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Motion by curvature of planar networks
Joint project with
I Matteo Novaga & Vincenzo Tortorelli, 2003 – 2005
I Annibale Magni & Matteo Novaga, 2010 – 2014
I Matteo Novaga, Alessandra Pluda & Felix Schulze, 2014 –
I Pietro Baldi & Emanuele Haus, 2015 –

We consider the motion by curvature of networks of curves in the plane.

This is clearly a (toy) model
for the time evolution of the
interfaces of a multiphase
system where the energy is
given only by the area of such
interfaces.

Even if it is still possible to use several ideas from the “parametric” classical
approach to mean curvature flow (differential geometry/maximum principle),
some extra variational methods are needed due to the presence of
multi–points, that make the network a singular set (the simplest possible).
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Some simple observations derived from simulations

Larger regions “eat” smaller regions. More precisely, the area of a region
bounded by more than 6 edges grows, less than 6 edges it decreases.

If there is no vanishing of a region, there is a collapse of only two triple
junctions (when the length of a curve goes to zero) producing a 4–point in the
network. Immediately after such a collapse, the network becomes again
regular (only triple junctions, with curves forming angles of 120 degrees): a
new pair of triple junctions emerges from the 4–point (standard transition).
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Regular networks

Let Ω be an open, regular and convex subset of R2.
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Definition

A regular network S =
⋃n

i=1 σ
i ([0, 1]) in Ω is a connected set described by a

finite family of curves σi : [0, 1]→ Ω (sufficiently regular) such that:
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Regular networks

1. the curves cannot intersect each other or self–intersect in their “interior”,
but they can meet only at the end–points;

2. if a curve of the network “touches” the boundary of Ω at a fixed point
P ∈ ∂Ω, no other end–point of a curve can coincide with that point;

3. the junctions points O1,O2, . . . ,Om ∈ Ω have order three, considering S
as a planar graph, and at each of them the three concurring curves
{σpi}i=1,2,3 meet in such a way that the external unit tangent vectors τ pi

satisfy
∑
τ pi = 0 (the curves form three angles of 120 degrees at Op).
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Examples: The triod and the spoon

A triod T is a network composed
only by three regular, embedded
curves γ i : [0, 1]→ Ω.
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A spoon Γ = γ1([0, 1])∪γ2([0, 1]) is
the union of two regular, embedded
curves γ1, γ2 : [0, 1]→ Ω.
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Examples: Networks with two triple junctions
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Motion by curvature

Definition
We say that a network moves by curvature if each of its time–dependent
curves γ i : [0, 1]× (0,T )→ R2 satisfies

γ i
t (x , t)

⊥ = k i (x , t)

=
〈γ i

xx (x , t) | ν i (x , t)〉
|γ i

x (x , t)|2
ν i (x , t) =

(
γ i

xx (x , t)

|γ i
x (x , t)|2

)⊥
.

To be more precise, a family of networks St is a motion by curvature (in the
maximal time interval [0,T ) ) if the functions γ i : [0, 1]× [0,T )→ Ω are at
least C2 in space and C1 in time and satisfy the following system:

γ i
x (x , t) 6= 0∑
τ i (O, t) = 0 at every 3–point

γ i
t = k iν i + λiτ i for some continuous functionsλi

(?)

with fixed end–points on ∂Ω.
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Motion by curvature

With the right choice of the tangential component of the velocity the problem
becomes a non–degenerate system of quasilinear parabolic equations (with
several geometric properties).

Definition

A curvature flow γ i for the initial, regular C2 network S0 =
⋃n

i=1 σ
i ([0, 1]) which

satisfies γ i
t =

γ i
xx
|γ i

x |2
for every t > 0 will be called a special curvature flow of S0.
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Short time existence

Theorem

For any initial, regular C2+α triod T0 =
⋃3

i=1 σ
i ([0, 1]), with α ∈ (0, 1), which is

2–compatible, there exists a unique special flow of class
C2+α,1+α/2 ([0, 1]× [0,T )) in a maximal time interval [0,T ).

We say that a triod is 2–compatible if

σi
xx (0)

|σi
x (0)|2 =

σj
xx (0)

|σj
x (0)|2

for every i ,j ∈ {1, 2, 3} ,

which in particular implies∑
k i (O, t) = 0 at the 3–point.
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P
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Theorem

For any initial network S0 =
⋃n

i=1 σ
i ([0, 1]) which is regular, C2+α with

α ∈ (0, 1), 2–compatible, there exists a C2+α,1+α/2([0, 1]× [0,T )) curvature
flow of S0 in a maximal positive time interval [0,T ).
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Short time existence and uniqueness
We say that a network is geometrically 2–compatible if∑

k i (O, t) = 0 at every 3–point.

Geometric uniqueness = Uniqueness up to reparametrizations.
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Short time existence and uniqueness

How much one could weaken the hypotheses to still obtain existence and
uniqueness of the flow?

Theorem

For any initial C2 regular network S0 =
⋃n

i=1 σ
i ([0, 1]) there exists a solution

γ i of Problem (?) in a maximal time interval [0,T ).
Such flow St =

⋃n
i=1 γ

i ([0, 1], t) is a smooth flow for every time t > 0.

I The relevance of this theorem is that the initial network is not required to
satisfy any additional condition (compatibility condition), but only to have
angles of 120 degrees between the concurring curves at every 3–point,
that is, to be regular. In particular, it is not necessary that the sum of the
three curvatures at a 3–point is zero.

I The geometric uniqueness of the solution γ i found in this theorem is an
open problem.
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Long time behavior

Our aim is now to analyse the global (in time) behavior of the evolving
networks, with particular attention to singularity formation.

Theorem

If T < +∞ is the maximal time interval of smooth existence of the curvature
flow of a network St , then at least one of the following holds:

1. the length of at least one curve of St goes to zero when t → T ,

2. the curvature is not bounded as t → T .
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Evolution of a triod

Theorem
If none of the lengths of the three curves of the evolving triod goes to zero,
the flow is smooth for all times and the triod converges (asymptotically) to the
Steiner configuration connecting the three endpoints.
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Mantengo la stessa notazione del vostro lavoro, quindi D = ⌦ \ ⌃ e D0 = ⌦ \ ⌃0. I fogli a
sinistra sono i (D, j), il taglio tratteggiato é ⌃, i fogli a destra sono i (D0, j0). Disegno del minimo:
le zone in cui la funzione vale 1 sono colorate in grigio e dove vale 0 sono bianche.
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If all the angles of the triangle with
vertices the three end–points on the
boundary are less than 120 degrees
and the initial triod is contained in the
triangle, then the triod converges in in-
finite time to the Steiner configuration
connecting the three points.
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Ω Ω
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P1

P2

t → T

If the fixed end–points on the
boundary form a triangle with
an angle of more than 120 de-
grees, then the length of a
curve goes to zero in finite
time.
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Evolution of a spoon

Theorem
The maximal time of existence of a smooth evolution of a spoon is finite and
one of the following situations occurs:

1. the closed loop shrinks to a point in a finite time (asymptotically
approaching the shape of a Brakke spoon) and the maximum of the
curvature of the network goes to +∞, as t → T ;

2. the “open” curve vanishes and there is a 2–point formation on the
boundary of the domain of evolution, but the curvature remains bounded.

P1
γ2

γ1
O1

P1
γ2

O1t → T

St ST

P1
γ2 γ1O1

P1 = O1
γ1

t → T

St ST



Carlo Mantegazza & Alessandra Pluda CRM Pisa – 2017 Evolution of networks with multiple junctions

Evolution of a Theta (double cell)

Theorem
The maximal time of existence of a smooth evolution of a Theta is finite and
one of the following situations occurs:

1. the length of a curve that connects the two 3–points goes to zero as
t → T and the curvature remains bounded;

2. the length of the curves composing one of the loops go to zero as t → T
and the maximum of the curvature goes to +∞.

O2
γ2

γ1

γ3

O1
O1 = O2

γ1

γ3

t → T

St ST

O2
γ2

γ1

γ3

O1 O1 = O2

γ3

t → T

St ST

In any case the network cannot completely vanish shrinking to a point as
t → T .
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Long time behavior

We have seen examples in which the length of at least a curve goes to zero
and examples in which at the same time the length of a curve goes to zero
and the curvature of the network is unbounded.

BUT there are NO examples in which the lengths of all the curves of the
network remain uniformly far away from zero during the evolution and the
curvature is unbounded, as t → T .

Conjecture
If no length of the curves of the network goes to zero as t → T , then T is not
a singular time (maximal time of smooth existence).
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We are able to show the following:

Theorem
If no length goes to zero and the ”Multiplicity–One Conjecture” below is valid,
then the curvature is bounded. Hence, T is not a singular time.

“Multiplicity–One Conjecture” (M1)
Every possible limit of rescaled networks is a network with multiplicity one.

To explain where we need this conjecture, we give a sketch of the proof of
this theorem. The strategy is based on a blow–up technique.
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Huisken’s dynamical rescaling

We rescale the flow in its maximal time interval [0,T ) of smooth existence as
follows:

Definition

Fixed x0 ∈ R2, we define the rescaled flow of networks as

S̃x0,s =
St(s) − x0√
2(T − t(s))

where s ∈ [−1/2 log T ,+∞) and s(t) = − 1
2 log (T − t).
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Rescaled monotonicity formula

Proposition

Let x0 ∈ R2, set ρ̃(x) = e−
|x|2

2 and P̃ r (s) = Pr−x0√
2(T−t(s))

. For every

s ∈ [−1/2 log T ,+∞) the following identity holds

d
ds

∫
S̃x0,s

ρ̃(x) dσ =−
∫
S̃x0,s

| k̃ + x⊥|2ρ̃(x) dσ

+
l∑

r=1

[〈
P̃ r (s)

∣∣∣ τ(P r , t(s))
〉
− λ̃(P r , s)

]
ρ̃(P̃ r (s)).

Integrating between s1 and s2 with −1/2 log T ≤ s1 ≤ s2 < +∞ we get∫ s2

s1

∫
S̃x0,s

| k̃ + x⊥|2ρ̃(x) dσ ds =

∫
S̃x0,s1

ρ̃(x) dσ −
∫
S̃x0,s2

ρ̃(x) dσ

+
l∑

r=1

∫ s2

s1

[〈
P̃ r (s)

∣∣∣ τ(P r , t(s))
〉
− λ̃(P r , s)

]
ρ̃(P̃ r (s)) ds .
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Sketch of the proof

Letting s1 = −1/2 log T and s2 → +∞ in the rescaled monotonicity formula,
we get (the last term is uniformly bounded)

+∞∫
−1/2 log T

∫
S̃x0,s

| k̃ + x⊥|2ρ̃ dσ ds < +∞ ,

which implies, for a subsequence of rescaled times sj ,

lim
j→+∞

∫
S̃x0,sj

| k̃ + x⊥|2ρ̃ dσ = 0 .

Then, by a standard compactness argument the sequence of rescaled
networks S̃x0,sj (possibly after reparametrization) converges (up to
subsequence) weakly in W 2,2

loc and strongly in C1,α
loc , to a (possibly empty) limit

S̃∞ (possibly with multiplicity) which satisfies the shrinkers equation

k + x⊥ = 0.
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Shrinkers
Definition

A regular C2 open network S =
⋃n

i=1 σ
i (Ii ) is called a regular shrinker if at

every point x ∈ S there holds

k + x⊥ = 0.

This is called the shrinkers equation.

The name comes from the fact that if S =
⋃n

i=1 σ
i (Ii ) is a shrinker, then the

evolution given by St =
⋃n

i=1 γ
i (Ii , t) where γ i (x , t) =

√
−2t σi (x) is a

self–similarly shrinking curvature flow in the time interval (−∞, 0) with
S = S−1/2.
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Sketch of the proof

Assuming that all lengths of the evolving network do not go to zero, then all
the curves of S̃∞ have infinite length and must be pieces of straight lines from
the origin. Hence there are only three possibilities for the blow–up limit S̃∞:

I a straight line (with multiplicity);
I an half line;
I an infinite flat triod.

Supposing that the Multiplicity–One Conjecture holds, then also the line has
only multiplicity one. Applying

I White’s theorem in the case of a straight line;
I White’s theorem and a reflection argument in the case of an half line;
I the results by Magni – Mantegazza – Tortorelli or Ilmanen – Neves –

Schulze for an infinite flat triod,

it follows that the original network St has bounded curvature as t → T .
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Sketch of the proof

Thanks to this previous

Theorem
If T < +∞ is the maximal time interval of smooth existence of the curvature
flow St , then:

1. either the length of at least one curve of St goes to zero when t → T ,

2. or the curvature is not bounded as t → T .

we conclude that T cannot be a singular time and we are done.
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Hence, assuming (from now on) the truth of the

“Multiplicity–One Conjecture”
Every possible limit of rescaled networks is a network with multiplicity one.

at a singular time T < +∞ (the maximal time interval of smooth existence of
the curvature flow St ) the length of at least one curve of St goes to zero, as
t → T .

Then, there are two possible situations:

I The curvature stays bounded.
I The curvature is unbounded as t → T .
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In the smooth case (curves, hypersurfaces) there are no singularities with
bounded curvature. Indeed the maximum of curvature always satisfies
kmax(t) ≥ 1/

√
2(T − t) .

Singularities are actually “classified” by the rate the curvature goes to +∞, as
t → T :

I Type I – The maximum of the curvature is of order 1/
√

T − t .
I Type II – The maximum of the curvature is of higher order (on a

subsequence of times ti → T ).

For networks there are actually singularities (collapse of curves) with
bounded curvature, Type 0 singularities (copyright of Tom Ilmanen).
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Collapse with bounded curvature

The analysis consists in understanding the possible limit networks that can
arise as t → T (and finding out how to continue the flow, if possible).

It can be shown that, as t → T , such limit network, is unique. Anyway, it can
be non–regular since multiple points can appear, even if the sum of the unit
tangent vectors of the concurring curves at every multi–point still must be
zero (Notice however that this implies that every triple junction satisfies the
120 degrees condition).

Theorem
If M1 is true, every interior vertex of such limit network either is a regular triple
junction or it is a 4–point where the four concurring curves have opposite unit
tangents in pairs and form angles of 120/60 degrees among them.

It is not possible that more than two triple junctions collide together at a single
point.This is a consequence of the Multiplicity–One Conjecture.
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Collapse with bounded curvature

If the collapsing curve is one of the family containing the fixed boundary
points (boundary curves), the flow stops (we really must “decide”
whether/how to continue the flow).

t → T

St ST

If all the boundary curves do not collapse, is it possible to “restart” the flow?

Being the limit network possibly non–regular since it can have 4–junctions,
the short time existence theorem does not apply.
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Collapse with unbounded curvature

The second situation, when the curvature is unbounded and some curves are
vanishing, can be again faced with the blow–up method, but in general, even
if M1 is true, there can be several possible limits of rescaled networks.

As seen before, these are “shrinkers”, networks self–similarly shrinking
moving by curvature, satisfying the equation

k + x⊥ = 0.

Then, the (local) structure (topology) of the evolving network plays an
important role in the analysis.
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Tree–like evolving networks
Theorem
If M1 holds and the network is a tree (no loops), the curvature is uniformly
bounded during the flow, hence the only “singularities” are given by the
collapse of a curve with only two triple junctions going to collide.

Remarks:
I Type 0 – singularities actually exist.
I This result can be localized (if the network is locally a tree around a

singular point, the curvature is locally bounded).
I The curvature is unbounded if and only if a region is collapsing.
I Phenomenon of “propagation of estimates”.

t → T

St ST

This can happen if and only if the curvature is (locally) bounded.
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Collapse with unbounded curvature

By the previous analysis, unbounded curvature as t → T implies that in the
blow–up limit we find a shrinker with regions. These regions are the “memory”
of the collapsing region in the non–rescaled flow and the unbounded lines
gives the limit tangents of the concurring curves at the point of collapse.

Unfortunately, in this case we are not able to show that we have a unique
limit network as t → T (not even a unique blow–up limit).

Conjecture – WORK IN PROGRESS
If M1 holds, as t → T , there exists a unique limit non–regular network, with
multiple points or with triple junctions not satisfying 120 degrees condition.

Conjecture – WORK IN PROGRESS
Such a unique limit non–regular network has bounded curvature.
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Restarting the flow after a singularity
In the case of bounded curvature or if the previous “uniqueness of the limit
network” conjecture holds (even without the bounded curvature conjecture),
assuming always M1, we are able to restart the flow (of a possibly
non–regular network).

Theorem (T. Ilmanen, A. Neves, F. Schulze – 2014)
For any initial network of non–intersecting curves there exists a (possibly
non–unique) Brakke flow by curvature in a positive maximal time interval
such that for every positive time the evolving network is smooth and regular.

So, possibly losing the uniqueness (necessary – think of a cross), the flow
can be continued after the singular time.

t → T t > T

St StST
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Asymptotic behavior

If the whole network does not vanish at some time (it can happen) or a
boundary curve collapses, we can then define a flow “passing through”
singularities. In order to study its asymptotic behavior, we need that it is
defined for every positive time and this requires that the singular times do not
“accumulate”.

Conjecture
The singular times do not “accumulate”.

Stronger Conjecture
The number of singular times is finite (at least for a tree–like network).

In such case the flow is definitely smooth and the evolving network converges
(asymptotically) to a Steiner configuration connecting the fixed endpoints.
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Possible infinite “oscillations” via standard transitions from a shape to another
and viceversa.
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Open problems and research directions

Main Open Problem – “Multiplicity–One Conjecture” (M1)
Every possible limit of rescaled networks is a network with multiplicity one.

Theorem (CM, M. Novaga, A. Pluda – 2015)
I If during the flow the triple–junctions stay uniformly far each other, then

M1 is true.
I If the initial network has at most two triple junctions, then M1 is true.

Analysis of singularity formation for some flows of networks with “few” triple
junctions can then be made rigorous (under uniqueness of the limit
hypothesis in some cases).
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Only 1 triple junction

The Triod – A. Magni, CM, M. Novaga, V. Tortorelli

P1

γ1
γ3

γ2

O1

P3

P2

The Spoon – A. Pluda

P1

γ1

γ2O1
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2 triple junctions – CM, M. Novaga, A. Pluda

The Eyeglasses

O1
O2

γ1 γ2

γ3



Carlo Mantegazza & Alessandra Pluda CRM Pisa – 2017 Evolution of networks with multiple junctions

2 triple junctions – CM, M. Novaga, A. Pluda
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2 triple junctions – CM, M. Novaga, A. Pluda
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Open problems and research directions

Uniqueness issues (generic uniqueness of the flow).

Uniqueness of the (blow–up) limit network at a singular time.

Better estimates in the restarting theorem – more precise quantitative control
on the curvature for t > T .

Finiteness of singular times.

Generic (stable) singularities.

• Standard transition or circle (a very special network) or only

Generically only regions with at most three edges can collapse.
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Open problems and research directions – Higher dimensions

Study of the motion by mean curvature of 2–dimensional interfaces in R3

(double–bubble), for instance.

I Short time existence/uniqueness for special initial interfaces by Depner –
Garcke – Kohsaka

I Short time existence/estimates for special initial interfaces by Schulze –
White

I Basic computations for the geometric quantities and estimates with
Bellettini – Magni – Novaga (Work in progress)
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Thanks for your attention


