
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G L O B A L E X I S T E N C E A N D B E H AV I O R O F S O L U T I O N S

We are ready to prove the long time existence result. We will follow the proof
in [1], by means of the lemmas proved in the previous chapter. As described
in the introduction, the following theorem shows that a strictly stable critical
set is in a way like the equilibrium configuration of a system at the bottom of
potential well. Indeed we are going to show that under the modified Mullins–
Sekerka flow, a smooth set starting close to a smooth strictly stable critical set,
asymptotically moves back to a translate of such set.

Theorem 3.1. Let E ⊆ Tn be a smooth strictly stable critical set with Nε (with ε < 1)
a tubular neighbourhood of E, as in formula (1.37). For every α ∈ (0, 1/2) there exists
M > 0 such that, if E0 is a smooth set in C1,α

M (E) satisfying Vol(E0) = Vol(E) and
ˆ

T3

|∇wE0 |2 dx ≤M

where w0 = wE0 is the function relative to E0 as in problem (2.1), then the unique
smooth solution Et of the modified Mullins–Sekerka flow (with parameter γ ≥ 0)
starting from E0, given by Theorem 2.5, is defined for all t ≥ 0. Moreover, Et → E+ η

exponentially fast in W 5/2,2 as t→ +∞ (recall the definition of convergence of sets at
the beginning of Section 1.3), for some η ∈ R3, with the meaning that the functions
ψη,t : ∂E + η → R representing ∂Et as “normal graphs” on ∂E + η, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η},

satisfy
‖ψη,t‖W 5/2,2(∂E+η) ≤ Ce−βt,

for every t ∈ [0, +∞), for some positive constants C and β.

Remark 3.2. We already said that the property of a set E0 to belong to C1,α
M (E)

is a “closedness” in L1 of E0 and E, and in C1,α of their boundaries. The extra
condition in the theorem on the L2–smallness of the gradient of w0 (see the
second part of Lemma 2.10 and its proof) implies that the quantity H0 + 4γv0
on ∂E0 is “close” to be constant, as it is the analogous quantity for the set E
(or actually for any critical set). Notice that this is a second order condition for
the boundary of E0, in addition to the first order one E0 ∈ C1,α

M (E).

Proof of Theorem 3.1. Throughout the whole proof C will denote a constant
depending only on E, M and α, whose value may vary from line to line.

Assume that the modified Mullins–Sekerka flow Et is defined for t in the
maximal time interval [0,T (E0)), where T (E0) ∈ (0, +∞] and let the moving
boundaries ∂Et be represented as “normal graphs” on ∂E as

∂Et = {y + ψt(y)νE(y) : y ∈ ∂E},

70
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for some smooth functions ψt : ∂E → R. As before we set νt = νEt , vt = vEt
and wt = wEt .

We recall that, by Theorem 2.5, for every F ∈ C2,α
M (E), the flow is defined in

the time interval [0,T ), with T = T (E,M ,α) > 0.
We show the theorem for the smooth sets E0 ⊆ T3 satisfying

Vol(E04E) ≤M1, ‖ψ0‖C1,α(∂E) ≤M2 and
ˆ

T3

|∇w0|2 dx ≤M3 ,

for some positive constants M1,M2,M3, then we get the thesis by setting
M = min{M1,M2,M3}.

For any set F ∈ C1,α
M (E) we introduce the following quantity

D(F ) =

ˆ
F∆E

d(x, ∂E) dx =

ˆ
F
dE dx−

ˆ
E
dE dx, (3.1)

where dE is the signed distance function defined in formula (1.38). We observe
that

Vol(F∆E) ≤ C‖ψF ‖L1(∂E) ≤ C‖ψF ‖L2(∂E)

for a constant C depending only on E and, as F ⊆ Nε,

D(F ) ≤
ˆ
F∆E

ε dx ≤ εVol(F∆E).

Moreover,

‖ψF ‖2L2(∂E) = 2

ˆ
∂E

ˆ |ψF (y)|

0
t dt dµ(y)

= 2

ˆ
∂E

ˆ |ψF (y)|

0
d(L(y, t), ∂E) dt dµ(y)

= 2

ˆ
E∆F

d(x, ∂E) JL−1(x) dx

≤ CD(F ).

where L : ∂E × (−ε, ε) → Nε the smooth diffeomorphism defined in for-
mula (1.40) and JL its Jacobian. As we already said, the constant C depends
only on E and ε. This clearly implies

Vol(F∆E) ≤ C‖ψF ‖L1(∂E) ≤ C‖ψF ‖L2(∂E) ≤ C
√
D(F ) . (3.2)

Hence, by this discussion, the initial smooth set E0 ∈ C1,α
M (E) satisfies D(E0) ≤

M ≤M1 (having chosen ε < 1).
By rereading the proof of Lemma 2.10, it follows that for M2,M3 small

enough, if ‖ψF ‖C1,α(∂E) ≤M2 and
ˆ

T3

|∇wF |2 dx ≤M3 ,

then
‖ψF ‖W 2,3(∂E) ≤ ω(max{M2,M3}) , (3.3)
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where s 7→ ω(s) is a positive nondecreasing function (defined on R) such that
ω(s)→ 0 as s→ 0+. This clearly implies (recalling Remark A.2)

‖νF ‖W 1,3(∂F ) ≤ ω′(max{M2,M3}) , (3.4)

for a function ω′ with the same properties of ω. Both ω and ω′ only depend on
E and α, for M small enough.

We split the proof of the theorem into steps.

Step 1. (Stopping–time) Let T ≤ T (E0) be the maximal time such that

Vol(Et4E) ≤ 2M1, ‖ψt‖C1,α(∂E) ≤ 2M2 and
ˆ

T3

|∇wt|2 dx ≤ 2M3 , (3.5)

for all t ∈ [0,T ). Hence,

‖ψt‖W 2,3(∂E) ≤ ω(2 max{M2,M3})

for all t ∈ [0,T
′
), as in formula (3.3). Note that such a maximal time is clearly

positive, by the hypotheses on E0.
We claim that by taking M1,M2,M3 small enough, we have T = T (E0).

Step 2. (Estimate of the translational component of the flow) We want to see that
there exists a small constant θ > 0 such that

min
η∈OE

∥∥ [∂νtwt]− 〈η | νt〉
∥∥
L2(∂Et)

≥ θ
∥∥[∂νtwt]

∥∥
L2(∂Et)

for all t ∈ [0,T ) , (3.6)

where OE is defined by formula (1.35).
If M is small enough, clearly there exists a constant C0 = C0(E,M ,α) >

0 such that, for every i ∈ IE , we have ‖〈ei|νt〉‖L2(∂Et) ≥ C0 > 0, holding
‖〈ei|νE〉‖L2(∂E) > 0. It is then easy to show that the vector ηt ∈ OE realizing
such minimum is unique and satisfies

[∂νtwt] = 〈ηt |νt〉+ g, (3.7)

where g ∈ L2(∂Et) is a function L2–orthogonal (with respect to the measure µt
on ∂Et) to the vector subspace of L2(∂Et) spanned by 〈ei|νt〉, with i ∈ IE , where
{e1, . . . , e3} is the orthonormal basis of R3 given by Remark 1.16. Moreover,
the inequality

|ηt| ≤ C
∥∥[∂νtwt]

∥∥
L2(∂Et)

(3.8)

holds, with a constant C depending only on E, M and α.
We now argue by contradiction, assuming ‖g‖L2(∂Et) < θ

∥∥[∂νtwt]
∥∥
L2(∂Et)

. First,
by formula (1.5) and the translation invariance of the functional J , we have

0 =
d

ds
J(Et + sηt)

∣∣∣∣
s=0

=

ˆ
∂Et

(Ht + 4γvt)〈ηt | νt〉 dµt =

ˆ
∂Et

wt〈ηt | νt〉 dµt .
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It follows that, by multiplying equality (3.7) by wt − ŵt, with ŵt =
ffl

T3 wt dx

and integrating over ∂Et, we get
ˆ

T3

|∇wt|2 dx = −
ˆ
∂Et

wt[∂νtwt] dµt

= −
ˆ
∂Et

(wt − ŵt)[∂νtwt] dµt

= −
ˆ
∂Et

(wt − ŵt)g dµt

≤ θ‖wt − ŵt‖L2(∂Et)

∥∥[∂νtwt]
∥∥
L2(∂Et)

.

Note that in the second and the third equality above we have used the fact that
[∂νtwt] and νt have zero integral on ∂Et.
By the trace inequality (see [13]), we have

‖wt − ŵt‖2L2(∂Et)
≤ ‖wt − ŵt‖2

H
1
2 (∂Et)

≤ C
ˆ

T3

|∇wt|2 dx , (3.9)

hence, by the previous estimate, we conclude
ˆ

T3

|∇wt|2 dx ≤ Cθ2
∥∥[∂νtwt]

∥∥2
L2(∂Et)

. (3.10)

Let us denote with f : T3 → R the harmonic extension of 〈ηt | νt〉 to T3, we
then have

‖∇f‖L2(T3) ≤ C‖〈ηt | νt〉‖H 1
2 (∂Et)

≤ C|ηt|‖νt‖W 1,3(∂Et) ≤ C
∥∥[∂νtwt]

∥∥
L2(∂Et)

,

(3.11)
where the first inequality comes by standard elliptic estimates (holding with a
constant C = C(E,M ,α) > 0, see [8] for details), the second is trivial and the
last one follows by inequalities (3.4) and (3.8).
Thus, by equality (3.7) and estimates (3.10) and (3.11), we get

‖〈ηt | νt〉‖2L2(∂Et)
=

ˆ
∂Et

[∂νtwt]〈ηt |νt〉 dµ

= −
ˆ

T3

〈∇wt | ∇f〉 dx

≤
(ˆ

T3

|∇wt|2 dx
)1/2(ˆ

T3

|∇f |2 dx
)1/2

≤ Cθ
∥∥[∂νtwt]

∥∥2
L2(∂Et)

.

If then θ > 0 is chosen so small that Cθ + θ2 < 1 in the last inequality, then
we have a contradiction with equality (3.7) and the fact that ‖g‖L2(∂Et) <

θ
∥∥[∂νtwt]

∥∥
L2(∂Et)

, as they imply (by L2–orthogonality) that

‖〈ηt | νt〉‖2L2(∂Et)
> (1− θ2)

∥∥[∂νtwt]
∥∥2
L2(∂Et)

.

All this argument shows that for such a choice of θ condition (3.6) holds.
By Propositions 1.25 and 1.26, there exist positive constants σθ and δ with the
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following properties: for any set F ∈ C1,α
M (E) such that ‖ψF ‖W 2,3(∂E) < δ, there

holds
ΠF (ϕ) ≥ σθ‖ϕ‖2H1(∂F )

for all ϕ ∈ H̃1(∂F ) such that minη∈OE ‖ϕ− 〈η | νF 〉‖L2(∂F ) ≥ θ‖ϕ‖L2(∂F ) and if
E′ is critical, Vol(E′) = Vol(E) with ‖ψE′‖W 2,3(∂E) < δ, then

E′ = E + η (3.12)

for a suitable vector η ∈ R3. We then assume that M2,M3 are small enough
such that

ω(2 max{M2,M3}) < δ/2 (3.13)

where ω is the function introduced in formula (3.3).

Step 3. (The stopping time T is equal to the maximal time T (E0)) We show now
that, by taking M1,M2,M3 smaller if needed, we have T = T (E0).

By the previous point and the suitable choice of M2,M3 made in its final
part, formula (3.6) holds, hence we have

ΠEt

(
[∂νtwt]

)
≥ σθ

∥∥[∂νtwt]
∥∥2
H1(∂E)

for all t ∈ [0,T ).

In turn, by Lemma 2.6 we may estimate

d

dt

(
1

2

ˆ
T3

|∇wt|2 dx
)
≤− σθ

∥∥[∂νtwt]
∥∥2
H1(∂Et)

+
1

2

ˆ
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]

2 dµt

for every t ≤ T .
It is now easy to see that

∆wt = [∂νtwt]µt ,

then, by point (iii) of Lemma 2.7, we estimate the last term as
ˆ
∂Et

(∂νtw
+
t + ∂νtw

−
t )[∂νtwt]

2 dµt ≤ C
ˆ
∂Et

(|∂νtw+
t |3 + |∂νtw−t |3) dµt

≤ C
ˆ
∂Et

∣∣[∂νtwt]∣∣3 dµt ,

thus, the last estimate in the statement of Lemma 2.7 implies∥∥[∂νtwt]
∥∥
L3(∂Et)

≤ C
∥∥[∂νtwt]

∥∥2/3
H1(∂Et)

‖wt − ŵt‖1/3
L2(∂Et)

.

Therefore, combining the last three estimates, we get

d

dt

ˆ
T3

|∇wt|2 dx ≤ − 2σθ
∥∥[∂νtwt]

∥∥2
H1(∂Et)

+C‖wt − ŵt‖L2(∂Et)

∥∥[∂νtwt]
∥∥2
H1(∂Et)

≤ − σθ
∥∥[∂νtwt]

∥∥2
H1(∂Et)

, (3.14)

for every t ∈ [0,T ), where in the last inequality we used the trace inequality (3.9)

‖wt − ŵt‖2L2(∂Et)
≤ ‖wt − ŵt‖2

H
1
2 (∂Et)

≤ C
ˆ

T3

|∇wt|2 dx ≤ 2CM3,
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possibly choosing a smaller M such that 2CM3 < σθ.
This argument clearly says that the quantity

´
T3 |∇wt|2 dx is nonincreasing

in time, hence, if M2,M3 are small enough, the inequality
´

T3 |∇wt|2 dx ≤
2M3 is preserved during the flow. If we assume by contradiction that T <

T (E0), then it must happen that Vol(ET4E) = 2M1 or ‖ψT ‖C1,α(∂E) = 2M2.
Before showing that this is not possible, we prove that actually the quantity´

T3 |∇wt|2 dx decreases (non increases) exponentially.
Computing as in the previous step,

ˆ
T3

|∇wt|2 dx = −
ˆ
∂Et

wt[∂νtwt] dµt

= −
ˆ
∂Et

(wt − ŵt)[∂νtwt] dµt

≤ ‖wt − ŵt‖L2(∂Et)

∥∥[∂νtwt]
∥∥
L2(∂Et)

≤ C
(ˆ

T3

|∇wt|2 dx
)1/2 ∥∥[∂νtwt]

∥∥
L2(∂Et)

,

where we used again the trace inequality (3.9). Then,
ˆ

T3

|∇wt|2 dx ≤ C
∥∥[∂νtwt]

∥∥2
L2(∂Et)

≤ C‖[∂νtwt]‖2H1(∂Et)
,

and combining this inequality with estimate (3.14), we obtain

d

dt

ˆ
T3

|∇wt|2 dx ≤ −c0
ˆ

T3

|∇wt|2 dx,

for every t ≤ T and for a suitable constant c0 ≥ 0. Integrating this differential
inequality, we get

ˆ
T3

|∇wt|2 dx ≤ e−c0t
ˆ

T3

|∇w0|2 dx ≤M3e
−c0t ≤M3 , (3.15)

for every t ≤ T .
Then, we assume that Vol(ET4E) = 2M1 or ‖ψT ‖C1,α(∂ET ) = 2M2. Recalling

formula (3.1) and denoting by Xt the velocity field of the flow (see Definition 2.1
and the subsequent discussion), we compute

d

dt
D(Et) =

d

dt

ˆ
Et

dE dx =

ˆ
Et

div(dEXt) dx =

ˆ
∂Et

dE〈Xt|νt〉 dµt

=

ˆ
∂Et

dE [∂νtwt] dµt = −
ˆ

T3

〈∇h | ∇wt〉 dx ,

where h denotes the harmonic extension of dE to T3. Note that, by standard
elliptic estimates and the properties of the signed distance function dE , we have

‖∇h‖L2(T3) ≤ C‖dE‖C1,α(∂E) ≤ C = C(E) ,

then, by the previous equality and formula (3.15), we get

d

dt
D(Et) ≤ C‖∇wt‖L2(T3) ≤ C

√
M3 e

−c0t/2 ,
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for every t ≤ T . By integrating this differential inequality over [0,T ) and
recalling estimate (3.2), we get

Vol(ET4E) ≤ C‖ψT ‖L2(∂ET ) ≤ C
√
D(ET ) ≤ C

√
D(E0) +C

√
M3 ≤ C 4

√
M3 ,

(3.16)
as D(E0) ≤M1, provided that M1,M3 are chosen suitably small. This shows
that Vol(ET4E) = 2M1 cannot happen if we chose C 4

√
M3 ≤M1.

By arguing as in Lemma 2.10 (keeping into account inequality (3.5) and for-
mula (3.3)), we can see that the L2–estimate (3.16) implies a W 2,3–bound on ψT
with a constant going to zero, keeping fixed M2, as

´
T3 |∇wT |2 dx→ 0, hence,

by estimate (3.15), as M3 → 0. Then, by Sobolev embeddings, the same holds
for ‖ψT ‖C1,α(∂ET ), hence, if M3 is small enough, we have a contradiction with
‖ψT ‖C1,α(∂ET ) = 2M2.

Thus, T = T (E0) and

Vol(Et4E) ≤ C 4
√
M3 , ‖ψt‖C1,α(∂Et) ≤ 2M2 ,

ˆ
T3

|∇wt|2 dx ≤M3e
−c0t ,

(3.17)
for every t ∈ [0,T (E0)), by choosing M1,M2,M3 small enough.
Step 4. (Long time existence) We now show that, by taking M1,M2,M3 smaller
if needed, we have T (E0) = +∞, that is, the flow exists for all times.
We assume by contradiction that T (E0) < +∞ and we recall that, by esti-
mate (3.14) and the fact that T = T (E0), we have

d

dt

ˆ
T3

|∇wt|2 dx+ σθ
∥∥[∂νtwt]

∥∥2
H1(∂Et)

≤ 0

for all t ∈ [0,T (E0)). Integrating this differential inequality over the interval
[T (E0)− T/2,T (E0)− T/4], where T is given by Theorem 2.5, as we said at
the beginning of the proof, we obtain

σθ

ˆ T (E0)−T/4

T (E0)−T/2

∥∥[∂νtwt]
∥∥2
H1(∂Et)

dt ≤
ˆ

T3

|∇wT (E0)−T
2
|2 dx−

ˆ
T3

|∇wT (E0)−T
4
|2 dx

≤M3 ,

where the last inequality follows from estimate (3.17). Thus, by the mean value
theorem there exists t ∈ (T (E0)− T/2,T (E0)− T/4) such that∥∥[∂νtwt]

∥∥2
H1(∂Et)

≤ 4M3

Tσθ
.

Note that for any smooth set F ⊆ T3, we have ‖vF ‖C1(T3) ≤ L, for some
“absolute” constant L and that wF is constant, then, since H1(∂Et) embeds into
Lp(∂Et̂) for all p > 1, by Lemma 2.7, we in turn infer that

[Ht(·+ ψt(·) νE(·))−HE ]2C0,α(∂E)

≤C[wt(·+ ψt(·)νE(·))−wE ]2C0,α(∂E)

+C[vt(·+ ψt(·)νE(·))− vt]2C0,α(∂E) +C[vt − vE ]2C0,α(∂E)

≤C[wt]
2
C0,α(∂Et)

‖ψt‖2C1,α(∂F ) +CL2‖ψt‖2C1,α(∂F ) +C‖ut − uE‖2L2(T3)

≤C M3

Tσθ
+CL2‖ψt‖2C1,α(∂E) +CVol(Et4E)2.
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where [·]C0,α(∂Et)
and [·]C0,α(∂E) stand for the α–Hölder seminorms on ∂Et

and ∂E, respectively and remind that vt, vE are the potentials, defined by
formula (1.1), associated to ut = χ

Et
− χ

Tn\Et
and uE = χ

E
− χ

Tn\E.
By means of Schauder estimates (as Calderón–Zygmund inequality implied
estimate (2.26)), it is possible to show (see [8]) that there exists a constant
C > 0 depending only on E, M , α and p > 1 such that for every F ∈ C1,α

M (E),
choosing even smaller M1,M2,M3, there holds

‖B‖C0,α(∂F ) ≤ C(1 + ‖H‖C0,α(∂F )) .

Hence, by the above discussion (and Remark A.2, as before), we can conclude
that Et ∈ C2,α

M (E). Therefore, the maximal time of existence of the classical
solution starting from Et is at least T , which means that the flow Et can be
continued beyond T (E0), which is a contradiction.

Step 5. (Convergence, up to subsequences, to a translate of E) Let tn → +∞, then,
by estimates (3.17), the sets Etn satisfy the hypotheses of Lemma 2.10, hence,
up to a (not relabeled) subsequence we have that there exists a critical set
E′ ∈ C1,α

M (E) such that Etn → E′ in W
5
2
,2. Due to formulas (3.3) and (3.13)

we also have ‖ψE′‖W 2,3(∂E) ≤ δ and E′ = E + η for some (small) η ∈ R3

(equality (3.12)).

Step 6. (Exponential convergence of the full sequence) Consider now

Dη(F ) =

ˆ
F∆(E+η)

dist (x, ∂E + η) dx .

The very same calculations performed in Step 3 show that∣∣∣∣ ddtDη(Et)

∣∣∣∣ ≤ C‖∇wt‖L2(T3) ≤ C
√
M3e

−c0t/2

for all t ≥ 0, moreover, by means of the previous step, it follows limt→+∞Dη(Et) =

0. In turn, by integrating this differential inequality and writing

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E + η} ,

we get

‖ψη,t‖2L2(∂E+η) ≤ CDη(Et) ≤
ˆ +∞

t
C
√
M3e

−c0s/2 ds ≤ C
√
M3e

−c0t/2 . (3.18)

Since by the previous steps ‖ψη,t‖W 2,3(∂E+η) is bounded, we infer from this
inequality and interpolation estimates that also ‖ψη,t‖C1,β(∂E+η) decays expo-
nentially for all β ∈ (0, 1/3). Then, setting p = 2

1−β , we have, by estimates (3.18)
and (3.2) (and standard elliptic estimates),

‖vt − vE+η‖C1,β(T3) ≤ C‖vt − vE+η‖W 2,p(T3) ≤ C‖ut − uE+η‖Lp(T3)

≤ CVol(Et4(E + η))1/p ≤ C‖ψη,t‖1/p
L2(∂E+η)

≤ CM1/4p
3 e−c0t/4pt (3.19)
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for all β ∈ (0, 1/3). Denoting the average of wt on ∂Et by wt, as by esti-
mates (3.9) and (3.15) (recalling the argument to show inequality (2.22)), we
have that

‖wt
(
·+ψη,t(·)νE+η(·)

)
−wt‖

H
1
2 (∂E+η)

≤ C‖wt −wt‖
H

1
2 (∂Et)

‖ψη,t‖C1(∂E+η)

≤ C‖∇wt‖L2(T3)

≤ C
√
M3e

−c0t/2 .

It follows, taking into account inequality (3.19), that∥∥[Ht

(
· +ψη,t(·)νE+η(·)

)
− Ht] − [H∂E+η − H∂E+η]

∥∥
H

1
2 (∂E+η)

→ 0 (3.20)

exponentially fast, as t→ +∞, where Ht and H∂E+η stand for the averages of
Ht on ∂Et and of H∂E+η on ∂E + η, respectively.
Since Et → E + η (up to a subsequence) in W

5
2
,2, it is easy to check that

|Ht −H∂E+η| ≤ C‖ψη,t‖C1(∂E+η) which decays exponentially, therefore, thanks
to limit (3.20), we have∥∥Ht

(
·+ψη,t(·)νE+η(·)

)
−H∂E+η

∥∥
H

1
2 (∂E+η)

→ 0

exponentially fast.
The conclusion then follows arguing as at the end of Step 4.



4
R E L AT E D R E S U LT S A N D R E S E A R C H D I R E C T I O N S

In this final chapter we give an overview of the “Neumann” case for the
modified Mullins–Sekerka flow and we discuss the classification of the strictly
stable sets. We also present the Ohta–Kawasaki functional and the link between
its minimizers and the W 2,p–local minimality result, Theorem 1.19. We then
conclude with some possible research directions.

4.1 a brief overview of the neumann case

Let Ω be a smooth bounded open subset of Rn. As before we consider the
nonlocal Area functional

JN (E) = AΩ(∂E) + γ

ˆ
Ω

|∇vE |2 dx ,

for every E ⊆ Ω with ∂E ∩ ∂Ω = Ø, where γ ≥ 0 is a real parameter and vE is
the potential defined as follows, similarly to problem (1.3),

−∆vE = uE −m in Ω
∂vE
∂νE

= 0 on ∂Ω
ˆ
Ω

vE dx = 0

with m =
ffl
Ω
uE dx, uE = χ

E
− χ

Ω\E and νE the outer unit normal to E.
As in formula (1.5), we have

ˆ
Ω

|∇vE |2 dx =

ˆ
Ω

ˆ
Ω

G(x, y)uE(x)uE(y) dxdy ,

where G is the (distributional) solution of
−∆xG(x, y) = δy − 1

Vol(Ω)
for every x ∈ Ω

〈∇xG(x, y)|νE(x)〉 = 0 for every x ∈ ∂Ωˆ
Ω

G(x, y) dx = 0

for every y ∈ Ω.
Note that, unlike the “periodic” case (when the ambient is the torus Tn), the
functional JN is not translation invariant, therefore several arguments simplify.
The calculus of the first and second variations of JN , under a volume constraint,
is exactly the same as for J , then we say that a smooth set E ⊆ Ω, with
∂E ∩ ∂Ω = Ø, is a critical set, if it satisfies the Euler–Lagrange equation

H + 4γvE = λ on ∂E,
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for a constant λ ∈ R, instead, since JN is not translation invariant, the spaces
T (∂E), T⊥(∂E), and the decomposition (1.33) are no longer needed and,
defining the same quadratic form ΠE as in formula (1.31), we say that a smooth
critical set E is strictly stable if

ΠE(ϕ) > 0 for all ϕ ∈ H̃1(∂E) \ {0}.

We say that E ⊆ Ω is a local minimizer if there exists a δ ≥ 0 such that

JN (F ) ≥ JN (E),

for all F ⊆ Ω, ∂F ∩ ∂Ω = Ø, Vol(F ) = Vol(E) and Vol(E4F ) ≤ δ. Then, as
in the periodic case, we have a local minimality result with respect to small
W 2,p–perturbations. Precisely, the following counterpart to Theorem 1.19 holds
(see [23]).

Theorem 4.1. Let p > max{2,n− 1} and E ⊆ Ω a smooth strictly stable critical set
for the nonlocal Area functional JN (under a volume constraint) with Nε a tubular
neighbourhood of E as in formula (1.37). Then there exist constants δ,C > 0 such that

JN (F ) ≥ JN (E) +C[Vol(E4F )]2 ,

for all smooth sets F ⊆ Tn such that Vol(F ) = Vol(E), Vol(F4E) < δ, ∂F ⊆ Nε

and
∂F = {y + ψ(y)νE(y) : y ∈ ∂E},

for a smooth ψ with ‖ψ‖W 2,p(∂E) < δ.
As a consequence, E is a W 2,p–local minimizer of JN (as defined above). Moreover, if
F is W 2,p–close enough to E and JN (F ) = JN (E), then F = E, that is, E is locally
the unique W 2,p–local minimizer.

Sketch of the proof. Following the line of proof of Theorem 1.19, since the func-
tional is not translation invariant we do not need Lemma 1.24 and inequal-
ity (1.69), proved in Step 2 of the proof of Theorem 1.19, simplifies to

inf
{

ΠF (ϕ) : ϕ ∈ H̃1(∂F ) , ‖ϕ‖H1(∂F ) = 1
}
≥ m0

2
,

where m0 is the constant defined in formula (1.68). The proof of this inequality
then goes exactly as there.
Coming to Step 3 of the proof of Theorem 1.19, we do not need inequality (1.72),
thus we do not need to replace F by a suitable translated set F − η. Instead,
we only need to observe that inequality (1.76) is still satisfied and the rest of
the proof remains unchanged.

The short time existence and uniqueness result 2.5, proved in [12] in any
dimensions, holds also in the “Neumann” case for the modified Mullins–
Sekerka flow with parameter γ ≥ 0, obtained (as in Definition 2.2) by letting
the outer normal velocity Vt of the moving boundaries given by

Vt = [∂νtwt] on ∂Et for all t ∈ [0,T ),
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where νt = νEt and wt = wEt is the unique solution in H1(Ω) of the problem{
∆wEt = 0 in Ω \ ∂Et
wEt = H + 4γvEt on ∂Et,

with vEt the potential defined above and, as before, [∂νtwt] is the jump of the
outer normal derivative of wEt on ∂Et.

Then, we conclude by stating the following analogue of Theorem 3.1.

Theorem 4.2. Let Ω be an open smooth subset of R3 and let E ⊆ Ω be a smooth strictly
stable critical set with ∂E ∩ ∂Ω = Ø and Nε (with ε < 1) a tubular neighborhood of
∂E, as in formula (1.37). Then, for every α ∈ (0, 1/2) there exists M > 0 such that,
if E0 is a smooth set in C1,α

M (E) satisfying Vol(E0) = Vol(E) and
ˆ
Ω

|∇wE0 |2 dx ≤M

where w0 = wE0 is the function relative to E0 as in problem (2.1) (with Ω in place
of T3 \ ∂E), then, the unique smooth solution Et to the Mullins–Sekerka flow (with
parameter γ ≥ 0) starting from E0, given by Theorem 2.5, is defined for all t ≥ 0.
Moreover, Et → E in W 5/2,2 exponentially fast as t→ +∞ (recall the definition of
convergence of sets at the beginning of Section 1.3), for some η ∈ R3, with the meaning
that the functions ψη,t : ∂E → R representing ∂Et as “normal graphs” on ∂E, that is,

∂Et = {y + ψη,t(y)νE+η(y) : y ∈ ∂E},

satisfy
‖ψη,t‖W 5/2,2(∂E) ≤ Ce−βt,

for every t ∈ [0, +∞), for some positive constants C and β.

The proof of this result is similar to the one of Theorem 3.1 and actually it
is simpler since we do not need the argument used in Step 2 of such proof,
where we controlled the translational component of the flow. Note also that
in the statement of Lemma 1.25, in this case, inequality (1.79) holds for all
ϕ ∈ H̃1(∂F ). Finally, observe that under the hypotheses of Proposition 1.26 we
may actually conclude that E′ = E, that is, there are no other critical sets close
to E.

The assumption that ∂E does not touch the boundary of Ω may seem restric-
tive, however we remark that in two and three dimensions there are examples
of strictly stable critical sets which consist of either a single or multiple “almost
spherical” sets well contained in Ω. The precise conditions on the parameters m,
γ and Vol(Ω) under which these strictly stable sets exist are given in [36, 37, 38].
Other examples of local minimizers well contained in Ω are given in [7].

4.2 the classification of the stable critical sets

We are going to discuss the class of sets to which Theorem 3.1 can be applied.
In the three–dimensional case, for the Area functional (that is γ = 0), the stable
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critical sets in T3 has been fully classified in [39]. Indeed, it has been proved
that the stable critical sets are balls, cylinders, gyroids or lamellae.

Figure 1: From left to right: balls, cylinders, gyroids and lamellae.

It is easy to see that balls, cylinders and lamellae are actually also strictly stable,
while the strict stability of gyroids holds only in some cases (see [18, 19, 40]).

For the case γ > 0 a complete classification of the stable periodic structures
is still missing. However, it has been shown that lamellar configuration are
strictly stable if the number of interfaces is larger then some minimum value
k(γ), where k(γ)→ +∞ as γ → +∞ (see [6]).

It is worth to mention what is shown in [2] about the minimizers configura-
tions. They proved that if a horizontal strip L is the unique global minimizer
of the Area functional in Tn, then it is also the unique global minimizer of the
nonlocal functional J under a volume constraint, provided that γ is sufficiently
small. Precisely, the following result holds.

Theorem 4.3. Assume that L ⊆ Tn is the unique, up to rigid motions, global
minimizer of the Area functional, under a volume constraint. Then the same set is also
the unique global minimizer of the nonlocal Area functional (1.4), provided that γ > 0

is sufficiently small.

Moreover, in the two–dimensional case, in [21] it has been proved that if the
volume parameter m satisfies m < 1− 2/π, then the lamellae are the unique
global minimizers of the Area functional in T2 (under a volume constraint).
Hence, by Theorem 4.3, for small γ > 0, any set realizing

min

{
AT2(∂E) + γ

ˆ
T2

|∇vE(x)|2 dx : E ⊆ T2, Vol(E) =
m+ 1

2

}
is a lamella.

In the three–dimensional case, the global minimality of lamellae has been
shown in [20] for the case m = 0 (that is, among the sets E ⊆ T3 with
Vol(E) = 1/2). Moreover, in [2], the authors proved that this conclusion still
holds for m sufficiently close to 0. As before, from Theorem 4.3 we then have
the following result.

Theorem 4.4. Let n=3. There exists m0 > 0 and γ0 > 0 such that for |m| < m0 and
γ < γ0, any solution of

min

{
AT3(∂E) + γ

ˆ
T2

|∇vE(x)|2 dx : E ⊆ T3, Vol(E) =
m+ 1

2

}
is a lamella.
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We conclude mentioning that in [2] it is shown that lamellae with multiple
strips are local minimizers of the functional J , if the number of strips is large
enough.

4.3 the ohta–kawasaki functional

The Ohta–Kawasaki functional, first proposed in the modeling of microphase
separation for diblock copolymer melts in [33], is defined as follows,

Eε(u) = ε

ˆ
Ω

|∇u|2 dx+
1

ε

ˆ
Ω

(u2 − 1)2 dx (4.1)

+ γ

ˆ
Ω

ˆ
Ω

G(x, y)(u(x)−m)(u(y)−m) dx dy,

where u is any function in H1(Ω), m =
ffl
Ω
u dx, G is the Green’s function of

−∆ in Ω and γ ≥ 0 is a fixed parameter.
We recall that, as proved in [2], the W 2,p–local minimality for the functional

J (Theorem 1.19) implies its L1–local minimality (see Remark 1.21). Moreover,
it is well known that the functionals Eε Γ–converge in L1 to the nonlocal Area
functional J (see [29] and see [28] for the definition and the properties of the
Γ–convergence). We then state a result that links the local minimizers of the
functional J with the local minimizers of the Ohta–Kawasaki functional (4.1).
Fixed m ∈ (−1, 1), we say that a function u ∈ H1(Tn) is an isolated local
minimizer for the functionals Eε with prescribed volume m, if

´
Tn
u dx = m and

there exists a constant δ > 0 such that

Eε(u) < Eε(w) for all w ∈ H1(Tn) with
ˆ

Tn
w dx = m

and 0 < min
τ∈Rn

‖u−w(·+ τ )‖L1(Tn) ≤ δ.

The Γ–convergence and the L1–local minimality discussed above then imply
the following theorem.

Theorem 4.5. Let E ⊆ Tn be a strictly stable critical set for the functional J and
uE = χ

E
− χ

Tn\E. Then, there exists ε0 > 0 and a family uε, with ε < ε0, of local
minimizers of Eε with prescribed volume m =

´
Tn
u dx, such that uε → u in L1(Tn)

as ε→ 0.

An analogous result holds in the “Neumann” case.

4.4 some research lines

It would be very interesting and challenging trying to generalize all the results
to arbitrary dimension, larger than three. Moreover, as we said in the previous
section, the complete classification of the sets to which the global existence and
stability result can be applied, is still missing.
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Another possible line of research is the study (in every dimension) of the “sin-
gular perturbations” of the flow, that is, adding to the nonlocal Area functional
an extra “energy” term, such as

ε

ˆ
∂E
|H|p dµ, ε

ˆ
∂E
|B|p dµ, or ε

ˆ
∂E
|∇kB|2 dµ,

where ε is a small positive parameter.
This perturbation should regularize the evolutions arising from considering
the gradient flows of the perturbed functionals, giving better global existence
properties (in particular, when the dimension is larger than three), while
keeping the models still interesting for the applications to physical phenomena.
Moreover, from the mathematics point of view, it would be interesting to
analyze the behavior of the solutions of the perturbed flows and to determine
under which hypotheses they converge to the solutions of the original flow,
when the parameter ε > 0 of the singular perturbation converges to zero.



APPENDICES

85



A
G E O M E T RY O F H Y P E R S U R FA C E S

In this appendix we introduce some basic notations and facts about hypersur-
faces in Euclidean spaces, possible references are [16, 26, 34].

The main objects we will consider are (n− 1)–dimensional, complete hy-
persurfaces immersed in Rn, that is, pairs (M ,ψ) where M is an (n − 1)–
dimensional, smooth manifold with empty boundary and ψ : M → Rn is a
smooth immersion (the rank of the differential dψ is equal to n everywhere on
M ).

The manifold M gets in a natural way a metric tensor g turning it into a
Riemannian manifold (M , g) by pulling back the standard scalar product of Rn

with the immersion map ψ.
Taking local coordinates around p ∈ M , we have local bases of TpM and

T ∗pM , respectively given by vectors
{

∂
∂xi

}
and 1–forms {dxj}.

We will denote the vectors on M by X = Xi, which means X = Xi ∂
∂xi

,
the 1–forms by ω = ωj , that is, ω = ωjdxj and a general mixed tensor by
T = T i1...ikj1...jl

, where the indices refer to the local basis.
Sometimes we will consider tensors along M viewing it as a submanifold

of Rn via the map ψ, in such case we will use the Greek indices to denote the
components of the tensors in the canonical basis {eα} of Rn, for instance, given
a vector field X along M , not necessarily tangent, we will have X = Xαeα.

The metric g of M extended to tensors is given by

g(T ,S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl
,

where gij is the matrix of the coefficients of g in local coordinates and gij is its
inverse matrix. Clearly, the norm of a tensor is then

|T | =
√
g(T ,T ) .

The scalar product of Rn will be denoted by 〈· | ·〉. As the metric g is obtained
by pulling it back via ψ, we have

gij = g

(
∂

∂xi
,
∂

∂xj

)
= (dψ∗〈· | ·〉)

(
∂

∂xi
,
∂

∂xj

)
=

〈
∂ψ

∂xi

∣∣∣∣ ∂ψ∂xj
〉

.

The canonical measure induced by the metric g is given in a coordinate
chart by µ =

√
GL n where G = det(gij) and L n−1 is the standard Lebesgue

measure of Rn−1.
The induced covariant derivative on (M , g) of a vector field X and of a

1–form ω are respectively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,
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where the Christoffel symbols Γijk are expressed by the formula,

Γijk =
1

2
gil
(
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
.

The covariant derivative∇T of a general tensor T = T i1...ikj1...jl
will be denoted by

∇sT i1...ikj1...jl
= (∇T )i1...iksj1...jl

(we recall that such extension of the covariant derivative
is uniquely defined on the full tensor algebra by imposing the Leibniz rule and
the commutativity with any metric contraction).
∇mT will stand for the m–th iterated covariant derivative of T .

The gradient ∇f of a function and the divergence divX of a tangent vector
field X at a point p ∈M are defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM

and
divX = tr∇X = ∇iXi =

∂

∂xi
Xi + ΓiikX

k .

The Laplacian ∆T of a tensor T is given by

∆T = gij∇i∇jT .

If X is a smooth vector field with compact support on M , as ∂M = Ø, the
following divergence theorem holds

ˆ
M

divX dµ = 0 , (A.1)

for every tangent vector field X on M which clearly implies, in particular,
ˆ
M

∆f dµ = 0

for every smooth function f : M → R with compact support.
Since ψ is locally an embedding in Rn, at every point p ∈M we can define

up to a sign a unit normal vector ν(p). Locally, we can always choose ν in order
that it is smooth.
If the hypersurface M is compact and embedded, that is, the map ψ is one–to-
one, the inside of M is easily defined and we will consider ν to be the outer
pointing unit normal vector at every point of M . In this case the vector field
ν : M → Rn is globally smooth.

The second fundamental form B = hij of M is the symmetric 2–form defined
as follows,

hij = −
〈
ν

∣∣∣∣ ∂2ψ

∂xi∂xj

〉
and the mean curvature H is the trace of B, that is H = gijhij . Despite its name,
H is the sum of the eigenvalues of the second fundamental form, not their
average mean (some few authors actually define H/n as the mean curvature).
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Remark A.1. Notice that since the unit normal ν is defined up to a sign, the
same is true for B and H. Instead, the vector valued second fundamental form
hijν, which is a 2–form with values in Rn, and the mean curvature vector Hν are
uniquely defined.

The linear map Wp : TpM → TpM given by Wp(v) = hij(p)v
j ∂
∂xi

is called the
Weingarten operator and its eigenvalues λ1 ≤ · · · ≤ λn the principal curvatures at
the point p ∈M . It is easy to see that H = λ1 + · · ·+λn and |B|2 = λ21 + · · ·+λ2n.

Remark A.2. If the hypersurface M ⊆ Rn is locally the graph of a function
f : Rn−1 → R, that is, ψ(x) = (x, f(x)), we have

gij = δij + fifj , ν =
(∇f ,−1)√
1 + |∇f |2

hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f ,∇f)

(
√

1 + |∇f |2)3
= div

(
∇f√

1 + |∇f |2

)
where fi = ∂if and Hessf is the Hessian of the function f .

If the hypersurface M ⊆ Rn is locally the zero set of a smooth function
f : Rn → R, with ∇f 6= 0 on such level set, we have

H =
∆f
|∇f |

− Hessf(∇f ,∇f)

|∇f |3
= div

(
∇f
|∇f |

)
.

The following Gauss–Weingarten relations will be fundamental,

∂2ψ

∂xi∂xj
= Γkij

∂ψ

∂xk
− hijν ,

∂ν

∂xj
= hjlg

ls ∂ψ

∂xs
. (A.2)

Actually, they express the fact that ∇M = ∇Rn +Bν. We recall that considering
M locally as a regular submanifold of Rn, we have ∇MX Y = (∇Rn

X Ỹ )M where
the sign M denotes the projection on the tangent space to M and Ỹ is a local
extension of the field Y in a local neighborhood Ω ⊆ Rn of ψ(M).
Notice that, by these relations, it follows

∆ψ = gij∇2
ijψ = gij

(
∂2ψ

∂xi∂xj
− Γkij

∂ψ

∂xk

)
= gijhijν = Hν .

Moreover, we will also need the following symmetry property of the covariant
derivative of B, called Codazzi equations,

∇ihjk = ∇jhik = ∇khij . (A.3)

Finally, we have the formula

∆ν = ∇H− |B|2ν , (A.4)
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indeed, computing in normal coordinates at a point x ∈ M , by the above
Gauss–Weingarten relations, we have

∆ν = gij
( ∂2ν

∂xi∂xj
− Γkij

∂ν

∂xk

)
= gij

∂

∂xi

(
hjlg

ls ∂ψ

∂xs

)
= gij∇ihjlgls

∂ψ

∂xs
+ gijhjlg

ls ∂2ψ

∂xi∂xs

= gij∇lhijgls
∂ψ

∂xs
− gijhjlglshisν

=∇H− |B|2ν ,

since all Γkij and ∂
∂xi
gjk are zero at x ∈M and we used Codazzi equations (A.3).



B
F R A C T I O N A L S O B O L E V S PA C E S

In this appendix we introduce the basic facts and properties of the fractional
Sobolev spaces, mainly following [32], other classical books on the subject are [3,
9, 41].

Let Ω be an open subset of Rn. For any real s > 0 and for any p ∈ [1, +∞),
we want to define the fractional Sobolev spaces W s,p(Ω). In the literature, this
spaces are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the names of
the ones who introduced them, almost simultaneously in [4], [15] and [42]).

Fixing the fractional order s in (0, 1), for any p ∈ [1, +∞), we define W s,p(Ω)

as follows,

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p

+s
∈ Lp(Ω×Ω)

}
which is an intermediate Banach space between Lp(Ω) and W 1,p(Ω), endowed
with the natural norm

‖u‖W s,p(Ω) =

(ˆ
Ω

|u|p dx+

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)1/p

,

where the term

[u]W s,p(Ω) =

(ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)1/p

is the so–called Gagliardo W s,p–seminorm of u.
It is worth noticing that, as in the classical case with s integer, the space W s′,p

is continuously embedded in W s,p when s ≤ s′, as next result points out.

Proposition B.1. Let p ∈ [1, +∞) and 0 < s ≤ s′ < 1. Let Ω be an open subset of
Rn and u : Ω→ R be a measurable function. Then,

[u]W s,p(Ω) ≤ C[u]W s′,p(Ω), ‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω) ,

for some suitable positive constant C = C(n, s, s′, p). In particular,

Lp(Ω) = W 0,p(Ω) ⊆W s′,p(Ω) ⊆W s,p(Ω) .

Moreover, if Ω ⊆ Rn has a smooth boundary, for every s ∈ (0, 1), we have

[u]W s,p(Ω) ≤ C‖∇u‖Lp(Ω), ‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω),

and
W s,p(Ω) ⊆W 1,p(Ω) .
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We define the fractional critical exponent associated to p,

p∗ = p∗(n, s) =
np

n− sp
(as when s ∈N), then the following embedding result holds.

Proposition B.2. Let s ∈ (0, 1) and p ∈ [1, +∞) such that sp < n. Let Ω be
an open subset of Rn with smooth boundary. Then, there exists a positive constant
C = C(n, p, s,Ω) such that, for any u ∈W s,p(Ω), we have

‖u‖Lq(Ω) ≤ C‖u‖W s,p(Ω),

for any q ∈ [p, p∗], that is, the space W s,p(Ω) is continuosly embedded in Lq(Ω) for
any q ∈ [p, p∗]. Such embedding is compact if q ∈ [p, p∗).
If, in addition, Ω is bounded, then the space W s,p(Ω), is continuously embedded in
Lq(Ω) for any q ∈ [1, p∗] and such embedding is compact if q ∈ [1, p∗).

When s > 1 and it is not an integer we write s = m+ σ, where m is an
integer and σ ∈ (0, 1), the space W s,p(Ω) consists of those equivalence classes
of functions u ∈Wm,p(Ω) whose distributional derivatives Dαu, with |α| = m,
belong to W σ,p(Ω), namely

W s,p(Ω) =
{
u ∈Wm,p(Ω) : Dαu ∈W σ,p(Ω) for any α such that |α| = m

}
which is a Banach space with the norm

‖u‖W s,p(Ω) =

(
‖u‖Wm,p(Ω) +

∑
|α|=m

‖Dαu‖p
Wσ,p(Ω)

)1/p

.

If s is an integer, the space W s,p(Ω) is defined as usual.
The following proposition extends Proposition B.1.

Proposition B.3. Let p ∈ [1, +∞) and 0 < s < s′ Let Ω be an open subset of Rn

with smooth boundary, then W s′,p(Ω) is continuosly embedded in W s,p(Ω).

As in the classical case with s integer, any function in the fractional Sobolev
space W s,p(Rn) can be approximated by a sequence of smooth functions with
compact support. It means, denoting with W s,p

0 (Ω) the closure of C∞c (Ω) in the
norm ‖·‖W s,p(Ω), that

W s,p
0 (Rn) = W s,p(Rn) ,

but W s,p(Ω) 6= W s,p
0 (Ω) for a general Ω ⊆ Rn. Furthermore, the same inclu-

sions stated in Propositions B.1 and B.3 also hold for the spaces W s,p
0 (Ω).

For s < 0 and p ∈ (1, +∞), we define W s,p(Ω) as the dual space of W−s,q0 (Ω)

where 1/p+ 1/q = 1.

Remark B.4. Finally, it is worth mentioning that the fractional Sobolev spaces
play an important role in the trace theory. For instance, for any p ∈ (1, +∞),
assuming that the open set Ω ⊆ Rn is sufficiently smooth, the space of the traces
Tu on ∂Ω of functions u in W 1,p(Ω) is characterized by ‖Tu‖W 1−1/p,p(Ω) < +∞
(see [14]).
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