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1. Universal Interpolation Inequalities

THEOREM 1.1. There exist universal constants A, B and C such that for every
nonnegative convex function ¢ : R — R such that p(t) = 0 iff t = 0, and for every

function u € W'licl (R) we have

1) Le(") <2 [etud+c [ e,

PROOF. Let us consider an interval [0, L] and two positive constants A, u with

—_

A+ p < 1. Let® € [0,AL] and n € [L — pL, L] then there exists a value £ € [0, L]

such that ) )
/ _u —uln
hence,
u'(z) = u() = ulm) + [ W Vze|0,L)

0—n ¢

and .
|ul(x)| S M _|_/ |ul/| VI c [O,L]

10 — ] 0

which implies that
0)| [u(n)] k
/ < |u( / " .
|u(x)|*L(l—)\—u)+L(1—/\—u)+ ; lu”| Yz € [0, L]

Now we integrate in # € [0, A\L] and n € [L — pL, L], obtaining

) 1 AL 1 L L ,
i) < ————= u—|——/ u+/ ul,
WIS sr g M e

after dividing by A\uL?, for every z € [0, L].
Dividing both sides for
A1 =X — ) L2+ X+ p
pA(L = A — p)L?

g =
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and applying ¢ we get

| ()] i /AL
— | <
(p( A VY (R eyn Y E ey A [ul
A L
_|_
PAL =X = p) L2 + X+ p /LNL [
+ 'u)\(]' —A- M)L2 /L |ul/|
PA(L = A= p) L2+ X+ Jo
hence, using two times the Jensen’s Inequality,
v/ (2)] I 1 //\L
= N AL
@( g 7/1)‘(1_/\—/,6)[424—/\4—/1/\[, 0 90<|u| )

+ A 1/L (luluL)
PA(L = A= p) L2 + A+ ppl LWL@ a

PA(L =X —p)L /L y
L
pA A1 =X =) L2+ X+ u @ ([u7IL)

for every z € [0, L].
Finally we integrate in = € [0, L]

L AL
= N ©® AL
A (0’ u)\(l_/\_“)l2_|_)\ 2\ 0 (|U‘ )

+ A 1/L (luluL)
PAL = A= p) L2+ A+ pop L—MLSO :

MA(l —A- N)Lz /L "
L
MY vy el MR

and adding on disjoint intervals of length L whose union gives R, we get

|| m 1/

=) <« 4
/RSD(U Tl = A=) L2+ N+ p A R@(‘ul/\L)

A 1
= L
ST e D)

pAL — A — p)L? / p

L).

In the special case when A = 11 < 1/2 we have

| 2 A1 — 2))L2 ,
/R“” (a) S NI 22+ 2x /RS”(‘“'AL) NIV 12 /R‘P('“ I£)

where ¢ is given by

+

A1 —2)\)L2 42
M1 -2\ L2
Choosing L = L() in order that A\(1 — 2)\)L? = 2 we get 0 = 2 and

Le(551) = 55 Lot + 5 [ ot

which, by multiplication of u by L/2, becomes

/ /| L <i/ lu[AL2 +1/ | L2
U ) e U 2 .7\ 2
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and rescaling u(x) to u(tx),

/ [t L <i/ luAL? +1/ /" |t2L2
AUV SN R 2 L7\ 2 '

Thenif t = V1

|u'|[v/AL 1 |u| AL? 1 |u" | \L?
7\ 4 S L\ ) TP
R R R

and finally dividing u by AL?/2 we have
|| ) 1 / 1/ "
< — + < .
Lo (Bl < 55 [otun+ 5 [t

With some computations and taking into account that A(1 — 2\)L? = 2, we con-
clude that for every A > 2v/2 the following inequality holds

Lo (8D < 555 [otud+ 5 [ o

which gives the thesis.
Notice that if A \ 2v/2 then B = A%s — +400. Moreover, we have an explicit

C=1/2. O
REMARK 1.2. The line of the proof is taken by Adams [1], Lemma 2.10.

REMARK 1.3. This kind of inequalities between derivatives are also known as
Gagliardo—Nirenberg Inequalities, see [2, 3].

REMARK 1.4. The universal constants we found are not necessarily the best
ones, in particular we do not know what is the best A or the infimum of the admis-
sible ones. The proof shows that

inf{ A € R| Theorem 1.1 holds with constants A, B, C} < 2v/2.
In particular we would be interested in a counterexample showing that the con-
stant A cannot be taken to be 1.
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