
APPENDIX A

Quasilinear Parabolic Equations on Manifolds

(In collaboration with Manolo Eminenti and Luca Martinazzi)

This is the second order case in the paper [72] by Huisken and Polden (or in the Ph.D. Thesis
of Polden [103]).

Let (M, g) be a smooth, compact, n–dimensional Riemannian manifold. Let us consider the
following PDE problem with a smooth initial datum u0 :M → R,

{
ut = L(u) in M × [0, T ]
u( · , 0) = u0 on M ,

(PDE)

where the operator L is a second order quasilinear differential operator defined in M × [0, T ) (for
some T > 0), acting on a function u : M × [0, T ] → R with T < T as follows (in a coordinate
chart),

L(u) = Qij(p, t, u,∇u)∇2
iju+ b(p, t, u,∇u) ,

where Qij and b are smooth functions. Moreover, the operator L is locally elliptic, that is, around
every point p ∈ M there is a coordinate chart such that Qij = Qij(q, s, z, w) is a positive definite
matrix with lowest eigenvalue uniformly bounded from below away from zero for (q, s, z, w) in
some neighborhood of any (p, t, x, v), with t ∈ [0, T ), x ∈ R and v ∈ T ∗

pM .
It is easy to check that these assumptions on the quasilinear operator are independent of the
choice of the coordinate charts.

In order to show the existence of a solution of problem (PDE) in some positive (small) time
interval, first we show the existence of a weak solution if the system is linear, then we show its
regularity, finally we will deal with the quasilinear case by means of a linearization procedure.

A.1. The Linear Case

In all this section we assume that system (PDE) is linear, that is, L(u) = Qij∇2
iju+Rk∇ku+

Su+ b and {
ut −Qij∇2

iju−Rk∇ku− Su = b

u( · , 0) = u0 ,
(A.1.1)

where Qij , Rk, S and b are smooth functions dependent only on p ∈ M and on t ∈ [0,+∞) (not
on the function u or its gradient). Moreover, we suppose that

• the smooth functions Rk, S, b are bounded in C∞,
• the functionsQij are bounded inC∞ and there exists a uniform ellipticity constant λ > 0

of Qij .

We set L̃(u) = L(u) − b. Integrating by parts and using Peter–Paul inequality, we have the
following standard Gårding’s inequality, for every smooth u,

−

∫

M

uL̃(u) dµ ≥
λ

2
‖u‖2W 1,2(M) − C‖u‖2L2(M) , (A.1.2)

for every t ∈ [0,+∞), where the constant C > 0 depends only on the C1–norms of the functions
Qij , Rk and S (see [72] for details).
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104 A. QUASILINEAR PARABOLIC EQUATIONS ON MANIFOLDS

If u is solution with smooth initial data u0 of problem (A.1.1), then v = ue−Ct is a solution of
problem {

vt −Qij∇2
ijv −Rk∇kv − Sv − Cv = be−Ct

v( · , 0) = u0 .

and viceversa. Moreover, choosingC larger than the constant appearing in the Gårding’s inequal-

ity (A.1.2), the associated linear elliptic operator L̃′(v) = Qij∇2
ijv+R

k∇kv+Sv+Cv satisfies the
analogous inequality

−

∫

M

vL̃′(v) dµ ≥
λ

2
‖v‖2W 1,2(M)

without the negative term.
By the definition that follows, it will be clear that all the spaces and regularity issues (that we are
going to discuss in the next sections) are not affected by multiplication for exponential functions
depending only on time, hence, we will assume from now on that Gårding’s inequality for our
parabolic problem operator holds as follows,

−

∫

M

uL̃(u) dµ ≥
λ

2
‖u‖2W 1,2(M) . (A.1.3)

We define now the function spaces where we will prove the existence of a weak solution of
problem (A.1.1).

DEFINITION A.1.1. Given a > 0, for every pair of functions f, g ∈ C∞
c (M × [0,+∞)) we set

〈f, g〉LLa(M) =

∫ +∞

0

e−2at〈f( · , t), g( · , t)〉L2(M)dt ,

〈f, g〉LWa(M) =

∫ +∞

0

e−2at〈f( · , t), g( · , t)〉W 1,2(M)dt ,

〈f, g〉WWa(M) = 〈f, g〉LWa(M) + 〈ft, gt〉LLa(M)

and let LLa(M), LWa(M) and WWa(M) be the Hilbert spaces obtained by completion with
respect to the relative norms.

Suppose to have a smooth solution u ∈ C∞(M × [0,+∞)) of problem (A.1.1), then if φ ∈
C∞

c (M × (0,+∞)) we have,

0 =

∫ +∞

0

e−2at

∫

M

φ(ut − L(u)) dµ dt

=2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt

−

∫ +∞

0

e−2at

∫

M

φL(u) dµ dt

=2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt

−

∫ +∞

0

e−2at

∫

M

φ(Qij∇2
iju+Rk∇ku+ Su+ b) dµ dt

=2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt

+

∫ +∞

0

e−2at

∫

M

Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu dµ dt

−

∫ +∞

0

e−2at

∫

M

φ b dµ dt .

Notice that, by integration by parts, this equation has a meaning also if u is merely in LWa(M),
so we can use it to define a weak solution of the linear problem.
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DEFINITION A.1.2. We say that u ∈ LWa(M) is a weak solution of

ut = Qij∇2
iju+Rk∇ku+ Su+ b , (A.1.4)

if the following equality holds for every φ ∈ C∞
c (M × (0,+∞))

2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt (A.1.5)

+

∫ +∞

0

e−2at

∫

M

Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu dµ dt

=

∫ +∞

0

e−2at

∫

M

φ b dµ dt .

If a weak solution u is smooth it is easy to see that u is a classical solution of the parabolic
equation in (A.1.1).

We let Φ be the space of functions C∞
c (M × (0,+∞)), which are clearly zero for small time.

If WWa,0(M) is the completion of Φ with respect to the norm of WWa(M), asking that a
function u belongs to this space is a weak way to express the condition u( · , 0) = 0.

By simplicity, we define the bilinear form

B(u, φ) = Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu ,

and we define P :WWa,0(M)× Φ → R and K : Φ → R as follows,

P (u, φ) = 2a

∫ +∞

0

e−2at

∫

M

φtu dµ dt−

∫ +∞

0

e−2at

∫

M

φttu dµ dt

+

∫ +∞

0

e−2at

∫

M

B(u, φt) dµ dt ,

K(φ) =

∫ +∞

0

e−2at

∫

M

φt b dµ dt ,

then a weak solution u ∈WWa,0(M) satisfies P (u, φ) = K(φ) for every φ ∈ Φ.
Notice that K is a continuous functional on Φ (with the norm of WWa(M)) when b ∈ LLa(M).

We need now the following variation of Lax–Milgram whose proof can be found in [45, Chap-
ter 10, Theorem 16].

LEMMA A.1.3. Let H be a Hilbert space and Φ a space with a scalar product (not necessarily com-
plete) continuously embedded in H . Moreover, let P : H × Φ → R be a bilinear form such that

• h 7→ P (h, φ) is continuous for every fixed φ ∈ Φ,
• P |Φ is coercive, that is, there exists a positive constant C such that P (φ, φ) ≥ C‖φ‖2, for every
φ ∈ Φ.

Then, for every K ∈ Φ∗ there exists h ∈ H such that K(φ) = P (h, φ) for every φ ∈ Φ.

PROPOSITION A.1.4. If b ∈ LLa(M) and u0 is smooth, the problem (A.1.1) has a weak solution
u ∈ WWa(M), for a > 0 large enough, that is, u − u0 ∈ WWa,0(M) and u is a weak solution of
equation (A.1.4).

PROOF. First we assume that u0 = 0.
We check the hypotheses of Lemma A.1.3. This would imply that there exists a function u ∈
WWa,0(M) such that it satisfies equation (A.1.5) for every function φ = ψt, where ψ ∈ Φ.

Fixing φ ∈ Φ, a repeated application of Hölder’s inequality shows easily that P (·, φ) is con-
tinuous with respect to the norm of WWa(M) and we already noticed that K is continuous on Φ,
considering the WWa(M)–norm on it. We only need to show the coerciveness of P on Φ.
Keeping in mind that φ is regular and has compact support in M × (0,+∞), integrating by parts,
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we get

P (φ, φ) =

∫ +∞

0

e−2at

∫

M

φ2t dµ dt+

∫ +∞

0

e−2at

∫

M

B(φ, φt) dµ dt

=

∫ +∞

0

e−2at

∫

M

φ2t dµ dt+

∫ +∞

0

+a

∫ +∞

0

e−2at

∫

M

B(φ, φ) dµ dt

−

∫ +∞

0

e−2atB′(φ, φ) dµ dt ,

where
B′(φ, φ) = Qij

t ∇iφ∇jφ+ φ∇jφ∇iQ
ij
t − φRk

t∇kφ− φStφ .

Hence, using Gårding’s inequality (A.1.3) and estimating B′(φ, φ) ≤ C‖φ‖2LWa(M), for some con-

stant C, we get

P (φ, φ) ≥ ‖φ‖2LLa(M) +
(aλ

2
− C

)
‖φ‖2LWa(M) .

Choosing any a > 2C/λ, the coerciveness of P on Φ with the WWa(M)–norm follows.
We want to show now that for such u ∈WWa,0(M), actually equation (A.1.5) holds for every

φ ∈ Φ, not only φ = ψt for some ψ ∈ Φ. Considering any φ ∈ Φ, we set

φ̃(x, t) = φ(x, t)− φ(x, t− C)

(setting φ(x, t) = 0 when t−C ≤ 0) and we notice that ifC is large enough φ̃ ∈ Φ and it is the time–

derivative of the function ψ(x, t) =
∫ t

t−C
φ(s, x) ds which is also in Φ. Hence, equation (A.1.5)

holds with φ̃ instead of φ, then, sending C → +∞, it is easy to see that the contributions given by
the function φ(x, t−C) go to zero because of the exponential factor e−2at. Thus, we can conclude
that we have a weak solution u ∈WWa,0(M) of the problem (A.1.1) with u0 = 0.

Suppose now that the smooth initial datum u0 is not identically zero. We consider the equa-
tion satisfied by the function v = u − u0, with a null initial datum and we solve it with the
previous method.

The last term of this new problem is L(u0) = L̃(u0) + b (the other parts of the operator are the
same, by linearity), then the regularity of u0 implies that it satisfies the hypotheses for the ex-
istence of a weak solution v ∈ WWa,0(M), hence of u ∈ WWa(M) as in the statement of the
proposition. �

LEMMA A.1.5. If u ∈WWa(M) is a weak solution of problem (A.1.1), then for every φ ∈ C∞
c (M ×

[0,+∞)), the following equation holds.

2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt−

∫

M

φu0 dµ , (A.1.6)

+

∫ +∞

0

e−2at

∫

M

Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu dµ dt

=

∫ +∞

0

e−2at

∫

M

φ b dµ dt .

PROOF. Let v = u− u0 ∈ WWa,0(M) satisfying the relative equation (A.1.5) in the modified
system, that is,

2a

∫ +∞

0

e−2at

∫

M

φv dµ dt−

∫ +∞

0

e−2at

∫

M

φtv dµ dt (A.1.7)

+

∫ +∞

0

e−2at

∫

M

Qij∇iφ∇jv + φ∇jv∇iQ
ij − φRk∇kv − φSv dµ dt

=

∫ +∞

0

e−2at

∫

M

φL(u0) + b dµ dt ,

for every function φ ∈ C∞
c (M × (0,+∞)).

Let now φ = σϕ where ϕ ∈ C∞
c (M × [0,+∞)) and σ : [0 +∞) → R is a function which is zero
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on [0, ε], one on [2ε,+∞) and linear in the middle (we can “put” such a function σ in the formula
above by approximation).
We compute,

2a

∫ +∞

0

e−2atσ

∫

M

ϕv dµ dt−

∫ +∞

0

e−2atσ

∫

M

ϕtv dµ dt

−
1

ε

∫ 2ε

ε

e−2at

∫

M

ϕv dµ dt

+

∫ +∞

0

e−2atσ

∫

M

Qij∇iϕ∇jv + φ∇jv∇iQ
ij − φRk∇kv − φSv dµ dt

=

∫ +∞

0

e−2atσ

∫

M

ϕL(u0) + b dµ dt .

As ε → 0, the term 1
ε

∫ 2ε

ε
e−2at

∫
M
ϕv dµ dt converges to zero as v ∈ WWa,0(M) (since ut ∈

LLa(M)) and the other terms converge to the corresponding ones without σ inside, as σ →
χ[0,+∞) when ε→ 0. Hence, v satisfies relation (A.1.7) for every φ ∈ C∞

c (M × [0,+∞)).
Substituting v = u− u0 we get

2a

∫ +∞

0

e−2at

∫

M

φu dµ dt−

∫ +∞

0

e−2at

∫

M

φtu dµ dt

− 2a

∫ +∞

0

e−2at

∫

M

φu0 dµ dt+

∫ +∞

0

e−2at

∫

M

φtu0 dµ dt

+

∫ +∞

0

e−2at

∫

M

Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu dµ dt

=

∫ +∞

0

e−2at

∫

M

φ b dµ dt ,

and the second line is equal to

−2a

∫ +∞

0

e−2at

∫

M

φu0 dµ dt+

∫ +∞

0

e−2at

∫

M

φtu0 dµ dt

= − 2a

∫ +∞

0

e−2at

∫

M

φu0 dµ dt

+

∫ +∞

0

e−2at d

dt

∫

M

φu0 dµ dt

=

∫ +∞

0

d

dt

[
e−2at

∫

M

φu0 dµ
]
dt

= −

∫

M

φu0 dµ ,

which gives the thesis of the lemma. �

A.2. Regularity in the Linear Case

DEFINITION A.2.1. Let

LW s
a (M) =

{
f :M × [0,+∞) → R

∣∣∣∣
∫ +∞

0

e−2at‖f( · , t)‖2W s,2(M) dt < +∞

}

with the scalar product

〈f, g〉LW s
a (M) =

∫ +∞

0

e−2at〈f( · , t), g( · , t)〉W s,2(M) dt .

Moreover,

P l
a(M) =

{
f :M × [0,+∞) → R

∣∣∣∣
∂jf

∂tj
∈ LW 2(l−j)

a (M) ∀j ≤ l

}
,
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where ∂jf
∂tj

is in distributional sense. Clearly P l
a(M) ⊂ LW 2l

a (M).
On this space we have the following scalar product

〈f, g〉P l
a(M) =

∑

j≤l

〈
∂jf

∂tj
,
∂jg

∂tj

〉

LW
2(l−j)
a (M)

.

LEMMA A.2.2. The trace f0 of a function f ∈ P l
a(M) on the parabolic boundary M × {0} belongs

to the space W 2l−1,2(M).

PROOF. It is easy to see thatC∞
c (M×[0,+∞)) is dense in P l

a(M). If f is smooth with compact
support, we have

∫ +∞

0

e−2at

∫

M

g
(
∇2l−1f,∇2l−1 ∂f

∂t

)
dµ dt =

1

2

∫ +∞

0

e−2at

∫

M

∂

∂t
|∇2l−1f |

2
dµ dt

= a

∫ +∞

0

e−2at

∫

M

|∇2l−1f |
2
dµ dt

−
1

2

∫

M

|∇2l−1f0|
2
dµ .

Hence, keeping in mind the definition of the space P l
a(M),

∫

M

|∇2l−1f0|
2
dµ =2a

∫ +∞

0

e−2at

∫

M

|∇2l−1f |
2
dµ dt

− 2

∫ +∞

0

e−2at

∫

M

g
(
∇2l−1f,∇2l−1 ∂f

∂t

)
dµ dt

=2a

∫ +∞

0

e−2at

∫

M

|∇2l−1f |
2
dµ dt

+ 2

∫ +∞

0

e−2at

∫

M

g
(
∆∇2l−2f,∇2l−2 ∂f

∂t

)
dµ dt

≤ 2a‖f‖2
LW 2l−1

a (M)
+ 2‖f‖LW 2l

a (M)‖f‖P l
a(M)

≤ 3a‖f‖2P l
a(M) .

Then, the conclusion follows by approximation. �

We are now ready to state the main result of this section.

PROPOSITION A.2.3. For every l ∈ N the linear map

F (u) =
(
u0, ut − L̃(u)

)
(A.2.1)

is an isomorphism of P l
a(M) onto W 2l−1,2(M)× P l−1

a (M), for a > 0 large enough.

By the previous lemma the map F is well defined and bounded, we only need to show that
it is a bijection, by the open mapping theorem.

LEMMA A.2.4. If u ∈ WWa(M) satisfies equation (A.1.6) for every φ ∈ C∞
c (M × [0,+∞)) then,

the following estimate holds,

‖u‖2LWa(M) ≤ C
(
‖u0‖

2
L2(M) + ‖b‖2LLa(M)

)
.
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PROOF. Let φ ∈ C∞
c (M × [0,+∞)), as ut ∈ LLa(M), by the density of C∞

c (M × [0,+∞)) in
LWa(M)), we can substitute φ with u, obtaining

2a

∫ +∞

0

e−2at

∫

M

u2 dµ dt−

∫ +∞

0

e−2at

∫

M

utu dµ dt−

∫

M

u20 dµ

+

∫ +∞

0

e−2at

∫

M

Qij∇iu∇ju+ u∇ju∇iQ
ij − uRk∇ku− Su2 dµ dt

=

∫ +∞

0

e−2at

∫

M

u b dµ dt .

Taking the time derivative outside the inner integral of the second term and integrating by parts,
we get

a

∫ +∞

0

e−2atϕ

∫

M

u2 dµ dt−
1

2

∫

M

u20 dµ

+

∫ +∞

0

e−2at

∫

M

Qij∇iu∇ju+ u∇ju∇iQ
ij − uRk∇ku− Su2 dµ dt

=

∫ +∞

0

e−2at

∫

M

u b dµ dt .

By Gårding’s inequality (A.1.3) this formula implies

λ

2
‖u‖2LWa(M) ≤ −a‖u‖2LLa(M) +

1

2
‖u0‖

2
L2(M) + ‖u‖LLa(M)‖b‖LLa(M)

and using Peter–Paul inequality on the last term,

‖b‖LLa(M)‖u‖LLa(M) ≤ ε‖u‖2LLa(M) + C‖b‖2LLa(M) ≤ ε‖u‖2LWa(M) + C‖b‖2LLa(M) ,

the lemma follows by choosing ε < λ/4. �

In order to get estimates on the higher derivatives of u we work with the incremental ratios,
being the ambient space M a manifold we need to use local charts.
Given f : Rn → R

n and h 6= 0, fixing v ∈ Rn, let

(Θhf)(x) = h−1(f(x+ hv)− f(x)) .

The following properties of the operators Θh are easily checked.

• If f, g : Rn → R
n then

(Θh(fg))(x) = (Θhf)(x)g(x+ hv) + (Θhg)(x)f(x) .

• If f, g ∈ L1(Rn) with compact support contained in an open set Ω ⊂ R
n, then for h small

enough we have
∫

Ω

Θhf dx = 0 and

∫

Ω

f Θhg dx = −

∫

Ω

gΘ−hf dx .

Let ψl : R
n ⊃ Bn

1 → M , for l = 1, . . . ,m be a family of local charts such that the union of
ψl(B

n
1/2) covers M (Bn

r is the n–dimensional ball of radius r).

Moreover, let ρ : Rn → [0, 1] be a smooth function which is 0 outside Bn
3/4 and 1 in Bn

1/2. We

define Ul = ψl(B
n
1 ) and Vl = ψl(B

n
1/2).

We “lift” now Θ and ρ onM via the coordinate charts ψl, still using the same notation. Notice
that the relations above still hold for functions onM whose support is contained in a single chart.

LEMMA A.2.5. If u ∈WWa(M) is satisfies equation (A.1.6) with a smooth u0, then u ∈ LW 2
a (M)

and the following estimate holds,

‖u‖2LW 2
a (M) ≤ C

(
‖u0‖

2
W 1,2(M) + ‖b‖2LLa(M)

)
. (A.2.2)
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PROOF. We prove the estimate

‖∇2u‖2LLa(M) ≤ C
(
‖u0‖

2
W 1,2(M) + ‖u‖2LWa(M) + ‖b‖2LLa(M)

)
, (A.2.3)

then the conclusion follows by means of Lemma A.2.4.
We fix a chart ψl and we consider the test function φ = Θ−h(ρ

2Θhu) extended to 0 outside Ul in
equation (A.1.6), integrating by parts, as ut ∈ LLa(M), we get

〈
ut,Θ−h(ρ

2Θhu)

〉

LLa(M)

+

∫ +∞

0

e−2at

∫

M

B(u,Θ−h(ρ
2Θhu)) dµ dt

= 〈b,Θ−h(ρ
2Θhu)〉LLa(M) ,

recalling that we defined the form B as

B(u, φ) = Qij∇iφ∇ju+ φ∇ju∇iQ
ij − φRk∇ku− φSu .

Now “moving” the incremental ratios and integrating by parts, we obtain

−〈b,Θ−h(ρ
2Θhu)〉LLa(M) =

〈
∂(Θhu)

∂t
, ρ2Θhu

〉

LLa(M)

+

∫ +∞

0

e−2at

∫

M

B(Θhu, ρ
2Θhu) dµ dt

+

∫ +∞

0

e−2at

∫

M

(ΘhB)(u, ρ2Θhu) dµ dt

=

〈
∂(ρΘhu)

∂t
, ρΘhu

〉

LLa(M)

+

∫ +∞

0

e−2at

∫

M

B(Θhu, ρ
2Θhu) dµ dt

+

∫ +∞

0

e−2at

∫

M

(ΘhB)(u, ρ2Θhu) dµ dt

= a

∫ +∞

0

e−2at

∫

M

ρ2|Θhu|
2 dµ dt−

1

2

∫

M

ρ2|Θhu0|
2 dµ

+

∫ +∞

0

e−2at

∫

M

B(Θhu, ρ
2Θhu) dµ dt

+

∫ +∞

0

e−2at

∫

M

(ΘhB)(u, ρ2Θhu) dµ dt

where the term (ΘhB)(u, ρ2Θhu) is given by the application of the Leibniz rule for the incremen-
tal ratios. Anyway, this term is not a problem as all the coefficients of the form B are bounded in
C∞.
Hence, we have,

∫ +∞

0

e−2at

∫

M

B(Θhu, ρ
2Θhu) dµ dt+

∫ +∞

0

e−2at

∫

M

(ΘhB)(u, ρ2Θhu) dµ dt

≤C‖b‖LLa(M)‖Θ−h(ρ
2Θhu)‖LLa(M) + C‖Θhu‖

2
LLa(Ul)

+
1

2

∫

M

ρ2|Θhu0|
2 dµ

≤C‖b‖LLa(M)‖ρ
2Θhu‖LWa(M) + C‖u‖2LWa(M) + C‖u0‖

2
W 1,2(M) ,

by the standard integral estimates on the incremental ratios.
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We deal now with the two integrals in this formula. For the first one that we call A, after
some manipulations with the Leibniz rule, we have

A =

∫ +∞

0

e−2at

∫

M

B(Θhu, ρ
2Θhu) dµ dt

≥

∫ +∞

0

e−2at

∫

M

ρQij∇iΘhu∇j(ρΘhu) dµ dt

− C

∫ +∞

0

e−2at

∫

M

ρ|∇Θhu| |Θhu| |∇ρ| dµ dt

− C

∫ +∞

0

e−2at

∫

M

ρ2|Θhu|(|∇Θhu|+ |Θhu|) dµ dt

≥

∫ +∞

0

e−2at

∫

M

Qij∇i(ρΘhu)∇j(ρΘhu) dµ dt

− C

∫ +∞

0

e−2at

∫

M

|∇(ρΘhu)| |Θhu| (ρ+ |∇ρ|) dµ dt

− C

∫ +∞

0

e−2at

∫

M

|Θhu|
2(ρ2 + ρ|∇ρ|+ |∇ρ|2) dµ dt

≥

∫ +∞

0

e−2at

∫

M

Qij∇i(ρΘhu)∇j(ρΘhu) dµ dt

− εl

∫ +∞

0

e−2at

∫

M

|∇(ρΘhu)|
2 dµ dt

− Cl

∫ +∞

0

e−2at

∫

Ul

|Θhu|
2 dµ dt

≥

∫ +∞

0

e−2at

∫

M

Qij∇i(ρΘhu)∇j(ρΘhu) dµ dt

− εl‖∇(ρΘhu)‖
2
LLa(M) − Cl‖Θhu‖

2
LLa(Ul)

,

for some small εl > 0 and constants Cl that we obtained by means of the use of Peter–Paul
inequality. Again, by standard estimates, we conclude

A ≥

∫ +∞

0

e−2at

∫

M

Qij∇i(ρΘhu)∇j(ρΘhu) dµ dt

− εl‖ρΘhu‖
2
LWa(M) − Cl‖u‖

2
LWa(M) ,

where the constants εl and Cl are independent of u and h (small enough).
By Gårding’s inequality (A.1.3) it follows easily that

∫ +∞

0

e−2at

∫

M

Qij∇i(ρΘhu)∇j(ρΘhu) dµ dt ≥
λ

2
‖ρΘhu‖

2
LWa(M) − C‖ρΘhu‖

2
LLa(M)

≥
λ

2
‖ρΘhu‖

2
LWa(M) − C‖u‖2LWa(M) ,

hence,

A ≥
(λ
2
− εl

)
‖ρΘhu‖

2
LWa(M) − Cl‖u‖

2
LWa(M) .
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For the second integral that we call B, we have

B =

∫ +∞

0

e−2at

∫

M

(ΘhB)(u, ρ2Θhu) dµ dt

≥

∫ +∞

0

e−2at

∫

M

(ΘhQ
ij)∇iu∇j(ρ

2Θhu) dµ dt

− C

∫ +∞

0

e−2at

∫

M

ρ2|Θhu| (|∇u|+ |u|) dµ dt

≥ − C

∫ +∞

0

e−2at

∫

M

ρ|∇u| |∇(ρΘhu)| dµ dt

− C

∫ +∞

0

e−2at

∫

M

ρ|Θhu| |∇u| |∇ρ| dµ dt

− C

∫ +∞

0

e−2at

∫

M

ρ2|Θhu| (|∇u|+ |u|) dµ dt

≥ − εl‖ρΘhu‖
2
LWa(M) − Cl‖u‖

2
LWa(M) ,

by repeated use of Peter–Paul inequality.
Finally we obtain,

(λ
2
− εl

)
‖ρΘhu‖

2
LWa(M) ≤A+ Cl‖u‖

2
LWa(M)

≤C‖b‖LLa(M)‖ρ
2Θhu‖LWa(M) + C‖u0‖

2
W 1,2(M)

− B + Cl‖u‖
2
LWa(M)

≤C‖b‖LLa(M)‖ρ
2Θhu‖LWa(M) + C‖u0‖

2
W 1,2(M)

+ εl‖ρΘhu‖
2
LWa(M) + Cl‖u‖

2
LWa(M)

≤Cl‖b‖
2
LLa(M) + εl‖ρ

2Θhu‖
2
LWa(M) + C‖u0‖

2
W 1,2(M)

+ εl‖ρΘhu‖
2
LWa(M) + Cl‖u‖

2
LWa(M) .

It can be seen easily that

‖ρ2Θhu‖
2
LWa(M) ≤‖ρΘhu‖

2
LWa(M) + C‖Θhu‖

2
LLa(Ul)

≤‖ρΘhu‖
2
LWa(M) + C‖u‖2LWa(M) ,

as ρ ≤ 1, hence,
(λ
2
− 3εl

)
‖ρΘhu‖

2
LWa(M) ≤ Cl‖b‖

2
LLa(M) + C‖u0‖

2
W 1,2(M) + Cl‖u‖

2
LWa(M) .

By the arbitrariness of h, after choosing εl small enough, this estimate implies that

‖∇2u‖2LLa(Vl)
≤ Cl

(
‖b‖2LLa(M) + ‖u0‖

2
W 1,2(M) + ‖u‖2LWa(M)

)
.

As the coordinate charts are finite (M is compact) we get inequality (A.2.3), concluding the proof.
�

An immediate consequence of the fact that u ∈ LW 2
a (M) is the estimate

‖ut‖
2
LLa(M) ≤C

(
‖u‖2LW 2

a (M) + ‖u0‖
2
LLa(M) + ‖b‖2LLa(M)

)

≤C
(
‖u0‖

2
W 1,2(M) + ‖b‖2LLa(M)

)
,

that follows from equation (A.1.6).
Combining it with estimate (A.2.2) we have the following proposition.

PROPOSITION A.2.6. If u0 ∈W 1,2(M) and b ∈ LLa(M) then u ∈ P 1
a (M), with the estimate

‖u‖2P 1
a
≤ C

(
‖u0‖

2
W 1,2(M) + ‖b‖2LLa(M)

)
.



A.2. REGULARITY IN THE LINEAR CASE 113

REMARK A.2.7. By means of approximation with smooth functions, this proposition implies
the existence and uniqueness of a weak solution of problem (A.1.1) with an initial datum u0 ∈
W 1,2(M).

Suppose now that b ∈ P l−1
a (M) (hence, b ∈ LW 2l−2

a (M)) and u0 ∈ W 2l−1,2(M). We consider

the test function Θ2l−1
−h ρ2Θ2l−1

h u and we work as in the proof of Lemma A.2.5.

−〈b,Θ2l−1
−h (ρ2Θ2l−1

h u)〉LLa(M)

=

〈
∂(Θ2l−1

h u)

∂t
, ρ2Θ2l−1

h u

〉

LLa(M)

+

∫ +∞

0

e−2at

∫

M

B(Θ2l−1
h u, ρ2Θ2l−1

h u) dt

+

2l−1∑

j=1

(
2l − 1

j

)
(−1)j

∫ +∞

0

e−2at

∫

M

(Θj
hB)(Θ2l−1−j

h u, ρ2Θ2l−1
h u) dt .

Proceeding analogously, with the only difference that we deal with the term containing b as fol-
lows,

−〈b,Θ2l−1
−h (ρ2Θ2l−1

h u)〉LLa(M) ≤ |〈Θ2l−2
h b,Θ−h(ρ

2Θ2l−1
h u)〉LLa(M)|

≤ ‖b‖LW 2l−2
a (M)‖ρ

2Θ2l−1
h u‖LWa(M) ,

we obtain

‖∇(ρΘ2l−1
h u)‖2LLa(M) ≤ C

(
‖u0‖

2
W 2l−1,2(M) + ‖u‖2

LW 2l−1
a (M)

+ ‖b‖2
LW 2l−2

a (M)

)
.

By means of Proposition A.2.6 and iteration, we conclude

‖u‖2
LW

2(l−1)
a (M)

≤ C
(
‖u0‖

2
W 2l−1,2(M) + ‖b‖2

LW 2l−2
a (M)

)
.

Suppose now, by induction, that for every j < m ≤ l we have ∂ju
∂tj ∈ LW

2(l−1−j)
a (M), the case

j = 0 being the previous estimate. Putting in equation (A.1.6) a smooth test function φ = ∂m−1

∂tm−1ϕ
in C∞

c (M × (0,+∞)), integrating by parts and estimating, we see that u satisfies the estimates

∥∥∥∥
∂mu

∂tm

∥∥∥∥
2

LW
2(l−1−m)
a (M)

≤C
(∥∥∥∥
∂m−1b

∂tm−1

∥∥∥∥
2

LW
2(l−1−m)
a (M)

+
∑

j<m

∥∥∥∥
∂ju

∂tj

∥∥∥∥
2

LW
2(l−1−j)
a (M)

)

≤C
(
‖b‖2

P l−1
a (M)

+
∑

j<m

∥∥∥∥
∂ju

∂tj

∥∥∥∥
2

LW
2(l−1−j)
a (M)

)
.

Hence, we conclude that ∂ju
∂tj ∈ LW

2(l−1−j)
a (M), for every j ∈ {0, . . . , l}.

We summarize all this argument in the following proposition.

PROPOSITION A.2.8. For every l ∈ N, if u0 ∈ W 2l−1,2(M) and b ∈ P l−1
a (M) then u ∈ P l

a(M)
with the estimate

‖u‖2P l
a(M) ≤ C

(
‖u0‖

2
W 2l−1,2(M) + ‖b‖2

P l−1
a (M)

)
.

We can now show Proposition A.2.3.

PROOF OF PROPOSITION A.2.3. As we already said, the map F is well defined and continu-
ous and in order to conclude that F is an isomorphism it is sufficient to show that there exists a
unique weak solution in u ∈ P l

a(M) of problem (A.1.1) with any initial datum u0 ∈ W 2l−1,2(M)
and b ∈ P l−1

a (M).
As W 2l−1,2(M) is a subspace of W 1,2(M), by Remark A.2.7 we have a unique weak solution
u ∈WWa(M), then Proposition A.2.8 implies that u ∈ P l

a(M), as we wanted. �
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A.3. The General Case

THEOREM A.3.1. Problem (PDE) has a unique smooth solution defined in a time interval [0, T ) and
such solution depends continuously in C∞ on the smooth initial datum u0.

As M is compact there exists a constant C > 0 such that the initial datum satisfies |u0| +
|∇u0|g ≤ C. Since we are looking for a short time solution, possibly modifying the functions
Qij and b with some “cut–off” functions we can assume that if |u| + |∇u|g + t ≥ 2C, the ma-
trix Qij(p, t, u,∇u) coincides with gij(p) and b(p, t, u,∇u) is zero. It follows that the operator
Qij( · )∇2

ij has an ellipticity constant λ > 0 uniformly bounded from below away from zero and
that for large time there holds L(u) = ∆u.

For any l ∈ N we define P l(M,T ) as the completion of C∞(M × [0, T ]) under the norm

‖f‖2P l(M,T ) =
∑

j, k ∈ N and 2j + k ≤ 2l

∫

M×[0,T ]

|∂jt∇
kf |2 dµ dt ,

for every T ∈ R
+.

Clearly, there is a natural continuous embedding P l
a(M) →֒ P l(M,T ). In the following it will be

easier (though conceptually equivalent) to use the spaces P l(M,T ) instead of Polden’s weighted
spaces P l

a(M). For this reason we translate Proposition A.2.3 into the setting of P l(M,T ) spaces.

PROPOSITION A.3.2. For every T > 0 and l ∈ N the map F defined by formula (A.2.1) is an
isomorphism of P l(M,T ) onto W 2l−1,2(M)× P l−1(M,T ).

PROOF. The continuity of the second component of F is obvious while the continuity of the
first component follows arguing like in the trace Lemma A.2.2. Hence, the map F is continuous,
now we show that it is an isomorphism.

Given any b ∈ P l−1(M,T ) we consider an extension b̃ ∈ P l−1
a (M) of the function b and we let

ũ ∈ P l
a(M) be the solution of problem (A.1.1) for b̃. Clearly, u = ũ|M×[0,T ] belongs to P l(M,T )

and satisfies F (u) = (u0, b) in M × [0, T ]. Suppose that v ∈ Pm(M,T ) is another function such
that F (v) = (u0, b) in M × [0, T ], then by the maximum principle the functions u and v must
coincide in all M × [0, T ].

Since the map F : P l(M,T ) → W 2l−1,2(M) × P l−1(M,T ) is continuous, one–to–one and
onto, it is an isomorphism by the open mapping theorem. �

REMARK A.3.3. When u0 and b are smooth the unique solution u of problem (A.1.1) belongs
to all the spaces P l(M,T ) for every l ∈ N. As by Sobolev embeddings for any k ∈ N we can find
a large l ∈ N so that P l(M,T ) continuously embeds into Ck(M × [0, T ]), we can conclude that u
actually belongs to C∞(M × [0, T ]).

Fixing l ∈ N, we consider now the map

F(u) = (u0, ut − L(u)) =
(
u( · , 0), ut −Qij(u)∇2

iju− b(u)
)
,

defined on P l(M,T ), where Qij(u) = Qij(p, t, u,∇u) and b(u) = b(p, t, u,∇u).
The image of the map F does not belong in general to W 2l−1,2(M) × P l−1(M), this holds when
l ∈ N is large enough and in this case F is actually C1.

LEMMA A.3.4. Assume that l > n/4 + 1, then u ∈ P l(M,T ) implies that ∇u belongs to C0(M ×
[0, T ]). Moreover, F is a well defined C1 map from P l(M,T ) to W 2l−1,2(M)× P l−1(M,T ).

We postpone the proof of this lemma to the end of the section.

We fix l ∈ N such that the hypothesis of Lemma A.3.4 holds and we set ũ0(p, t) =
∑l−1

m=0 am(p) tm/m!
for some functions a0, . . . , al−1 ∈ C∞(M) to be determined later. Let w ∈ P l(M,T ) be the unique
solution of the linear problem

{
wt = Qij(p, t, ũ0,∇ũ0)∇

2
ijw + b(p, t, ũ0,∇ũ0)

w( · , 0) = u0 .
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Such solution exists by Proposition A.2.3 and it is smooth, as u0 and ũ0 are smooth (see Re-
mark A.3.3), hence we have

F(w) = (w0, wt − L(w)) =
(
u0, (Q

ij(ũ0)−Qij(w))∇2
ijw + b(ũ0)− b(w)

)
= (u0, f) ,

where we set f = (Qij(ũ0)−Qij(w))∇2
ijw + b(ũ0)− b(w) which is a smooth function.

If we compute the differential dFu of the map F at the “point” w ∈ C∞(M × [0, T ]) ⊂
P l(M,T ), acting on v ∈ P l(M,T ), we obtain

dFw(v) =
(
v0, vt−Q

ij(w)∇2
ijv−∂wQ

ij(w)v∇2
ijw−∂wk

Qij(w)∇kv∇
2
ijw−∂wb(w)v−∂wk

b(w)∇kv
)
,

(A.3.1)
where v0 = v( · , 0).
Then, we can see that dFw(v) = (z, h) ∈ W 2l−1,2(M)× P l−1(M,T ) implies that v is a solution of
the linear system {

vt − Q̃ij∇2
ijv − R̃k∇kv − S̃v = h

v( · , 0) = z ,

where Q̃ij = Qij(w), R̃k = ∂wk
Qij(w)∇2

ijw + ∂wk
b(w) and S̃ = ∂wQ

ij(w)∇2
ijw + ∂wb(w) are

smooth functions independent of v.
By Proposition A.2.3 for every (z, h) ∈ W 2l−1,2(M) × P l−1(M,T ) there exists a unique solution
v ∈ P l(M,T ) of this system, hence dFw is a Hilbert space isomorphism and the inverse function
theorem can be applied, as the map F is C1 by Lemma A.3.4. Hence, the map F is a diffeomor-
phism of a neighborhood U ⊂ P l(M,T ) ofw onto a neighborhood V ⊂W 2l−1,2(M)×P l−1(M,T )
of (u0, f).

Getting back to the functions am, we claim that we can choose them such that am = ∂mt w|t=0 ∈
C∞(M) for every m = 0, . . . , l − 1.
We apply the following recurrence procedure. We set a0 = u0 ∈ C∞(M) and, assuming to have
defined a0, . . . , am, we consider the derivative

∂m+1
t w|t=0 = ∂ℓt [Q

ij(p, t, ũ0,∇ũ0)∇
2
ijw + b(p, t, ũ0,∇ũ0)]

∣∣∣
t=0

and we see that the right–hand side contains time-derivatives at time t = 0 of ũ0,∇ũ0 and ∇2
ijw

only up to the order m, hence it only depends on the functions a0, . . . , am. Then, we define am+1

to be equal to such expression. Iterating up to l − 1, the set of functions a0, . . . , al−1 satisfies the
claim.

Then, am = ∂mt ũ0|t=0 = ∂mt w|t=0 and it easily follows by the “structure” of the function
f ∈ C∞(M × [0, T ]), that we have ∂mt f |t=0 = 0 and ∇j∂mt f |t=0 = 0 for any 0 ≤ ℓ ≤ l − 1 and
j ∈ N.

We consider now for any k ∈ N the “translated” functions fk :M × [0, T ] → R given by

fk(p, t) =

{
0 if t ∈ [0, 1/k]

f(p, t− 1/k) if t ∈ (1/k, T ] .

Since f ∈ C∞(M × [0, T ]) and ∇j∂mt f |t=0 = 0 for every 0 ≤ m ≤ l−1 and j ∈ N, all the functions
∇j∂mt fk ∈ C0(M × [0, T ]) for every 0 ≤ m ≤ l − 1 and j ≥ 0, it follows easily that

∇j∂mt fk → ∇j∂mt f in L2(M × [0, T ]) for 0 ≤ m ≤ l − 1, j ≥ 0 ,

hence fk → f in P l(M,T ).

Hence, there exists a function f̃ ∈ P l−1(M,T ) such that (u0, f̃) belongs to the neighborhood

V of F(w), defined above and f̃ = 0 in M × [0, T ′] for some T ′ ∈ (0, T ]. Since F|U is a diffeo-

morphism between U and V , we can find a function u ∈ U such that F(u) = (u0, f̃). Clearly
such u ∈ P l(M,T ) is a solution of problem (PDE) in M × [0, T ′]. Since u ∈ P l(M,T ′) implies
that ∇u ∈ C0(M × [0, T ′]), parabolic regularity implies that actually u ∈ C∞(M × [0, T ′]). We
briefly sketch the argument (see [82, Chapter 4] for details): being its gradient continuous, the
function u is a solution of a linear equation with continuous coefficients. Then, by parabolic
Calderon–Zygmund theory it belongs to every parabolic Sobolev space W 2,1

p (M × [0, T ′]), for
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any p > 1, which actually implies that ∇u is Hölder continuous (see [82, Chapter 4, Theorem 9.1
and Corollary]). So, the function u is a solution of a linear equation with Hölder continuous
coefficients, hence, it is in C2+α,1+α(M × [0, T ′]), by parabolic Schauder estimates (see [82, Chap-
ter 4, Theorem 5.2]). Then, an easy bootstrap argument along the same line shows that actually
u ∈ C∞(M × [0, T ′]).

Now we get back to the original operator L, that we modified far from the initial time and
initial datum in order to make it uniformly elliptic. The above argument shows that we can find
a smooth solution u in M × [0, T ] for some T > 0 (we relabeled T the time T ′ found above). Such
solution is unique in every P l(M,T ) for l ∈ N large enough (depending on the dimension of
M ). Indeed, by the Sobolev embeddings P l(M,T ) is a subspace of Ck, with k growing with l, in
particular for every l ∈ N large enough the solution we found is C2 at least, this allows the use of
the maximum principle in order to show that such solution is unique.

We finally prove the continuous dependence of a solution u ∈ C∞(M × [0, T ]) on its initial
datum u0 = u( · , 0) ∈ C∞(M).
Fix any l ∈ N such that l > n/4 + 1, then by Lemma A.3.4 u ∈ P l(M,T ) implies ∇u ∈
C0(M × [0, T ]). By the above argument, u = (F|U )

−1(u0, 0) ∈ P l(M,T ) where F|U is a dif-
feomorphism of an open set U ⊂ P l(M,T ) onto V ⊂W 2l−1,2(M)×P l−1(M,T ), with (u0, 0) ∈ V .
Then, assuming that uk,0 → u0 in C∞(M) as k → ∞, we also have uk,0 → u0 in W 2l−1,2(M),
hence for k large enough (uk,0, 0) ∈ V and there exists uk ∈ U such that F(uk) = (uk,0, 0). This
is the unique solution in P l(M,T ) (hence in C∞(M × [0, T ]) by parabolic bootstrap) with initial
datum uk,0. Moreover, since F|U is a diffeomorphism, we have uk → u in P l(M,T ).
By uniqueness, we can repeat the same procedure for any l ∈ N satisfying the condition in
Lemma A.3.4 concluding that uk → u in P l(M,T ) for every such l ∈ N, hence in C∞(M × [0, T ]).

REMARK A.3.5. Uniqueness can also be obtained by means of energy estimates based on
Gårding’s inequality for the operator Qij( · )∇2

ij , computing the ODE for the quantity
∫
M
(w2 +

|∇w|2) dµ where w = u− v and u, v ∈ C∞(M × [0, T ]) are a pair of solutions of problem (PDE).

We now prove Lemma A.3.4.
We need the following proposition which follows from standard arguments of parabolic in-

terpolation theory, see [88, Theorem 2.3] and [91] for details.

PROPOSITION A.3.6. Let u ∈ P l(M,T ) where M is compact and n–dimensional. Then for T > 0
and p, q ∈ N with p+ 2q ≤ 2l, we have

‖∂qt∇
pu‖Lr(M×[0,T ]) ≤ C‖u‖P l(M,T ) , if

1

2
−

2l − p− 2q

n+ 2
=

1

r
> 0 , (A.3.2)

‖∂qt∇
pu‖Lr(M×[0,T ]) ≤ C‖u‖P l(M,T ) , if

1

2
−

2l − p− 2q

n+ 2
= 0 , (A.3.3)

for every r ≥ 1.
Finally, ∂qt∇

pu is continuous and

‖∂qt∇
pu‖C0(M×[0,T ]) ≤ C‖u‖P l(M,T ) , if

1

2
−

2l − p− 2q

n+ 2
< 0 , (A.3.4)

where C is a constant independent of u ∈ P l(M,T ).

PROOF OF LEMMA A.3.4. The first claim follows immediately by the above proposition as
the condition l > n/4 + 1 implies, choosing p = 1 and q = 0,

1

2
−

2l − p− 2q

n+ 2
=
n+ 4− 4l

2(n+ 2)
< 0 ,

hence, ∇u is continuous.
We deal with the second claim, by simplicity we shall write P l = P l(M,T ), Lq = Lq(M ×

[0, T ]), C0 = C0(M × [0, T ]) etc..., so that for instance C0(P l;C1) will denote the space of contin-
uous maps from P l(M,T ) to C1(M × [0, T ]).
First we show that actually F(u) ∈W 2l−1,2×P l−1 when u ∈ P l, hence the map F is well defined.
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The regularity of the first component follows from Lemma A.2.2 and linearity, the same holds for
the term ut in the second component. Then we only need to prove that ∂mt ∇k(Qij(u)∇2

iju+ b(u))

belongs to L2 when k + 2m = 2l − 2 (actually, by looking at Definition A.2.1 of P l−1, we should
also check it when 2m+ k < 2l − 2 but this latter task is obviously easier).
Clearly, the “most difficult” term is ∂mt ∇k(Qij(u)∇2

iju), moreover, when at least one time or space

derivative apply to the t, p and u variables in Qij(u) the resulting term will have a higher inte-
grability than when all the derivatives go on the gradient term ∇u in Qij(u).
Hence, by simplicity, we assume that b(u) = 0 and Qij(u)∇2

iju = Aij(∇u)∇2
iju that we will de-

note by A(∇u)∇2u, for some smooth tensor A. It will be clear by the following estimates that the
other possible terms, when b(u) is not zero and Qij(u) depends also by the other variables, can
be bounded analogously (actually more easily).
We underline that if all the derivatives go on the factor ∇2u of A(∇u)∇2u, the resulting term
A(∇u)∂mt ∇k∇2u clearly belongs to L2 as A(∇u) is uniformly bounded (the gradient ∇u is con-
tinuous and A is smooth), k + 2m = 2l − 2 and u ∈ P l.

It can be easily proved by Leibniz formula and induction that for every pair of integers m
and k with k + 2m = 2l − 2, the derivative ∂mt ∇k(A(∇u)∇2u) is a finite sum of terms (the total
number is bounded by a function of l) each one of the form

B(∇u)

2l∏

p=1

l−1∏

q=0

∏

|α|=p

(∂qt∇
p
αu)

σpqα (A.3.5)

where α is a multiindex of order |α|, the exponents σpqα are nonnegative integers and B stands
for some smooth and bounded tensor. Hence, since ∇u is continuous, we estimate any of such
terms as

|B(∇u)|
2l∏

p=1

l−1∏

q=0

∏

|α|=p

|∂qt∇
p
αu|

σpqα ≤ C
2l∏

p=1

l−1∏

q=0

|∂qt∇
pu|bpq

with bpq =
∑

|α|=p σpqα ∈ N and nonnegative.

Moreover, it can be seen by induction on l ∈ N that the following formula holds

∑

p=1,...,2l
q=0,...,l−1

bpq(p+ 2q − 1) = 2l − 1 . (A.3.6)

Then,

‖∂mt ∇k(A(∇u)∇2u)‖L2 ≤
∑

C
∥∥∥

2l∏

p=1

l−1∏

q=0

|∂qt∇
pu|bpq

∥∥∥
L2

≤
∑

C
(∫

M×[0,T ]

2l∏

p=1

l−1∏

q=0

|∂qt∇
pu|2bpq dµ dt

)1/2
,

where the symbol of sum means that we are adding all the terms described by formula (A.3.5)
above.
We now apply Proposition A.3.6 noticing that (p+ 2q − 1) is always positive, otherwise we must
have p = 1 and q = 0 but the simple gradient ∇u cannot appear as a factor in the product for-
mula (A.3.5), by the structure of ∂mt ∇k(A(∇u)∇2u).
If for at least one pair (p, q) with bpq 6= 0 the derivative ∂qt∇

pu is continuous by the embed-
ding (A.3.4), we simply bound the relative factor with a constant and we modify the relative
integer exponent bpq to be zero. It follows that we have also to modify the formula (A.3.6) to the

inequality
∑2l

p=1

∑l−1
q=0 bpq(p+ 2q − 1) < 2l − 1.

If at least one pair (p, q) with bpq 6= 0 satisfies 2(2l − p − 2q) = n + 2, that is, we are in a critical
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case (A.3.3) of the embeddings, formula (A.3.6) gives

∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

bpq(p+ 2q − 1) < 2l − 1 , (A.3.7)

as we “dropped” at least one nonzero term bpq(p+ 2q − 1).
Hence, either formula (A.3.7) holds or we did not “set to zero” any of the integers bpq and there are
no factors in the critical cases of the embeddings. In this latter situation, either all the derivatives
went on ∇2u and the resulting termA(∇u)∂mt ∇k+2u is bounded in L2, or clearly there are at least
two integers bpq which are nonzero.

We now estimate as follows the previous integral with Hölder’s inequality and the embed-
dings (A.3.2) for the factors with 2(2l − p − 2q) 6= n + 2 and we choose a large rpq for any factor
such that 2(2l − p− 2q) = n+ 2 (the critical cases), by the embeddings (A.3.3),

∫

M×[0,T ]

2l∏

p=1

l−1∏

q=0

|∂qt∇
pu|2bpq dµ dt ≤C

2l∏

p=1

l−1∏

q=0

(∫

M×[0,T ]

|∂qt∇
pu|2bpq/dpq dµ dt

)dpq

=C
2l∏

p=1

l−1∏

q=0

(∫

M×[0,T ]

|∂qt∇
pu|rpq dµ dt

)dpq

≤C‖u‖
∑2l

p=1

∑l−1
q=0 dpqrpq

P l

=C‖u‖
∑2l

p=1

∑l−1
q=0 2bpq

P l

where 1
rpq

= 1
2 − 2l−p−2q

n+2 > 0 and dpq = 2bpq/rpq .

This application of Hölder’s inequality is justified if the sum of all the exponents dpq with 2(2l −
p − 2q) 6= n + 2 is less than 1, as we can choose the other dpq (associated to the critical cases)
arbitrarily small.
In such case we conclude that

‖∂mt ∇k(A(∇u)∇2u)‖L2 ≤
∑

C‖u‖
∑2l

p=1

∑l−1
q=0 bpq

P l

and we are done.
Hence, we now check such condition on the exponents dpq assuming that at least one of the

integers bpq with 2(2l − p− 2q) 6= n+ 2 is nonzero, otherwise the conclusion is trivial.

∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

dpq =
∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq
rpq

=
∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq

(
1

2
−

2l − p− 2q

n+ 2

)

=
∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq

(
1

2
−

2l − 1

n+ 2
+
p+ 2q − 1

n+ 2

)

=
∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq

(
1

2
−

2l − 1

n+ 2

)
+

∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq
p+ 2q − 1

n+ 2
.
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We now separate the two cases by the discussion above. If the strict inequality (A.3.7) holds we
have

∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

dpq <

[
∑

p=1,...,2l
q=0,...,l−1

2(2l−p−2q) 6=n+2

2bpq

(
1

2
−

2l − 1

n+ 2

)]
+ 2

2l − 1

n+ 2
< 1 ,

as at least one of the integers bpq is not zero and since 1
2 −

2l−1
n+2 < 0, by the hypothesis l > n/4+1.

If instead equality (A.3.6) holds, we have seen that at least two of the integers bpq are nonzero
otherwise the conclusion is trivial, then for all the pairs (p, q) with bpq > 0 there holds 2(2l − p−
2q) 6= n+ 2, hence,

∑

p=1,...,2l
q=0,...,l−1

dpq =
∑

p=1,...,2l
q=0,...,l−1

2bpq

(
1

2
−

2l − 1

n+ 2

)
+ 2

2l − 1

n+ 2

≤ 4

(
1

2
−

2l − 1

n+ 2

)
+ 2

2l − 1

n+ 2

=2− 2
2l − 1

n+ 2
,

which is less than 1 again since l > n/4 + 1.
It remains to prove that dF ∈ C0(P l;L(P l;P l−1)), where L(P l;P l−1) denotes the Banach

space of bounded linear maps from P l into P l−1. Again we assume by simplicity b(u) = 0 and
Q(u)∇2u = A(∇u)∇2u, for some smooth tensor A and we define FA : P l → P l−1 given by
u 7→ A(∇u)∇2u.
We first claim that the Gateaux derivative

(u, v) 7→ dFA(u)(v) =
d

dt
FA(u+ εv)

∣∣∣
ε=0

belongs to C0(P l × P l;P l−1). Indeed, dFA(u)(v) is given by (see formula (A.3.1))

dFA(u)(v) = D(∇u)∇v∇2u+A(∇u)∇2v ,

where D is a smooth tensor and the procedure previously used to estimate F(u) can also be
applied to any term ∂mt ∇k(D(∇u)∇v∇2u) or ∂mt ∇k(A(∇u)∇2v), since they can be expressed as
a sum of terms similar to the ones of formula (A.3.5) with the only difference being that now in
every term exactly one linear occurrence of u is replaced by v.
It is then easy to conclude, since v ∈ P l like u, that we obtain the continuity of (u, v) 7→ dFA(u)(v)
in the same way. This proves in particular that dFA(u) ∈ L(P l;P l−1).
In order now to show that dFA ∈ C0(P l;L(P l;P l−1)) we need to see that

sup
‖v‖

Pl≤1

‖dFA(ũ)(v)− dFA(u)(v)‖P l−1 → 0 as ũ→ u in P l .

Again, this estimate is similar to what we have already done. Indeed, by what we said above
about the structure of the terms ∂mt ∇k(D(∇u)∇v∇2u) and ∂mt ∇k(A(∇u)∇2v), assuming that
there are no time derivatives for the sake of simplicity, we have to show that, as ũ→ u in P l,

sup
‖v‖

Pl≤1

‖B(ũ)∇i1 ũ · · · ∇ij ũ∇ij+1v −B(u)∇i1u · · · ∇iju∇ij+1v‖L2 → 0 , (A.3.8)

where i1 + · · ·+ ij+1 = 2l + j (see formula (A.3.5) and condition (A.3.6)).
Adding and subtracting terms, one gets

∣∣∣B(ũ)∇i1 ũ · · · ∇ij ũ∇ij+1v−B(u)∇i1u · · · ∇iju∇ij+1v
∣∣∣

≤
{
|B(ũ)−B(u)| |∇i1 ũ| · · · |∇ij ũ|

+ |B(u)| |∇i1(ũ− u)| |∇i2 ũ| · · · |∇ij ũ|

+ · · · + |B(u)| |∇i1u| · · · |∇ij (ũ− u)|
}
|∇ij+1v| .
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Studying now the L2 norm of this sum, the first term can be bounded as before and it goes to
zero as B(u) is continuous from P l to L∞. The L2 norm of all the other terms, repeating step by
step the previous estimates, using Hölder’s inequality and embeddings (A.3.2)–(A.3.4), will be
estimated by some product

C‖u‖αP l‖ũ‖
β
P l‖v‖

γ
P l‖ũ− u‖σP l ≤ C‖u‖αP l‖ũ‖

β
P l‖ũ− u‖σP l

for a constant C and some nonnegative exponents α, β, γ, σ satisfying α + β + γ + σ ≤ 1 and
σ > 0. Here we we used the fact that ‖v‖P l ≤ 1.
As ũ−u→ 0 in P l, this last product goes to zero inL2, hence uniformly for ‖v‖P l ≤ 1 and inequal-
ity (A.3.8) follows, as claimed. The analysis of the estimates with mixed time/space derivatives
is analogous.
Then, the Gateaux differential dFA is continuous, which implies that it coincides with the Frechét
differential, hence FA ∈ C1(P l;P l−1). It follows that the map F is C1 and we are done. �


