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Univ. Tübingen, http://poincare.mathematik.uni-tuebingen.de/mozilla/home.e.html.

[105] F. Schulze, Uniqueness of compact tangent flows in mean curvature flow, J. Reine Angew. Math.
690 (2014), 163–172.

[106] W. Sheng and X.-J. Wang, Singularity profile in the mean curvature flow, Methods Appl. Anal.
16 (2009), no. 2, 139–155.

[107] W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Diff. Geom. 30 (1989),
no. 1, 223–301.

[108] L. Simon, Lectures on geometric measure theory, Proc. Center Math. Anal., vol. 3, Australian
National University, Canberra, 1983.

[109] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105.

[110] C. Sinestrari, Singularities of mean curvature flow and flow with surgeries, Surveys in differen-
tial geometry. Vol. XII. Geometric flows, vol. 12, Int. Press, Somerville, MA, 2008, pp. 303–
332.

[111] K. Smoczyk, Starshaped hypersurfaces and the mean curvature flow, Manuscripta Math. 95
(1998), no. 2, 225–236.

[112] H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), no. 2,
313–372.

[113] H. M. Soner and P. E. Souganidis, Singularities and uniqueness of cylindrically symmetric sur-
faces moving by mean curvature, Comm. Partial Differential Equations 18 (1993), 859–894.

[114] P. E. Souganidis, Front propagation: theory and applications, Viscosity solutions and applica-
tions (Montecatini Terme, 1995), Lect. Notes in Math., vol. 1660, Springer–Verlag, Berlin,
1997, pp. 186–242.

[115] A. Stahl, Convergence of solutions to the mean curvature flow with a Neumann boundary condition,
Calc. Var. Partial Differential Equations 4 (1996), no. 5, 421–441.

[116] , Regularity estimates for solutions to the mean curvature flow with a Neumann boundary
condition, Calc. Var. Partial Differential Equations 4 (1996), no. 4, 385–407.

[117] N. Stavrou, Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math. 499 (1998),
189–198.

[118] A. Stone, A density function and the structure of singularities of the mean curvature flow, Calc.
Var. Partial Differential Equations 2 (1994), 443–480.



BIBLIOGRAPHY 136

[119] , Singular and Boundary Behaviour in the Mean Curvature Flow of Hypersurfaces, Ph.D.
thesis, Stanford University, 1994.

[120] M.-T. Wang, Long–time existence and convergence of graphic mean curvature flow in arbitrary
codimension, Invent. Math. 148 (2002), no. 3, 525–543.

[121] , The mean curvature flow smoothes Lipschitz submanifolds, Comm. Anal. Geom. 12
(2004), no. 3, 581–599.

[122] X.-J. Wang, Convex solutions to the mean curvature flow, Ann. of Math. (2) 173 (2011), no. 3,
1185–1239.

[123] B. White, The size of the singular set in mean curvature flow of mean–convex sets, J. Amer. Math.
Soc. 13 (2000), no. 3, 665–695 (electronic).

[124] , Evolution of curves and surfaces by mean curvature, Proceedings of the International
Congress of Mathematicians, Vol. I (Beijing, 2002), 2002, pp. 525–538.

[125] , The nature of singularities in mean curvature flow of mean–convex sets, J. Amer. Math.
Soc. 16 (2003), no. 1, 123–138 (electronic).

[126] , A local regularity theorem for mean curvature flow, Ann. of Math. (2) 161 (2005), no. 3,
1487–1519.

[127] H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), no. 3, 525–
548.

[128] A. A. Zevin and M. A. Pinsky, Monotonicity criteria for an energy–period function in planar
Hamiltonian systems, Nonlinearity 14 (2001), no. 6, 1425–1432.

[129] X.-P. Zhu, Lectures on mean curvature flows, AMS/IP Studies in Advanced Mathematics,
vol. 32, Amer. Math. Soc., Providence, RI, 2002.


